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Abstract—Drones offer opportunities for networking and con-
trol solutions, but also challenges when it comes to their co-
ordination. In this paper, we apply a game theoretic model to
multi-agent drone scenarios for wireless coverage, to regulate
their movement so as to ensure timely positioning but avoiding
collisions. Simulations are led through the Nash-Q learning
algorithm to prove the theoretical analysis and confirm their
predicted trajectory dynamics. The results of this work can be
exploited as a tool to provide insights for multi-agent control.

Index Terms—Game theory; Cooperative systems; Intelligent
robots; Aerial base stations.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also called drones, are
expected to play a significant role in future technological
scenarios, including coverage for wireless communications,
but also logistic transportation and delivery, and industrial pro-
duction [1]. Their interaction becomes complex when multiple
UAVs exist in the same area, and coordination strategies are
required to harmonize their operations.

Drone network architectures have been studies at all the
layers of the protocol stack [2]. Open issues include energy
efficiency, routing (in the form of gateway selection) and
mobility of the nodes, which can hinder the overall network
stability. A management of drones with intense communication
exchanges would nullify the advantages to use drones in the
first place, i.e., the adoption of multiple simple systems instead
of a unique complex architecture [3].

Therefore, approaches related to game theory have started
to gain attention [4]–[7]. The interaction among different
agents can be captured as resulting in a Nash equilibrium
(NE). This translates to a system where a number of non-
adversarial drones (but not necessarily explicitly cooperative)
move in the same environment while being limited in both
mutual communications and available resources. These kinds
of multiagent environments can be modeled as stochastic
games, i.e., a model of multi-state multi-agent systems having
Markov property and a stochastic inter-state transition rule.

However, moving drones are often unaware of the reward
functions or state transition probabilities. Hence, a learning
problem arises, which can be addressed through model-free
reinforcement learning (RL) [8], where agents directly learn
about their optimal policy without knowing the reward func-
tion or the state transitions. In the last years since a wide
range of algorithms have been developed for solving these
games [9]–[13]. So far, the standard setting which has been
used as a reference for the learning of these algorithms is

the one of two-dimensional grid games, where a number of
agents are placed on square cells and are allowed to move in 4
directions: Up, Down, Left and Right. However, this structure
lacks in fundamental aspects when dealing with the dynamics
in trajectory control, also not considering that aerial drones
are also moving in a three-dimensional environment.

In this paper, we examine and simulate an original game-
theoretical model, where a new topological scenario is consid-
ered. We consider two drones in a three-dimensional grid, a
scenario that can be encountered in real-world situations when
multiple drones are located in the same environment.

II. RELATED WORK

In the past few years, the use of game theory has grown
extensively in the robotic research community. Reference [4]
proposed game theory for high-level planning of multiple
robot coordination. Relevant applications include a multi-robot
search for targets [5] or the shared exploration of structured
workspaces like building floors [7]. In parallel, the interest in
the implementation of game theory in conjunction with RL
increased significantly. Single-agent learning techniques have
wide applications in the control of robotic arms [14], also
mirroring some biological studies on grasping tasks [15], [16].
Multiagent domains such as robotic soccer [1] can also exploit
RL, even though, as argued in [8], in this case the environment
can no longer be considered as stationary.

The extension of RL techniques from single-agent to multi-
agent environments includes two main classes of learning al-
gorithms, called adaptive learning algorithms and equilibrium
learning algorithms. The main difference is that in the latter
case agents are calculating an equilibrium solution assuming
that their opponents are rational, and their convergence is
limited to a number of cases where these equilibria are identi-
fiable. The adaptive learning agents, on the contrary, make no
assumptions about rationality or learning capabilities of other
agents. These learning algorithms are proven to converge in
self-play (i.e., when learning against agents that are using the
same learning algorithm) to an equilibrium solution in a wide
variety of repeated matrix games. Among adaptive algorithms,
the ones which have been exploited more frequently are
Infinitesimal Gradient Ascent (IGA) [9], Policy Hill-Climbing
(PHC) [10] and Adaptive Play Q-learning (APQ) [11]. Re-
garding equilibrium learning algorithms instead, it is possible
to mention popular techniques such as Minimax Q-learning
[12], Friend-or-foe Q-learning [13] and Nash Q-learning [8].



