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Abstract—This paper investigates the decision making pro-
cess aided by machine learning for biomedical problems and
how to improve it through meta assessments of the most
relevant features. Classification algorithms are usually trained
and exploited with high dimensional datasets (i.e., with an
extremely large number of features), which is inefficient and
costly. It would be beneficial to identify the most meaningful
features that contribute the most to assigning a category to a
subject, and in particular, diagnosing a pathological condition.
A helpful support can come from cooperative game theory,
through the computation of the Shapley value, an indicator
of desirable properties according to which the players, in
our case the input features, can be ranked. We apply such
a framework to a supervised machine learning scenario of a
random forest tree classifier applied to heart disease detection.
From a publicly available dataset, we identify the most relevant
features that can affect the decision, thus obtaining practical
guidelines for a compact yet efficient description based on an
analytical rationale.

Keywords-Artificial intelligence; Game theory; Heart disease;
Machine learning; Parametric analysis; Random forest classi-
fier; Shapley value.

I. INTRODUCTION

In the last years, we faced a convergence of Information
and Communication Technologies (ICT) towards supporting
healthcare and medical practices [1], [2]. A meeting point
of particular relevance is represented by Machine Learning
(ML) aided medical diagnostics, where artificial intelligence
techniques are used as effective tools to support medical de-
cisions and make them systematic [3]. These procedures can
be applied on top of medical instrumentations that already
bridge ICT engineering principles, such as imagining, signal
processing, and electromagnetic technologies, and biological
systems, so as to realize a comprehensive stack of diagnostic
procedures through ML that can be fully automated [4].

However, the most common approaches in this field just
make use of a brute-force approach where large datasets
with multi-feature information are fed to the decision engine,
which makes for a generally cumbersome method, difficult
to acquire, manage, and possibly extend with a broader
clinical sample. For this reason, an analysis of the involved
input features is advisable, which can lead to a cross-layer

optimization of the entire system, also involving acquisition
and storage [5].

Among other feature selection algorithms (the interested
reader can refer to [6]), cooperative Game Theory, in partic-
ular using the Shapley value [7], can be used to identify
the most meaningful features that contribute the most to
the decision process. The general framework of cooperative
games involves players explicitly cooperating by forming
coalitions, from which they obtain a certain overall gain.
The Shapley value is a quantitative evaluation of how players
inside a coalition are instrumental to reaching that outcome
and are therefore more important in keeping the coalition
together. It is computed as the average surplus generated
by the presence of players in the coalitions [8]. If we
regard the different input features as players in a coalitional
game, whose outcome is to attain a certain classification,
the Shapley value can be regarded as how critical a given
parameter was in eventually reaching the decision. Com-
pared to other feature selection methods, this approach is
the de facto state of the art of explainable machine learning,
thus being able to provide both local and glocal explanations
on the decisions taken by the classification algorithm, with
very good explainability properties, such as high expressive
power, high portability, good human comprehensibility, ag-
nostic modelling [9].

We apply this approach in the context of supervised ML,
for a random forest classifier [10], whose goal is to obtain a
binary classification of general pathological heart conditions.
In other words, our classifier recognizes output values in
{0,1} for each patient, i.e., free from or affected by a
heart disease, respectively. We consider a dataset of clinical
features, containing for example values of “cholesterol” and
“resting blood pressure”, and we compute the Shapley value
of each of them to the final diagnosis, calculated as the
average marginal contribution of a feature value across all
possible coalitions, meant as the possible subset of features.

These computations are performed through SHAP (SHap-
ley Additive exPlanations), a software tool to explain the
output of any machine learning model through the classic
Shapley value from game theory [11]. From a data analytics
standpoint, our investigation is capable of gaining additional



insights from raw data, highlighting those who are most
important and better able to contribute to the decision. It
allows for more compact representations and/or uncovering
correlations [12]. On a more medical level, this can also
shed light on what are the critical factors (i.e., features)
that are highly correlated with a heart disease, or what
parameters are less relevant from a diagnostic perspective.
More in general, our investigation provides insight on the
value of information, hinting at the derivation of powerful
instruments to effectively capture outliers and corrupted
entries, and what type of new data to acquire to improve
the prediction [13].

