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Abstract—In this paper, we consider the problem of recog-
nizing groups of similar nodes within a mobile network. Nodes
belonging to the same group have the same preferences, e.g., in
terms of friendship with other nodes. However, due to limited
communication range, each node has a partial view of the
network and is aware only of its friendship relationships with
the immediate neighbors. Depending on how large the communi-
cation range actually is, the problem can be in principle solved
by clustering nodes, classifying the friendship relationships on a
scale from −1 to +1 (sure not friendship to sure friendship, with
unknown nodes classified as 0). However, if the communication
range is small, this approach leads to large errors. We show how
a simpler procedure based on the exchange of social information
in a collaborative fashion is able to achieve better results than
more expensive clustering algorithms. Also, the two approaches
can be combined by clustering nodes after exchanging a given
amount of social information, thus improving the overall results.

Index Terms—Social network analysis, clustering, profiling,
graph theory, Internet of Everything.

I. INTRODUCTION

O
NLINE social networks are still enjoying an unprece-

dented success and represent a very effective instrument

for mass communication and content dissemination over the

Internet. From the scientific research standpoint, a strong

theoretical component may be envisioned behind the pattern

recognition and profiling engines that many online social

networks adopt to offer better services to their users [1].

Profiling users can also be useful to discover communities

of individuals sharing some attributes and therefore exploiting

the inherent redundancy within the network, for example, to

provide them with similar services or caching homogeneous

contents [2], [3]. However, profiling procedures also pose

several challenges about anonymity and privacy of the users

[4], [5]. In particular, among the many challenges related to

this problem, we focus on the detection of group structures,

which is an interesting application of social network analysis.

From the mathematical standpoint, the identification of group

structures in social networks can be seen as a clustering

optimization problem [6]–[8]. Also in the context of mobile

networking, clustering has been widely investigated and is not

an entirely new problem [9], [10]. However, what makes our

investigation for social networks challenging is that we do not

want to cluster mobile nodes based on their technical attributes

(such as radio technologies or energy consumption) but rather

on some independent application-driven parameters, such as

their individual preferences or the societal relationship among

them (e.g., who are their “friend nodes”).

Most of the theoretical analysis in this field is implicitly

based on the assumption that online social networks are able

to collect massive amounts of information on their users. The

problem resides in mining these data, rather than improving

their availability, since the network owner is generally able to

collect lots of data on every single user; most of the times,

the users themselves are willingly sharing their preferences

and attributes across the entire network [11].

In this paper, we adopt a different perspective by consid-

ering a mobile network where discovery of these individual

traits of the users is only partial. There are several possible

motivations for this scenario; we argue that mobility can

be a primal cause. For example, it is reasonable to assume

that mobility hinders communication and therefore limits the

collection of data. At the same time, mobile networks can also

have a temporary character and therefore most of the nodes

only gain knowledge on their immediate neighbors only.

We remark that the two attributes of “mobile” and “social”

networking have a complementary relationship, in that for

example the latter can improve the former. In some papers

[7], [12] it is studied how social relationships can help the

routing algorithms. Again, this approach can be seen as a

byproduct of context-aware networking. At the same time,

social connections are used, for example by [2], as a way

of further profiling users, since it can be assumed that users

are likely to connect with each other if they share similar

preferences, and their behavior is akin to those who they

recognize as friends.

The novel aspect of this paper is that we see mobility of the

nodes as a detrimental to the information extraction, since it

causes the network view to be only partial. In this sense, our

claim is that the problems caused by such a partial information

can only be overcome thanks to social collaboration among the

nodes. Thus, we investigate how the collaborative exchange of

information about each user’s preferences can help recognizing

the group structures in the network.

