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Abstract—Electric vehicles represent a promising choice to
decrease pollution and reducing fossil fuel consumption. However,
their limited autonomy poses a challenge that prevents them from
being suitable for many car users. Several practical solutions
are sought to avoid this problem, in particular one may think
of enhancing the battery capacity, reducing the charging time,
or increasing the frequency of charging points. In this paper,
we discuss how these aspects can be integrated by a proper
Markov model, thereby offering a neat analytical solution to
investigate all these problems. Some preliminary results are also
shown to demonstrate the descriptiveness of the model. Further
investigation can frame the proposed contribution within an
optimization framework, maintaining an analytical context.

Index Terms—Electric vehicles, Markov chains, stochastic
models, renewable energy, range anxiety.

I. INTRODUCTION

ALARMING pollution levels and increasing world-wide
oil demand are two major circumstances that lead many

nations to search for alternate energy sources and decrease
carbon dioxide emissions, especially from car transportation,
which makes use almost exclusively of internal combustion
vehicles (ICVs). The problem is especially heavy in the United
States, causing 30% of world greenhouse gases emissions, and
also in Europe, where the 20-20-20 directive set a goal for the
reduction of fossil fuel usage of 20% and replacement with
renewable energies (increased by 20%) by year 2020 [1].

In this context, electric vehicles (EVs) are a technological
solution not only to decrease pollution, but also to reduce
usage costs for the end user. EVs can diminish carbon dioxide
emissions by 50% and have four to six times lower per-km
cost than traditional ICVs [2]. EVs can be integrated with the
Internet of Things (IoT); this allows to prevent vehicle thefts,
or to detect and possibly avoid traffic congestion, car accidents,
and similar problems by means of monitoring systems based
on the IoT technology [3]. Yet, some hurdles to a widespread
diffusion of EVs are represented by limited autonomy, long
recharging times, and scarceness of recharging points.

These aspects result in a limited applicability of EVs, so that
a vicious circle arises. The diffidence of the customers towards
their practicality especially due to their limited autonomy, a
phenomenon known as range anxiety [4], leads to a niche
market. As a result, public investments for a better service are
discouraged, and this, in turn, further decreases the palatability
of EVs for the average customer. Indeed, preliminary socio-
logical studies have shown that EV users often limit the usage
and do not fully exploit the vehicle autonomy, fearing they

will not find a recharging point before the battery runs out
of charge. Also, long recharging times are distasteful to the
users, since they prevent an intense usage and independence
in other daily activities.

From a modeling standpoint, there are several intervention
points where these aspects can be tackled. One may think of
improving the battery efficiency, either increasing its capacity,
or making it faster to recharge, or both. At the same time,
more charging points can be deployed, thus increasing their
availability. With present-day technology, the cost-benefit re-
lationship of these actions can be extremely variable, being
also connected with the subjective perception of the end users.
Investigating them with an adequate level of detail would
involve several related economic and social aspects that are
out of the scope of our study. Nevertheless, we aim at giving
a preliminary contribution for what concerns the technical
evaluation of these elements, by discussing the capability of
stochastic models and, in particular, of Markov chains to
integrate all of them in a comprehensive description.

Markov models have been used for quantitative evaluation
of urban transportation practices. Especially, there are studies
proposing a Markov model to characterize EV behaviors in
urban mobility scenarios [5]. Inspired by these descriptions,
we propose instead an enlarged Markov chain where also
battery management can be integrated. In particular, we will
give the following contributions. First of all, we will discuss
the accuracy of the model, and show that even a loose time
granularity may still correctly reflect average performance of
the EV, especially for the metrics of interest related to range
anxiety. Moreover, we show how the model can be properly
tuned to investigate the impact of three key aspects mentioned
above, i.e.: (i) autonomy of the battery; (ii) speed of battery
recharging; (iii) frequency of recharging points.