The rest of this paper is organized as follows. Section II
reviews the theoretical fundamentals of collaborative games
and the idea of Shapley value, as well as related work.
In Section III, we describe our approach and expand the
details of our data, their processing, and the application
of the classification procedure. In Section IV, we discuss
numerical evaluations, detailing the analysis performed with
two approaches according to the availability of a key feature
(the “cholesterol” attribute in our dataset). Finally, Section
V concludes the paper and discusses future work.

II. STATE OF THE ART

In this section, we provide a background on cooperative
games and the Shapley value, and we review related work
about the application of these paradigms to machine learning
approaches for biomedical problems.

A. Cooperative games

A cooperative (often called coalitional) game consists of
a finite set of players N' = {z1,%2,..., 2N}, interacting
with the goal of forming coalitions. It differs from standard
(non-cooperative) game theory setups, where players instead
act individually and collaboration is only indirectly obtained
through bargaining or credible threats [14]. There, game
theory is used to predict the outcome of a certain interaction.
Conversely, in collaborative games the very interaction that
is under scrutiny is the formation itself of coalitions, that are
subsets of A (sometimes called the grand coalition, since
it can be seen as a coalition of all the players).

The overall gain of a coalition is described through a
characteristic function v : p(N') — R, such that v(S) corre-
sponds to the collective payoff that the set of players S C N
creates by forming a specific coalition. The characteristic
function satisfies v(f) = 0; if a non-empty coalition S # )
is formed, and player j € S, it is interesting to investigate
whether j can advocate a share of v(S) as a deserved
contribution, for simply being instrumental in forming the
coalition [15]. This is a sensible point if v(S\ {j}) < v(S),
as will be argued next; that is, if the presence of j in the
coalition increases its payoff, player j can rightly claim a
share of the payoff, which can be determined through the
Shapley value.

Before discussing how this happens, we remark that this
abstract rationale can be translated in a quantification of the
importance of a given feature in a ML-aided classification
problem [16]. Given a classifier that uses a set of input
features N' = {z1,x2,...,zN}, these can be considered
as players in a coalitional game where the payoff v(S) of
a given subset of features is some measure of influence
of that coalition in the decision process. Thus, the goal is
to ultimately relate this to an individual quantification of
importance for each specific feature through the Shapley
value.

B. The Shapley value

The Shapley value of the jth player under characteristic
function v is denoted as ¢;(v), and we will interpret it as the
importance of the jth feature used for classification, where
v is the payoff achieved by the classifier, i.e., some measure
of goodness of the overall assignment to a class.

The value of ¢;(v) can be seen as a way to split v among
the members of a coalition, which is referred to as the
efficiency property. It also satisfies additional properties such
as symmetry, null player, and additivity axioms, discussed in
the following. Indeed, the idea of the Shapley value is to be
a fair retribution to the members of a coalition S, assuming
they get a physical reward v(S) from the existence of the
coalition and want to share it. This reconnects coalitional
games with standard non-cooperative games where players
are moved by selfish objectives [17]; in particular, they join
a coalition S because they are interested in getting a share
of v(S).

The Shapley value ¢;(v) of player j under payoff rule v is
computed as the incremental benefit that j brings to possible
coalitions, weighted and averaged over all of them, and
the ways in which they can be formed through subsequent
inclusions of one player at a time. This leads to [8]
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The Shapley value can be shown to satisfy the following
properties [16].
Symmetry: The contributions of two players (features) j
and k should be the same if they contribute equally to all
possible coalitions, if

v(SU{H =v(SUk}

then ;(v) = 1 (v).

Null player: A player (feature) j that does not change
the goodness of the coalition (i.e., the classification perfor-
mance), regardless of which coalition it is added to, should
have a Shapley value of 0, i.e., if

v(SU{j}) =v(S) VS N\{j})
then ¢;(v) = 0.

V8 C N\ {4, k})



DATASET SAMPLE. THE FIRST 10 PATIENTS ARE REPORTED WITH DEMOGRAPHIC INFORMATION AND VALUES FOR THE 11 AVAILABLE FEATURES.