In particular, the scenario on which we focus, and that

will be better detailed in the following, involves a network

where nodes are element of a graph (representing a network

snapshot) and are classified a priori as belonging to a group,

which, in graph theory terms, is seen as a color. Colors

have pre-defined bindings, which can be regarded as a binary

friendship relationship over the social networks. However,

nodes only have awareness of their relationship with their



immediate neighbors on the graph. Since the network is

not fully connected, the extraction of group information is

therefore noisy. Here is where social collaboration applies. We

devise a simple iterative procedure where the estimate about

unknown nodes is further improved through periodic reporting

that nodes make about their neighbors, on a random basis, as

a social diffusion of context information.

We believe that such a procedure can be applied in any

scenario where social exchange of information is involved,

but a centralized coordination is difficult and therefore it is

more convenient to resort to distributed exchange of signaling

among the nodes. This may be the case for machine-to-

machine communication in vehicular scenarios [13], that can

be applied to exchanging road safety information, but where

exchanges are only made among devices with compatible

service (which represents our friendship relationship). For

the Internet of Everything, disconnections can be experienced

but social relationships among the nodes can be exploited to

establish a routing backbone [14].

As a result, we show that, while estimating clusters from the

initial incomplete data can be highly ineffective, the iterative

procedure is much more accurate in identifying clusters and

classifying individual nodes’ preferences. A combination of

this procedure used as a preliminary scan to improve the data,

and a standard clustering approach applied on top, is even

more effective. Since our goal is to show the effectiveness of

social collaboration as a principle, both the diffusion procedure

and the clustering technique are intentionally kept simple; their

detailed analysis would be out of the scope of the present

paper. However, both strategies can actually be refined and

different choices of the pattern recognition technique can be

made [8]. From our preliminary investigations we expect the

effectiveness of social collaborative networking to hold with

more complex strategies.

The rest of this paper is organized as follows. In Section

II we formalize the model under investigation. In Section III

we describe our proposed approach, as opposed to a standard

k-means clustering, to recognize groups of nodes with similar

preferences. Section IV shows the numerical results. Finally,

Section V concludes the paper.

II. SYSTEM MODEL

We consider a network with N nodes spread over a planar

area, that are labeled with integer numbers 1, 2, . . . , N . For

simplicity, we consider that neighborhood relationships of the

network nodes are based on a distance criterion. In particular,

we define a coverage radius r and we define two nodes to be

neighbors iff their Euclidean distance is lower than r. Note

what follows. First of all, it is not restrictive to consider a

higher number of dimensions, or a different distance than

the Euclidean one. Also, our distance-based criterion can be

directly linked with more realistic connectivity relationships

based on path-loss and signal attenuation, which ultimately

depend on the distance between the transmitter and the re-

ceiver. Naturally, more realistic radio communication models

[15] would also include other effects such as shadowing and

fading, and capture node interference; still, the result will be

analogous. In other words, we do not claim that a simple unit-

disc model is particularly suitable for wireless communication

[16]; it is just that the specific investigations made in this paper

do not critically depend on this characterization, which, how-

ever, offers the advantage of representing network connectivity

with a simple parameter, the coverage radius r.

The network connectivity as a graph can be represented by

an N ×N adjacency matrix A, where entry aij at the ith row

and jth column of A is equal to 1 if i and j are neighbors

(specifically, they are less than r apart) and 0 otherwise.

Furthermore, we assume the existence (a priori) of C non-

overlapping groups of nodes, which randomly partition the set

of the N nodes. For the ease of terminology, we define each of

the C groups as a “cluster” or also a “color” (we will use these

two terms interchangeably), so that we can see the recognition

of group structure as a clustering problem or a graph coloring

problem. The color of each node is assumed to be randomly

and independently determined. In the following, we will also

assume that all the colors are equiprobable for a node, even

though this is not necessary for our procedures. The color of

each node can be described by vector v where ith element vi
is an integer between 1 and C which is the id of i’s cluster.