The proposed Markov model can be further extended to
several more advanced investigations, still conserving a fully
analytical formulation that gives a powerful description, but
without requiring an excessive computational cost. In partic-
ular, more advanced behavioral patterns of the EV users can
be considered, as well as more traffic dynamics and intensities
over the day. Also, complex battery effects can be introduced
instead of the simple model where the battery charge increases
when the EV is parked in a charging point and decreases as
the EV moves, by considering leakage or stabilization effects.
Finally, the model can be integrated within stochastic opti-
mization frameworks [6], so as to devise intelligent algorithms
for maximum energy efficiency and/or autonomy.
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Fig. 1. The resulting system Markov Chain with 3N + 3 states.

II. SYSTEM MODEL

To represent the daily activity of an EV, we consider the
following simplified model. We assume that the EV drives
through a urban scenario during a day, cyclically alternating
being parked and on the move. The EV is considered to
always leave from and return to the owner’s home, where a
charging point is available, in the morning and at the end
of the day, respectively. Thus, at the beginning of each day
cycle, its battery is fully charged. The duration of the entire
daily activity is random, but its expected value is a working
day period, so as to model the condition where the vehicle
returns home at night after a determined average time. Also,
some (but not all) of the parking area within the city have a
charging point where the EV’s battery can be replenished. To
relate this analysis to the study of range anxiety, our objective
is to study the probability of running out of all the charge in
the battery before the day ends, called pd. This probability
depends, among other aspects, on the length of the chosen
path for that day, the number of driving routines performed,
the battery models, and the fraction of parking spots that are
charging points. Also, we want to study especially the impact
on pd of increasing the charging speed or the battery capacity.

We model this scenario with a discrete Markov Chain,
making a transition every �t seconds, in which we consider
that the EV can operate under three conditions: Drive, that is,
the EV moves consuming battery; Charge, whenever the EV
stops in a parking spot that is equipped with a charging point,
so that the battery is recharged; and finally Park, if the EV
stops in a parking position without any charging. Moreover,
we describe the battery as an energy queue, having multiple
possible charge levels, which are a quantization of the battery
charge. We set N as the number of levels, which means we
consider levels from 1 to N , with 1 representing the highest
charge, i.e., 100% of the battery.

The transitions between the three conditions happen ac-
cording to an independent underlying Markov process, for
which several characterizations exist in the literature [5]. Note
that this part of the model can be enlarged with additional
conditions describing different ways of operating the EV,
but such an extension would add little to the description

made above. Thus, we can define transitions from i j, with
i, j 2 {D,C,P}, where D, C, P stand for Drive, Charge,
and Park, respectively. These three conditions further define
macro-blocks of the Markov chain, in which we combine the
condition (D, C, or P) with the charge level k.

It is worth noting that the charge level can only increase (or
otherwise stay constant) if the condition is C; conversely, it can
only decrease (or again stay constant) in condition D. When
the system condition is P, we assume that neither discharge nor
charge of the battery take place. It would be possible to also
include other effects, such as charge balancing or leakage, but
their effect is marginal with respect to charge and discharge
caused by actual stationing at a charging point and driving,
respectively, so we leave their inclusion for future work.

Under these assumptions, the Markov Chain would consist
of 3N states, but we consider three additional states: the
Depleted state identifies the situation in which an EV is in
condition D with an empty battery and is therefore forced to
stop, a condition that causes serious dissatisfaction to the user;
the Overcharged state, representing a scenario in which the EV
is in condition C with the battery fully charged, and therefore
may have a higher probability of leaving the charging spot; and
finally, the Home state, which corresponds to the situation in
which the EV eventually arrives home at the end of the day
if its operation is not terminated sooner by encountering the
Depleted state. In other words, the House state describes the
service termination for the day in the ideal usage conditions.
From the modeling stand point, it is just one of the possible
exit states from a D condition, which corresponds to the EV
heading back home instead of temporarily parking. Thus, the
Markov chain has 3N + 3 states, with Depleted and Home
being absorbing states. Fig. 1 shows the resulting diagram of
the Markov chain and its transitions.

The Depleted state is considered to characterize the range
anxiety, since the owner of the EV would like to complete
its daily route without being absorbed into it. For this reason,
since the chain is ultimately absorbed by either the Depleted
or the Home state, we define as pd the probability that the
former occurs, whereas 1 � pd describes the probability of
ending in the Home state, as is desirable.