Table T

Age Sex  ChestPainType  RestingBP  Cholesterol ~ FastingBS  RestingECG  MaxHR  ExerciseAngina  Oldpeak  ST_Slope  HeartDisease
0 40 M ATA 140 289 0  Normal 172 N 0.0 Up 0
1 49 F NAP 160 180 0  Normal 156 N 1.0 Flat 1
2 37 M ATA 130 283 0 ST 98 N 00 Up 0
3 48 F ASY 138 214 0 Normal 108 Y 1.5 Flat 1
4 54 M NAP 150 195 0  Normal 122 N 0.0 Up 0
5 39 M NAP 120 339 0  Normal 170 N 00 Up 0
6 45 F ATA 130 237 0  Normal 170 N 0.0 Up 0
7 54 M ATA 110 208 0  Normal 142 N 0.0 Up 0
8 37 M ASY 140 207 0  Normal 130 Y 1.5 Flat 1
9 48 F ATA 120 284 0  Normal 120 N 0.0 Up 0

Additivity: given two coalitional games on the same set
of players A/, described by characteristic functions v and
w, if we consider a third game with payoff rule v + w, this
summation reflects on the Shapley value of the players

bj(v+w) =d;(v) +dj(w)  VjeEN

A cost-sharing rule based on the Shapley value, as defined
above, minimizes the price of anarchy in the case of concave
costs (or concave utilities) and thus it can be reinterpreted as
a good strategic decision rule to combine individual criteria
into the best choice from a joint standpoint [7].

C. Related work

Despite the aforementioned theoretical properties of the
Shapley value that make it very desirable in principle, there
are some issues in its computation and also different ways
to evaluate it based on the model assumptions and the way
training data are used. First of all, the basic idea of the
Shapley value is better understood when the feature element
is binary, that is, it can be seen as a vote in favor or against a
certain decision. Generally, the involved features for a ML
approach, especially in the biomedical field, give instead
continuous values. In addition, other computational issues
are present such as the NP-hardness of an exact exhaustive
evaluation [18].

Moreover, for computations based on a preliminary train-
ing through part of the dataset, it is possible to re-evaluate
the Shapley values after a retraining, or apply similar ar-
tifices to improve the computation [12]. Fortunately, as we
will show in the following, our analysis is almost unaffected
by this issue.

For our analysis, we make use of SHAP, as done by many
studies in the field [11], [19]. Based on the general theory
of the Shapley value, SHAP is a practical package in Python
that is able to calculate the Shapley value for different ML
models, in particular, tree-based classifiers [13].

There are many ways to implement the Shapley value
in ML, with differences about the ML approach, the use
of training data, and the overall offered explanations [20].
Hence, the implications about using Shapley value in a
given biomedical problem are non-trivial and, as a result,
our analysis can only be seen as one piece of a larger

puzzle, where the conclusions that we draw from our specific
data are clearly worth of more investigations with broader
datasets. Nevertheless, we believe that the consequences for
clinicians are relevant.

In the biomedical field, a similar approach has been
performed, for example, in relation to anxiety and its triggers
when automatically classified through ML [21]. This is a rel-
evant analysis since mental illness states, such as the anxiety
disorder (as characterized by irrational fear of certain things
or events) can be related to myriads of underlying causes
and subsequent effects, and trigger different quantitative
disfunctions. Thus, achieving an efficient representation and
relating the parameters to one another is surely important.

Another similar study is [22], where Shapley values are
employed in EEG classification task, i.e., motor tasks such
that of [23], [24], for early detection of active movements
from EEG and support by prosthetics and rehabiltation tools.

The study of [25] uses the Shapley value derived through
a similar framework for a meta analysis of ML applied to
biomedical data to forecast post-traumatic stress disorder,
allowing for preventive interventions in the aftermath of a
stressful event. Another analysis using SHAP to a similar
end is [26], where the goal is to highlight hidden gene-
gene and gene-environment interactions in genome-wide
association.

III. PROPOSED APPROACH

We combined multiple datasets from Kaggle [27] by
considering 5 datasets of cardiovascular diseased patients
with 11 common features for a total of 918 observations.

A. Data overview

A general overview of the dataset is now provided. Its 11
features are reported in Table I, including: Age in years;
Sex; ChestPainType (TA: Typical Angina, ATA: Atypical
Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic); the
resting blood pressure (RestingBP) in mmHg; the serum
Cholesterol in mg/dl; a parameter labeled as FastingBS
that describes the fasting blood sugar f, specifically as
x(f > 120 mg/dl), where y is the characteristic function,
equal to 1 if the condition is true, and O otherwise; the resting
ECG result RestingECG [Normal or ST, i.e., having ST-T
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Table II