Colors are also associated with relationship, which will be

referred to as “friendship.” Note that this naming is just again

chosen for the sake of exposition, it can actually refer to

any reflexive and symmetric (but not necessarily transitive)

property that can relate a pair of nodes. In particular, we

assume that a node is a friend of itself, and all nodes of the

same colors are friends. Also, the friendship relationship (or

lack thereof) is symmetric. However, being friends is just a

necessary (but not sufficient) condition to belong to the same

cluster; also, friendship is not transitive since we allow for any

pair of nodes with respective colors a and b to be friends with

each other, and the same if their colors are b and c, without

necessarily implying that any two nodes of respective colors a

and c are also friends. The specific aspect of our paper is that,

due to mobility, this relationship among an arbitrary pair of

nodes is not known in general; it is so only for neighbor nodes,

and the goal of our algorithms is to infer this relationship

correctly also between non-neighbors [2], [11].

Importantly, the naming of this relationship just mim-

ics an important relationship on online social communities

(alternatively dubbed as belonging to the same “circle” or

“professional network”) but, at least to the extent of the

present paper, has nothing to do with collaborative behavior

among the nodes, which we assume to exist regardless of their

friendship relationship; indeed, we will implicitly show that

it is beneficial also for non-friend nodes to collaborate. As

a possible extension of the present paper, it is possible to

consider a scenario where social collaboration is limited to

actual friend nodes. However, our connection of same-color

nodes as belonging to the same “logical” group is entirely

separate from (and actually independent of) considering “phys-

ical” relationships of neighborhood [12].

We can define a C×C symmetric matrix B to describe the

relationships between different clusters, in particular its entry

bfg, with f, g ∈ {1, 2, .., C}, is set to +1 if the nodes in cluster

f and those in cluster g are friends, and to −1 otherwise. Note



that the choice of the two values representing friends and non-

friends (in the following also called “enemies”) is arbitrary,

but using +1 and −1 allows for a consistent mathematical

representation of the remaining procedures. In particular, value

0 will represent indeterminacy between the two values.

We further remark that, to have an interesting problem,

we require that all the rows in matrix B are different, since

otherwise there were two colors that have identical relationship

with the others, and therefore can be merged in a single one.

Also, due to the reflexive requirement, matrix B must have

all diagonal elements equal to 1. However, these properties

still leave open the characterization of B for the off-diagonal

elements. Intuitively speaking, a case where B contains many

elements equal to −1 is easier to manage, since it means that

nodes are only friends with those of their same color and

therefore knowing that a neighbor node is a friend is more

descriptive. In the following, we will consider two different

choices to determine B. We will always consider it to be an

arbitrarily determined full-rank symmetric matrix with an all-1
diagonal, but we constrain it to have either 25% or 50% of its

elements equal to 1. We refer to these cases as “low inter-color

friendship” and “high inter-color friendship,” respectively.

Generalizing the idea behind matrix B, we can also define

an N × N matrix F, which describes friendship between

each node of the network. Specifically, we can combine the

information in v and B to derive every entry in F; for example,

we can notice that

fij = bvivj . (1)

However, as clear from the premises, such a matrix F is

not available. We only know a partial estimate F̃, where non

neighbor nodes do not have a 1 or −1 at their entry. Formally,

F̃ = F⊙A (2)

where ⊙ denotes the element-wise scalar multiplication.

III. PROPOSED SOCIAL COMMUNICATION TECHNIQUE

The purpose of the present paper is to identify, based only

on F̃, an estimate F̂ of the full-network matrix F. Since the

real F is not used but is actually known, it can be compared

with its estimate F̂ by checking the Frobenius norm ||F̂−F||F.

To have a normalized value and also since we can remark that

the accuracy of the diagonal elements is always 100%, we

define the following estimate efficiency parameter η as

η = 1−
||F̂− F||F
2N(N − 1)

, (3)

so that maximum efficiency of 1 is reached when all the

elements of the estimate F̂ coincide with those of F.

A straightforward solution to our problem is to apply an

out-of-the-box clustering procedure. Indeed, the elements of

F̃ can be seen as points in an N -dimensional space. In this

sense, indeterminate points have been set to 0, which is the

intermediate value between possibilities +1 and −1; thus, a

direct application of a clustering process makes sense. For

example, we can apply a k-means clustering [9], which is

a standard reference technique for this kind of investigation.