In particular, the latter was the one that was exploited in our
simulations. All these techniques were empirically tested by
their respective authors. However, although these algorithms
were tested on a number of repeated matrix games and some
examples of stochastic games [8], a number of questions is
remaining whether these algorithms are well extensible to the
general form of stochastic games. Our study employs more
advanced underlying models than those already existing in the
literature, providing thus a first proof of their effectiveness in
a wide variety of possible new settings.

III. BACKGROUND

We consider a scenario where multiple UAVs provide
wireless coverage as aerial base stations [2]. These UAV
are controlled by independent agents, which means that their
motion control is able to perceive the characteristics of the
environment and take independent actions. An agent can move
in the environment and its position at time t is denoted with
xt. The temporal sequence of locations, or path, is given as
XT = {x0, x1, x2, . . . , xT }, where T ≤ ∞ denotes the termi-
nal time, at which the game ends. The initial location x0 often
serves as a point of reference for the estimation algorithm. We
define ut the odometry that characterized the motion between
time t − 1 and time t, obtained from the feedback control.
Sequence UT = {u0, u1, u2, . . . , uT } characterizes the relative
motion of the agent, given by the sequence of its actions. Let
m denote the map of the environment, which is supposed to
be static, i.e., time-invariant. The agent measurements establish
information between features in m and the agent location xt.
If we assume, without loss of generality, that the agent takes
exactly one measurement at each point in time, the sequence
of measurements is given as ZT = {z1, z2, z3, . . . , zT }.

Definition 1: A localization problem [17] seeks to obtain
the path or current position of the agent x0:T given the agent
controls u1:T and observations z1:T .

Localization is needed in order to perform motion planning,
i.e., the ability for an agent to compute its own collision-
free path motion towards certain goal. Motion planning is
performed knowing geometry and kinematics, initial and goal
positions, and the geometry of the environment assuming static
obstacles. These definitions show that our scenario fits the
framework of stochastic games, explained below.

Stochastic games model multi-agent systems with discrete-
time and non-cooperative nature, meaning that players pur-
sue their individual goals and cannot form an enforceable
agreement on their joint actions. In a stochastic game, agents
choose actions simultaneously. The state space and action
space are assumed to be discrete. Given state s, agents
independently choose actions a1, · · · , an, and receive rewards
ri(s, a1, · · · , an), i = 1 · · ·n. The state then transits to the
next state s′ based on fixed transition probabilities, satisfying
the constraint: ∑

s′∈S
p
(
s′ | s, a1, . . . , an

)
= 1 (1)

General-sum stochastic games do not impose constraints on
the rewards to the agents. As special cases, zero-sum stochastic

games are instances where agents’ rewards are always nega-
tively related. In a discounted stochastic game, the objective
of each player is to maximize the discounted sum of rewards,
with discount factor β ∈ [0, 1). A strategy π is defined as a
plan for playing a game. Here π = (π0, . . . , πt, . . .) is defined
over the entire course of the game, where πt is called the
decision rule at time t. A decision rule is a function πt :
Ht → ∆(A), where Ht is the space of possible histories at
time t, with each Ht ∈ Ht, Ht = (s0, a0, . . . , st−1, at−1, st) ,
and ∆(A) is the space of probability distributions over the
agent’s actions. π is called a stationary strategy if πt = π̄ for
all t, that is, the decision rule is independent of time. π is
called a behavioral strategy if its decision rule may depend on
the history of the game play, πt = ft (Ht). If we let πi be the
strategy of player i, then for any given initial state s, player i
tries to maximize:

vi
(
s,π1, . . . ,πn

)
=

∞∑
t=0

βtE
(
r1t | π1, . . . ,πn, s0 = s

)
(2)

In a stochastic game Γ, a NE is a tuple of n strategies(
π1
∗, . . . ,π

n
∗
)

such that for all s ∈ S and i = 1, . . . , n,

vi
(
s,π1

∗, . . . ,π
n
∗
)
≥ vi

(
s,π1

∗, . . . ,π
i−1
∗ ,πi,πi+1

∗ , . . . ,πn
∗
)

for all πi ∈ Πi, where Πi is the set of strategies available to
agent i. The meaning of a NE is that of a joint strategy where
each agent plays a best response to the others. In general, the
strategies that constitute a NE can be behavioral strategies
or stationary strategies. It is proven in [18] that every n-
player discounted stochastic game possesses at least one NE
in stationary strategies. In this paper, we limit our study to
stationary strategies, thus, if a state is visited multiple times,
the players’ choices would be the same each time. We define
the Nash Q-value as the expected sum of discounted rewards
when all agents follow a specified NE, that is,