For the sake of simplicity, we consider the transitions
among the system conditions to be independent of the EV
charge level. In other words, we assume that the driver is
actually oblivious to the state of the battery, which does not
influence his/her behavior. It would be easy to improve the
description of the model by considering a higher likelihood
of moving towards a charging point when the charge level is
low. Such a characterization would surely be possible within
a Markov approach akin to our model, but it would require
some assumptions on the driver’s behavior (e.g., his/her risk
aversion and/or the desire to avoid the Depleted state as
much as possible), which in turn would need some supporting
experimental data. Since all these characterizations are related
to the range anxiety of the users, we prefer to keep this
concentrated in the simple evaluation of pd with independence
between the system condition and the battery charge level.

As a result, we can describe the entire system through few
simple parameters. In particular, we define p

start

as probability
that when the system is in conditions C or P, the engine is
turned on and a corresponding state with the same charge level,
but under condition D, is entered. As said above, this value is
the same regardless of the actual charge level of the battery.
Also, we assume that this is also the exit probability from
state Overcharged, even though it would be easy to change
this, for example, by assuming that a fully charged EV leaves
the charging spot immediately with probability 1.

Quite similarly, we define the probability that the EV leaves
condition D as a constant term p

stop

; in this case, the system
condition becomes P or C, which in turn depends on how
broad is the fraction f of electrified parking. We assume that
charging stations are uniformly distributed across the areas
where the EV can park, thus condition D is left towards C with
probability fp

stop

, and towards P with probability (1�f)p
stop

.
However, another exit options exists from condition D, which
is the probability to enter the absorbing Home state, which
happens with probability p

home

. Note that this parameter can
be set depending on the desired average duration of a daily
cycle not interrupted by absorption to the Depleted state; in
particular, in the following we chose it so that the EV stays
out for an average of 12 hours. Finally, the two remaining
parameters are the probabilities that the EV battery charge
decreases or moves to a higher level, things that may happen
when the system condition is D or C, and which are denoted
by symbols p

c

and p
charge

, respectively.
Such a Markov chain can be solved very easily through

standard stochastic process analysis to find, among other
metrics of interest, the value of pd. The number of states N
does not heavily impact on the complexity of the solution,
as will be further discussed in the next section. Technically
speaking, this happens because the transition matrix related to
the Markov model is sparse; indeed, the process can be seen
as a Quasi-Birth-and-Death process similar to those in [7]. In
the following, we discuss the application of our model and the
extraction of pd as a range anxiety analysis. We preliminary
investigate the quantization granularity required to have an
accurate model, and afterwards we show that our proposed
model is able to keep into account the impact of battery
capacity, recharge speed, and frequency of the charging spots.
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Fig. 2. Probability of successful service completion within the day (i.e., the
battery is not fully depleted), varying discretization parameters �t and N .

III. DISCUSSION

First of all, we consider the impact of quantization parame-
ters in the model proposed in the previous section. The model
accuracy heavily depends on the choice of �t and N , which
do not refer to real characteristics of the EV system, but are
just chosen so as to make the model tractable. Also, in order
to have a better understandable model, we introduce further
parameters that characterize the system more descriptively, as
opposed to the transition probabilities of the Markov chain.

The chosen parameters are the EV autonomy in km from a
full battery, denoted as A; the average recharge time, denoted
as T

charge

, to reach the state Overcharged from an empty
battery assuming no change of condition occurs; the average
length of the paths that the EV drives and their average number
within a day, denoted as L and n, respectively; the duration
of the daily hours, denoted as H; the average EV speed v.

In particular, we can introduce H⇤ = H(1 � Ln
Hv ) as the

time fraction in which the EV is not driving. Thus, we can
write the following relationships, which directly follow from
their definitions.

p
start

=
n�t

H⇤ p
stop

=
v�t

L

n� 1

n

p
home

=
v�t

L

1

n
p
c

=
v�t

A/N

p
charge

=
�t

T
charge

/N
.