As a side note this choice poses some theoretical questions,

especially in that it requires to know in advance the number

of clusters. However, we choose it due to its generality and

widespread usage as a comparison term. It also involves, as

many other clustering techniques, a direct drawback if applied

to this scenario. In fact, applying such a clustering scheme

would totally ignore the underlying social structure of the

network, treating each row of F̃ as a different point in the

data space. We expect that the conclusions drawn for the k-

means technique would be applicable also to different and

possibly more sophisticated clustering procedures, such as the

Chinese restaurant clustering or affinity propagation [8], [17].

The clustering procedure does not directly determine F̂, which

would be needed to apply (3), but rather gives a cluster id for

all the nodes, which can be seen as an estimate v̂ of vector v,

and also an estimate of B by considering the centroids of the

k-means. These points do not generally have values equal to

either −1 or +1, but can also have intermediate values. Thus,

it is required to round them (up or down, accordingly) to the

closer one. Finally, F̂ is derived, see (1), as

f̂ij = b̂v̂iv̂j . (4)

It will be shown in the next section that the k-means

clustering does not achieve a very good performance. Thus,

our goal is to see whether we can improve the efficiency of

group detection by considering a system in which the nodes

can communicate with each other and update their current

friendship estimates based on the information that the other

nodes spread in the network. To this end, we develop an

iterative algorithm where we set an initial matrix X
(0) = F̃

and we update its entries from the information communicated

by a row (representing a node disseminating its data) chosen

at random, so as to obtain matrix X
(1). After that, another

row of X
(1) is chosen and the iteration is repeated to obtain

X
(2) and so on. In principle, this can keep going on until a

matrix X
(T ) is obtained where all the elements are either +1

or−1. However, the evaluation of the efficiency is based on the

Frobenius norm that works element-wise and can be computed

even if some elements have not reached the border values. We

find out that it is more convenient for computational reasons

to perform a given number of iterations; generally, we can get

very close to the stopping point of the algorithm even in this

way, but with a faster execution time.

We propose a policy based on a social collaborative ex-

change of information, where we also involve the following

parameters: a threshold k chosen between 0 and 1, an integer

value M , which jointly determine whether to update a value

or not, and finally a real positive value ∆ that describes the

(initial) amount of the update.

Each iteration works in the following way. We choose at

random the pth row of the temporary estimate X
(t) and we

update from it all other rows (i.e., the friendship estimate of

all other nodes) to determine X
(t+1). By looking at X(t), we

take a generic row i and we call those nodes j for which

element f̂ij = +1 as the sure friends of i, and similarly we

define those for which f̂ij = −1 as its sure enemies. Threshold

k is used to label those nodes j that at the ith row have an

entry f̂ij > +k as likely friends and similarly those for which

f̂ij < −k are said to be likely enemies.



Note that these are just labels used while the algorithm is

running. At the beginning of the iterations, all sure friends

or enemies are identified correctly since they are based on

authentic values of F. After some iterations, there is no

guarantee that this labeling is correct anymore.

To decide whether a specific row q different from p can be

updated, we consider the element-wise product between the

pth and qth rows. The result of this product can give three

different outcomes: o1) node q likely has the same color of

node p; o2) node q and node p likely belong to different

clusters; o3) there is nothing that can be said. To call the

first outcome, o1, we must have all the sure friends of p (i.e.,

their corresponding entry of the pth row is equal to +1) are

not that sure enemies of q, and also the converse relationship

must hold (sure enemies of p cannot be sure friends of q).

Moreover, node q cannot have a likely friend that is a sure

enemy for node p, or node q cannot have a likely enemy that

is a sure friend for p. If any of these conditions is violated,

then the outcome is o2. However, we do not consider sufficient

not to violate any of these condition to have outcome o1; for

example, the element-wise product can be entirely made by

zeros (if node p and q do not share any neighbors) which is

of little meaning but does not violate any constraint.