Qi
∗
(
s, a1, . . . , an

)
= ri

(
s, a1, . . . , an

)
+

+β
∑

s′∈S p
(
s′ | s, a1, . . . , an

)
vi
(
s′,π1

∗, . . . ,π
n
∗
) (3)

where
(
π1
∗, . . . ,π

n
∗
)

is the joint Nash equilibrium strategy,
ri
(
s, a1, . . . , an

)
is agent i’s one-period reward in state

s and under joint action
(
a1, . . . , an

)
, vi
(
s′,π1

∗, . . . ,π
n
∗
)

is agent i’s total discounted reward over infinite periods
starting from state s′ given that agents follow the equi-
librium strategies. Also, we distinguish between NE for a
stage game (one-period game), and for the stochastic game
(many periods). An n player stage game is defined as(
M1, . . . ,Mn

)
, where for k = 1, . . . , n,Mk is agent k’s

payoff function over the space of joint actions, Mk ={
rk
(
a1, . . . , an

)
| a1 ∈ A1, . . . , an ∈ An

}
, and rk is the re-

ward for agent k. If now we let σ−k be the product of strategies
of all agents other than k, σ−k ≡ σ1 · · ·σk−1 · σk+1 · · ·σn, a
joint strategy

(
σ1, . . . , σn

)
constitutes a Nash equilibrium for

the stage game
(
M1, . . . ,Mn

)
if, for k = 1, . . . , n:

σkσ−kMk ≥ σ̂kσ−kMk for all σk ∈ σ̂
(
Ak
)

In the Nash Q-Algorithm, at each time t, the i-th agent
observes the current state and takes its action. After that, it



2

1
2

1

Floor 1Floor 2

Floor 2

Floor 1

(a) 2D representation (b) Floor representation

Figure 1. Scenario

observes its own reward, the actions taken by all other agents
and their rewards, and the new state s′. It then calculates a NE
π1 (s′) · · ·πn (s′) for the stage game

(
Q1

t (s′) , . . . , Qn
t (s′)

)
,

and updates its Q-values according to:

Qi
t+1

(
s, a1, . . . , an

)
= (1− αt)Q

i
t

(
s, a1, . . . , an

)
+αt

[
rit + βNASH

(
Qi

t (s′)
)]

where: NASH
(
Qi

t (s′)
)

=
(
π1 (s′) · · ·πn (s′)

)
·Qi

t (s′) (4)

IV. SCENARIO

We consider a game played by two drones in a three-
dimensional environment, which traverse a tight area to safely
deliver their loads. They need to avoid the other drone staying
safely with no collisions, but they need also to overcome
the issue in the lowest amount of time possible, therefore
following the shortest path to achieve their goals.

We assume that agents can occupy positions in a 3D grid.
Each drone can move only one step at a time, in six possible
directions: Up, Down, Left, Right, Forth, Back. The two agents
are placed in the opposite corners of the upper floor and try
to reach their goal on the opposite corner in the lower floor.
If they attempt to move into the same cell (excluding a goal
cell), they are bounced back to their previous cells. The game
ends as either drone reaches its goal. When the scenario is
deterministic, the two shortest paths that do not interfere with
each other constitute a Nash equilibrium, since each is a best
response to the other. The objective of each drone is to reach
its goal with the minimum number of steps without colliding.
The drones do not know the goal at the beginning of the
learning period. Furthermore, the drones choose their actions
simultaneously, after observing the previous actions of both,
the current state (current position of both) and their rewards.

Fig. 1 shows this game using three different representations.
The action space of drone i, i = 1, 2, is Ai = {Up,
Down, Left, Right, Forth, Back}; the state space is S =
{(1, 2), (1, 3), . . . , (8, 7)}, where a state s = (l1, l2) represents
the two agents’ joint location. Drone i’s location is represented
by a position index, as shown in Fig. 2. State transitions are
deterministic and the rewards that each drone can receive are:
• 100 if it reaches the goal position.
• -1 if it collides with the other drone.
• 0 otherwise.
Let the initial state be s0 = (8, 5), as in Fig. 1, and the

discount factor β = 0.99. The value of the game can be

a. b.
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Figure 2. Notation and examples of equilibrium paths

computed for both players. Since the game is symmetric, we
can restrict the analysis to drone 1 only. The value of the game
for drone 1 is defined, see (2), as its accumulated reward when
both agents follow their NE strategies,

v1(s0) = 0 + 0.99 · 0 + 0.992 · 0 + 0.993 · 100 = 97.0

Different strategies can yield the same value, and Fig. 2 shows
that different strategies can reach similar NEs. Based on the
values of each state, it is possible to derive the Nash Q-values
for drone 1 in state s0 using (3),