In the following, if not specified otherwise, we assume these
values, that can be seen as a reasonable choice: A = 100 km,
T
charge

= 2 h, L = 25 km, n = 8, H = 12 h, v = 50
km/h, f = 0.5. These are sample values useful to give a
proof of concept for the model; more realistic results can
be used if available. For what concerns the evaluations of
the quantization accuracy, similar results have actually been
obtained in a wide range of parameters. Thus, we can plot
in Fig. 2 the probability of successful service completion, in
other words, the probability that the EV at the end of the
day is not found in the Depleted state, i.e., 1 � pd. This
is shown by considering different choices of �t and N .
Regardless of the actual value of the metric, from the figure
it is evident that, when the number of levels N is sufficiently
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Fig. 3. Probability of successful service completion within the day (i.e., the
battery is not fully depleted), varying system parameters A, f , and Tcharge.

high, granularity in time only has a marginal effect. This is
likely to happen because the considered time interval of a daily
cycle is sufficiently large to make a time quantization interval
of several seconds acceptable. Conversely, from the figure it
appears that a sufficiently high value of N is required. As a
result, in the following we use N = 100 and �t = 15 seconds.

Now, we explore some building aspects of the model in
more depth. The impact of the battery capacity on the range
anxiety is related to the width of the Markov chain: the higher
the number L of battery levels, or conversely, the slower
the transitions towards the Depleted state, the less likely that
the EV usage unsuccessfully ends in that state. An increase
of the charge speed implies considering a stronger transition
probability towards states with higher energy levels in condi-
tion C. Finally, another relevant element is the frequency of
charging points, which also directly captured by our model.
We also stress that these aspects all have a direct translation
into three system parameters, namely, the autonomy A, the
time to charge T

charge

, and the parameter f .
To show a sample result, in Fig. 3 we report the probability

of successful service completion 1 � pd as a function of the
battery autonomy A, but also considering different values of
f and T

charge

. One can notice that A is the key factor to
avoid range anxiety, since a reasonably high probability of
service completion (in the figure, we highlighted a threshold
of 1� pd = 70%) can be achieved only if A is large enough.
However, also the frequency of charging points impacts on this
result, since if f is very low, the required autonomy might be
too high: for example, f = 0.1 causes 1�pd to be below 70%
unless A is very large.

Finally, we also focus on the impact of T
charge

. From
the considered model, this impact is less relevant, but still
significant. According to the figure, a faster charging cycle can
decrease the required autonomy by 10% or more; however, this
happens only when f is high enough. This happens because a
faster charge can keep battery depletion sufficiently far even
in the cases where the EV stops at the charging point only for
a short while.

In addition, we must consider that the Markov chain pre-
sented in this paper has only absorption to state Depleted as a
(large) penalty, i.e., total failure. However, we can extend this

point by introducing a reward process over the Markov chain,
according to which the EV could cumulate a payoff depending
on the condition it is in. In this case, we can consider an
additional state, in which we force the vehicle’s charging;
this state involves no reward for the EV. More in general,
several other investigations can exploit the proposed model,
either expanding it, or including experimental evaluations to
derive meaningful system parameters.

IV. CONCLUSIONS

We proposed a Markov chain for assessing and possibly
improving the performance of EVs, with particular reference
to the evaluation of their autonomy and the resulting range
anxiety in the customers. Our chain builds up on a behavioral
model of the EV, including possible actions such as “drive”
and “park,” as well as the battery status modeled as an
energy queue. In particular, we showed how the model can
easily integrate several elements of interest in the performance
evaluation, namely the battery capacity, the density of the
charging points, and the speed of charge for the battery.

As possible extension of this work, we could consider a
relationship between the behavior of the users in the EVs and
the charge level of the battery through a Markov decision
process (MDP). We can also take into account different
conditions of motion; in particular, we can consider multiple
states related to various motion kinds, each of which could
have different levels of battery charge, and also possibly a
different reward in an MDP. Moreover, in our analysis we did
not treat situations in which a deterioration of the battery or
some malfunctions could imply a decrease in the EV autonomy
over time. In future works, we can take care of these aspects
considering a longer timescale. Furthermore, some additional
battery effects (such as leakage) can be considered by defin-
ing other parameters to describe the probability to move to
lower level of charge even under Park conditions. Finally,
an optimization framework for this reward collection can be
formulated [6], so as to transparently implement intelligent
algorithms for battery management.
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