In our proposed procedure, o2 is declared as the outcome

if at least one vector element is negative. Else, o1 is declared

if at least M elements of the product vector are greater than

k. Otherwise, the outcome is declared to be o3. Only if o1 is

declared, an update is performed for the pth row of the matrix,

so that every qth element, for q ∈ {1, 2, .., N} whose value

X
(t)
pq is strictly between −1 and +1 is added the following

quantity: ∆ ·X
(t)
pq . As can be observed, being ∆ ∈ (0, 1) this

operation is actually an addition if nodes p and q are friends, it

is a subtraction otherwise. Also, if the updated value exceeds

the absolute value of 1, it is capped to either −1 or +1.

The procedure can be iterated until a matrix X
(t) is obtained

with only −1/+1 values, or when t = Tmax. Then, we set

F̂ = X
(t). Algorithm 1 shows the pseudocode considered for

our evaluations, where the algorithm ends after Tmax updates

of the matrix. Note that the input value denoted as X(:, :, 0)
corresponds to X

(0) = F̃ and is derived from the network

topology and the real nodes’ colors, in particular from param-

eters N , r, A, B as per the aforementioned unit disc model

and equations (1) and (2). The output value X(:, :, Tmax) in

the pseudocode corresponds therefore to F̂ = X
(Tmax).

Another possibility of applying our rationale towards an

improved estimate than that obtained by clustering the raw

data is to still apply a clustering algorithm, in particular we

use again the k-means procedure, but after an initial phase

where social communication has improved the data. In other

words, we run our proposed heuristic iterative procedure for

a given number of times.

We update matrix X
(t) but (regardless of whether conver-

gence is perfectly reached or not) we apply at the end a k-

means clustering algorithm. Our goal with this last strategy is

to verify whether the iterative procedure of social collaboration

improves the data per se, and enables the clustering algorithm

to obtain a more efficient result.

Algorithm 1 Pseudocode of the iterative process

Input : N,M, k,∆, Tmax, X(:, :, 0)
Output : X(:, :, Tmax)
t← 0
while t ≤ Tmax do

randomly choose n ∈ {1, 2, . . . , N}
for every m ∈ {1, 2, . . . , N} \ {n} do

a(:) = X(n, :, t)⊙X(m, :, t)
ℓ← 0
for i ∈ {1, 2, . . . , N} do

if a(i) > k then

ℓ← ℓ+ 1
end if

if a(i) < 0 then

ℓ← 0
break

end if

end for

if ℓ ≥M then

for every node i do

X(n′, i, t) = X(n′, i, t) + ∆ ·X(n, i, t)
if X(n′, i, t) > 1 then

X(n′, i, t) = 1
end if

if X(n′, i, t) < −1 then

X(n′, i, t) = −1
end if

end for

end if

end for

t← t+ 1
end while

IV. PERFORMANCE ANALYSIS

We present some numerical results, all obtained for a

scenario with a square area of side equal to 100 reference

units. In particular, our purpose is to compare the performance

considering a system that exploits the collaborative spreading

of information in the network and another that does not, and

just uses the clustering on the initial data.

We set the parameters introduced in the previous sections

as k = 0.4, M = 4, and ∆ = 0.01. These values were

chosen by heuristic trial-and-error procedures. Moreover, for

this comparison we assume different values for the coverage

radius r, the number C of clusters, and the number N of nodes

in the entire networks.

All the figures shown consider the normalized efficiency

parameter defined in (3) and compare three different ap-

proaches: the plain k-means algorithm; the heuristic iterative

procedure based on collaborative exchange of information

about friendship between nodes; finally, a joint approach where

the iterative procedure is preliminary applied, and afterwards

a k-means clustering is employed. Every result has been

derived from a very large number of simulation runs, so that

confidence intervals of the results, not shown in the plots, are

extremely narrow.
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Fig. 1. Normalized classification efficiency as a function of the coverage
radius for N = 200 nodes, C = 8 colors, high inter-color friendship.
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Fig. 2. Normalized classification efficiency as a function of the coverage
radius for N = 200 nodes, C = 8 colors, low inter-color friendship.