Age  RestingBP  Cholesterol ~ FastingBS MaxHR Oldpeak  Sex_M  ChestPainType_ASY  RestingECG_Normal ExerciseAngina_Y  ST_Slope_Up
0 0.244898 0.433962 0.596215 0.0 0.770992  0.015873 1.0 0.0 1.0 0.0 1.0
1 0428571 0.622642 0.252366 0.0 0.648855  0.174603 0.0 0.0 1.0 0.0 0.0
2 0.183673 0.339623 0.577287 0.0 0.206107  0.015873 1.0 0.0 0.0 0.0 1.0
3 0408163 0.415094 0.359621 0.0 0.282443  0.253968 0.0 1.0 1.0 1.0 0.0
4 0.530612 0.528302 0.299685 0.0 0.389313  0.015873 1.0 0.0 1.0 0.0 1.0
5 0.224490 0.245283 0.753943 0.0 0.755725  0.015873 1.0 0.0 1.0 0.0 1.0
6 0.346939 0.339623 0.432177 0.0 0.755725  0.015873 0.0 0.0 1.0 0.0 1.0
7 0.530612 0.150943 0.340694 0.0 0.541985 0.015873 1.0 0.0 1.0 0.0 1.0
8 0.183673 0.433962 0.337539 0.0 0.450382  0.253968 1.0 1.0 1.0 1.0 0.0
9 0.408163 0.245283 0.580442 0.0 0.374046  0.015873 0.0 0.0 1.0 0.0 1.0

wave abnormality (T wave inversions and/or ST elevation or
depression of more than 0.05 mV)]; the binary variable LVH
showing probable or definite left ventricular hypertrophy
according to Romhilt-Estes criteria [28]; the maximum heart
rate (MaxHR) in Hz as an integer between 60 and 202;
the presence of exercise-induced angina; and finally, two
parameters related to the ST segment of the ECG, namely,
oldpeak = the ST [Numeric value measured in depression]
and the slope of the ST peak segment [Up, Flat, or Down].
The last column is 1 for patients affected from a heart
disease, 0 otherwise.

B. Data Preprocessing

To manipulate these data, we preprocessed them in order
to convert them all into numerical values and a normalization
was applied, so having all features values belonging to the
interval [0, 1], see Table II. Additionally, some values were
removed because they were found to be of little significance
or leading to needless complications in the evaluation. For
example, the Down value of the parameter “ST slope” is
rarely encountered in the database and its implications are
very similar to the value Flat. Assigning a separate value was
found to making less efficient predictions, so we just consid-
ered a binary choice as of “Flat” (merging it with “Down”)
or “Up.” Analogous procedure was applied to “Chest pain
type”, “Exercise angina,” and “RestingECG”, reporting only
the “ASY”, “Yes’, and “Normal” type, respectively, or their
negative corresponding values.

An important remark concerns the feature “Cholesterol”.
In the dataset, some data (about 170 entries) have this input
parameter equal to 0, meaning that data was not measured in
the patient. Thus, to provide a correct model prediction we
would have two alternatives: either to discard the patients
who lack this specific feature, or to remove the feature for
all the data. Since this parameter may actually be significant
for the diagnosis of a heart condition, we decided to consider
both approaches and therefore, perform two different inves-
tigations; apart from this parameter, everything else follows
the same approaches and, includes the same features in both
cases. This also gives us the opportunity to discuss a further
detailed exploration of the importance of a specific feature
and how it may affect the evaluation of others through the

Shapley values, to see if, for the problem at hand, they are
mutually interdependent, or redundant, or disconnected [13].

C. Classifier

A random forest classifier with 20 decision trees was
trained to classify the data. It uses multiple decision trees
with random permutations of |log, N| = 3 combinations
of the N features, which are considered as the players of
the coalitional games, for which we compute the Shapley
value through the SHAP toolbox [11]. We train each tree
on a different part of the training set and average the final
prediction output. This produces a small increase of the
prediction bias, but also a lower variance.

To have a correct classification, we randomly split the
dataset into 80% of training and 20% of validating data.
We trained a RF classifier which obtained training score
very close to 1, a validation score ~ 0.85 and mean square
error of about 0.4. Then, we considered the feature ranking
after validation of the RF model. We also remark that the
convergence of the training phase is fast and robust, which
seems to imply that there is no special need for a retraining
in the problem at hand [12].

IV. RESULTS AND DISCUSSION

We now discuss the results of the Shapley values for the
trained model. These first results refer to the dataset with
discarded data, i.e., patients without the Cholesterol feature.