Q1
∗ (s0,Left, Forth) = −1 + 0.99 · v((8, 5)) = 95.1

Q1
∗ (s0,Down, Forth) = 0 + 0.99 · v((6, 7)) = 97.0

The whole set of Nash equilibria can be found, and it can
be shown that there are seven of them, all with payoffs
(97.0, 97.0).

Assume now that the drones know their goal positions.
The drones always know also their own and the other’s
location and the moves are deterministic; consequently, the
game can be modeled as a stage game with complete and
perfect information. At the beginning, the drones are placed
on the same floor. This means that in the first stage they are
led both to choose the move Down. Then (Down, Down) is the
dominant strategy. This will also be the case if the number of
floors is higher, since only in the last stage, where the two are
in the same floor of their objective, they choose the strategy
that brings them to their goal. The game is a collaborative
game where the collaborative strategy at stage 1 is to move
Down until the lowest floor is reached. That strategy is also
the stage NE. At the second stage, the game becomes no
longer collaborative and no NE in pure strategy can be found.
The game becomes a discoordinaton game, whose only NE
is achieved using mixed strategies, playing each move half of
the times.

The second stage leads to two different results: if the disco-
ordination strategy is achieved, the drones go to different cells;
in this case, the game ends in the following stage with payoff
100β for both. Instead, if they attempt to go to the same cell,
the stage game is repeated until discoordination is achieved;
in the latter case, the payoff is −1+

∑T−1
t=1 βt · (−1)+100βT

for both. This means that the best strategy that the two drones
can adopt is to reduce the problem to a coin flip, and postpone
the inevitable fight to the last round, which is discounted and
has therefore a lower impact on the final payoff.
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Figure 3. Path length and average value of the Q-function vs number of iterations, for different values of ε.

V. RESULTS

We developed a version of Nash-Q learning algorithm
originally proposed by [19]. The function takes advantage of
the Lemke Howson algorithm [20] to find the NEs.

The algorithm uses a multiplayer ε-greedy exploration strat-
egy, then the strategies to adopt can be explore, exploit, or
explore and exploit. In the implemented version, the value of
parameter ε, controls the probability of choosing the exploit
strategy. The average length of the path to reach the goal is
measured with different ε and the results are given in Fig.
3(a,b). The more the exploit strategy is used, the shorter the
average path length, since a drone moving at random stays in
play for a longer time, which implies a waste. In addition,
the number of steps per path is distributed according to a
geometric distribution, which generally models the waiting
time of an event, in this case the reaching of the goal.

The average length is quite high on average because the
drones do not know where their goals are, but when the locally
best move is chosen, the average path length shortens. This
result is also influenced by the discount factor.

The Q-function values are reported in Fig. 3(c). The be-
havior is always convergent, but the speed of convergence
depends on the method chosen. If players always follow an
exploit strategy, convergence is faster with respect to when
they play exploit half of the times and explore the other
times. The average values are similar to the grid-game-1 of
[8]. The convergence to a NE is not always guaranteed by
the Lemke Howson algorithm, used by the Nash-Q learning
during the game, and repeated tries are required to lead all the
configurations to convergence. Nevertheless, in the final Q-
matrix obtained, the NEs are computed neglecting the moves
that cannot be performed in that state. When convergence is
reached, it is always to one of the seven NEs.

VI. CONCLUSIONS

We investigated a game of autonomous drones for wireless
coverage, moving in a three dimensional scenario, where we
developed an implementation of the Nash Q-algorithm [8].
The results obtained are promising as the NEs derived in
the analysis coincide with the ones given in the simulation.
This validates the prediction capability of NE, as well as
the functioning of the Nash-Q technique in this scenario.
Moreover, the algorithm provides a means to evaluate the
average path length metric for different values of ε and prove
the convergence of the Q function [12].

Further investigations can explore different choices of pa-
rameters (transition probabilities, discount factor) or move-
ment patterns, still within a stochastic game approach [18].
Also, our approach can be tested with different RL algorithms
to compare the learning speed and the final performance.
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