Figs. 1 and 2 show the results obtained considering a

network with 200 nodes, 8 clusters, and high and low inter-

color friendship respectively. A general trend, found in all

the results, is that an increase of the communication range r,

which causes matrix A to become less sparse and therefore the

initial estimate F̃ to be more similar to F, generally improves

the efficiency of the estimate; this conclusion holds true for

all the three compared approaches, albeit to a different extent.

From the results, it is clearly visible that our proposed ap-

proach outperforms the standard k-clustering by increasing the

estimate efficiency. The application of the k-means algorithm

in order to update again the estimate of F after the iterations

improves the efficiency even more, albeit only slightly. Also,

even though the differences are not that striking, the case

with high inter-color friendship is characterized by a more

difficult recognition of the clusters, especially for the k-means

algorithm. In the following, we will report only results related
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Fig. 3. Normalized classification efficiency as a function of the coverage
radius for N = 200 nodes, C = 6; 10 colors, high inter-color friendship.
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Fig. 4. Normalized classification efficiency as a function of the coverage
radius for N = 500 nodes, C = 8 colors, high inter-color friendship.

to this case; we checked also the cases with low inter-color

friendship and similar conclusions can be drawn there as well.

Fig. 3 allows the comparison of the results obtained chang-

ing only the number of clusters considered. Therefore, we

consider not only the case with 8 clusters, but also the cases

with 6 and 10 clusters. As it can be noted, considering

a different number of clusters changes the corresponding

efficiency value for each coverage radius. In particular, we

can state that a higher number of clusters involves a lower

efficiency, and therefore a higher error.

Finally, Fig. 4 compares the results obtained by changing the

number of nodes from 200 to 500 in the network. Comparing

Figs. 1 and 4, we infer that increasing the number of nodes

does not significantly change the performance. Therefore, we

can conclude that these algorithms are scalable with respect to

the number of nodes in the network, and can be applied even

to large scale scenarios of the Internet of Everything.



V. CONCLUSIONS AND FUTURE DEVELOPMENTS

We considered a problem of group detection in social

mobile networks, where network mapping by each individual

node is assumed to be partial, i.e., limited to its neighbors. We

showed how traditional clustering procedures fail to efficiently

identify the existing group structures, while a simple heuristic

procedure based on the concept of social diffusion of informa-

tion achieves a much higher efficiency of cluster recognition.

Also, the efficiency is further enhanced by combining our

proposed procedure with a standard clustering technique.

The work reports preliminary results related to a standard

k-means clustering technique and a simple heuristic approach,

since the purpose is to show the benefit of social communica-

tion. More results can be shown also exploring the parametric

dependence of the inner values of the proposed technique

(e.g., the update step ∆ or threshold k). Future developments

also include the evaluations of more sophisticated clustering

techniques, especially avoiding the need of k-means clustering

to know the number of colors in advance (an element that is,

however, not required by our proposed original approach).

Moreover, different heuristic approaches can surely be

investigated. While keeping the same rationale of a social

communication where nodes collaboratively exchange infor-

mation about their relationship so as to inform distant nodes,

more complex techniques can be thought of, especially ex-

ploiting the inherent characteristics of the assumed friendship

relationship. For example, contradictions in the self-declared

friendship (node i reports being a friend of node j while node

j reports the opposite about node i) should be identified and

resolved.

Finally, in this paper the logical relationship of collabo-

ration is (intentionally) kept separate from routing aspects

and friendship connections. However, one can think of ap-

plying the same rationale to scenarios where these aspects

are interconnected, i.e., for example nodes only forward data

coming from their friends, or they may even disseminate

false or malicious information about their enemies. All these

open challenges demonstrate the importance of this kind of

quantitative investigations to realize efficient paradigms for

the Internet of Everything.
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