Fig. 1 explains the “Global feature importance”, i.e., for
each feature, the mean absolute Shapley value is plotted.

A more detailed plot is the one in Fig. 2. In this figure, we
arrange the features in decreasing order of their importance
(as in Fig. 1), the horizontal location of the dot corresponds
to the Shapley value of the feature, indicating also if it
contributes positively or negatively to the prediction. The
color of each dot represents its normalized value. We have
values close to 1 plotted in red, while values close to O are
plotted in blue, with various shades indicating intermediate
values.

Based on the Shapley value, we can establish a hierarchy
of features by their importance. The “ST_Slope” appears
to be the most important, as also hinted by clinical trials
such as [29], followed by an asymptomatic pain type and
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Figure 1. Global feature importance for the dataset without subjects with
zero-valued Cholesterol feature.
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Figure 2. Local explanation summary for the dataset without subjects with
zero-valued Cholesterol feature.

the presence of angina induced by exercise. It is expected
to find a patient suffering from a heart disease whenever
“ST_Slope” is ”Up”, no matter what the values of the
other features are. The other two binary features are also,
considered alone, highly correlated with a disease. In fact,
these are generally regarded to be dangerous symptoms and,
as can be seen in Fig. 2, we have a clear distinction on the
contribution of each of them. In this study case, we have
almost no confusing measurements for the predicted label
(i.e., red dots inside a blue bulk or vice-versa), or when we
do, their value is extremely low.

Focusing on the other attributes, we give a short expla-
nation of one of them (the reasoning is the same for the
other features). Taking for example the maximum heart-rate
(MaxHR): the lower its value, the higher the risk for the
subject to be affected by a heart condition. We can notice
also a coalitional effect for the less important features (with
lower Shapley value), that is, they correlate with a heart
condition of the patient only when an abundance of them
has extreme values.
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Figure 3. Global feature importance for the dataset with the complete
removal of the Cholesterol features.
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Figure 4. Local explanation summary for the dataset with the complete
removal of the Cholesterol features.

Since the Cholesterol parameter does not hold one of the
primary roles, we can also analyze the second dataset, i.e.,
the data without this attribute (Figs. 3 and 4). With this setup,
we are able to augment the total number of data, therefore
we can have a more precise insight on some features.

As can be seen, the first 3 attributes importance remained
the same, but there are some differences in the remaining
ones. The Fasting blood sugar plays a more important role
(4 times more important than in the previous analysis). Nev-
ertheless, the global feature importance remains unchanged,
so we can consider the first analysis valid.

Finally, Fig. 5 plots the Shapley value for the specific
cases of patients #3 and #5 (with only the former being
diagnosed as suffering from a heart condition) to show how
the parametric analysis can be repeated on an individual
scale.

V. CONCLUSIONS AND FUTURE WORK

We used the game theoretic concept of the Shapley value
to explain the results of a tree-based classifier for heart
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diseases. We found that some markers represent a high
risk factor and contribute the most in the decision of the
classifier. More than the presence of a single indicator,
a heart condition can be diagnosed from a coalition of
parameters, even if they have lightweight impact when taken
individually.

It is confirmed that many parameters related to heart con-
ditions correlate to one another, see for example maximum
heart-rate and age. The latter is a particularly relevant driver,
since the higher the age, the more likely the presence of a
heart condition. This is highlighted in Fig. 6, where it is
shown the strong correlation of age and the flat behavior of
the ST-slope feature (i.e., well-established clinical marker for
heart diseases [30]). However, a full-fledged causal model,
which would be the best explanation, is hard to derive

and possibly not very meaningful in scenarios like the one
under evaluation. On the contrary, the impact of unavoidable
parameters such as an increasing age should be factored not
as a risk element in itself, but properly accounted for when
drawing conclusions. The Shapley value actually allows
for a better transparency of the correlations picked up by
predictive ML models.

To sum up, this can be a first step towards a better
model building for understanding the relationships among
physiological parameters and a more efficient diagnosing
process (not limited to angina, but including also other heart
phenomena, e.g., arrhythmias and extrasystoles). Possibly,
the expansion of the dataset with more independent features
can be instrumental to this task, to sort the parameters
in order to avoid redundancies and/or confounding factors.
Also, other game theoretic concepts (e.g., the inessential
player axiom) could be used to complement the present
analysis on relevant features and increase its general validity,
as recently suggested by [31].
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