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Abstract—The problem of multi-agent robotic survey of an
unknown area is approached through a game theoretic frame-
work. This is meant to enable cooperation in the group of
robotic explorers reflecting their common objectives to minimize
the effort in the surveying task, without requiring expensive
exchanges of signaling. The game theoretic approach can be
applied to avoid any preliminary planning, but just exploiting the
ability of the robots to take smart actions based on the state of the
environment and the behaviors of other neighboring agents. We
discuss how the choice of different utility functions can improve
the collaboration among the robots and lead to more efficient
results.

Index Terms—Game theory; Intelligent robots; Multi-robot
systems; Simultaneous localization and mapping.

I. INTRODUCTION

The exploration of environments is a relevant issue for
unmanned ground and arial systems [1]-[4]. The increase in
individual capabilities of single robots offers many oppor-
tunities for area surveying, which is a complex task if an
unknown and unstructured environments are explored, and
offers several applications for surveillance, path tracing, and
general environmental monitoring [5]-[7].

If a single robotic agent is employed, these problems can
be solved with adequate time and resources. But to speed up
the process and make it more efficient, it is convenient to
adopt multiple autonomous robots, which require coordination.
The whole acquisition task becomes challenging when the
individual efforts of the robots need harmonization. Game
theory seems to be an efficient solution to this task, since it
allows for distributed approaches, minimizing the requirements
of information exchanges among the robots, and no explicit
coordination [8]-[11]. Indeed, in a game theoretic setup,
collaboration among multiple agents is just the byproduct of
repeated interactions, all driven by selfish objectives in the
individual agents, that are making autonomous decisions based
on the available information [12].

We apply a game theoretic rationale to a multi-agent system
where a number of non-adversarial, but not explicitly coop-
erative, robots, move in the same environment, being limited
in mutual communications and available resources. We have
been inspired by other projects [13], [14], whose methods to
allow collaboration between drones for patrolling purposes are
similar. On the other hand, there are some differences: robots
in those tasks need to continuously patrol the interested area,

while in our project the robots have to cover completely the
map once in the fastest way possible.

Our problem can be reduced to exploring a randomly-
generated grid of known size, where IV robotic agents move
and survey the area, avoiding obstacles. We model this task as
a dynamic game, which is a standard setup, on which we apply
the following idea. We can derive a full-fledged tree represen-
tation of the game, which considers every existing pattern. This
is clearly unfeasible in an on-line setup, but we can preliminary
perform it offline based on some general properties (such as
number of obstacles, size of the map and so on), and apply the
well-known game theoretic principle of backward induction to
solve the game [15]. This allows considerable reductions in the
search space, which are subsequently implemented in a local
setup without full information [16], [17], but just with local
awareness of the surrounding environment and the reciprocal
positions of the other robots.

The algorithm is then implemented in a practical setup by
considering individual agents as being selfishly driven by a
utility function that nevertheless corresponds to a globally
useful objective, i.e., surveying the area in an efficient and
rapid manner, without any preliminarily agreed coordination.
Then, we explore possible definitions of the utilities of the
robots that make the implementation of our algorithm based
on backward induction to be efficient [18]. In particular, we
start from a naive representation of the utility being just the
covered area, and we finetune it by adding more parameters
such as keeping the robots separate and avoiding unexplored
areas to be left behind. Eventually, these approaches are
simulated multiple times by letting the games being played
by autonomous agents [19], [20].

The results suggest that this procedure can lead to significant
improvements at the price of an overall compact and simple
implementation. However, different objectives need to be
combined and the choice of the utility function is key. In
particular, a contrast arises between a fast sweeping of the area
and the goal of keeping the robots apart. This surely deserves
further studies, nevertheless our analysis can be considered as
a step in the proper direction to achieve an efficient solution
by multiple distributed agents.

The rest of this paper is organized as follows. In Section
II, we review the theoretical background of dynamic games of
complete perfect information. Section III describes the specific



game theoretic proposal of the paper, and Section IV presents
its algorithmic implementation to solve the dynamic game at
each time step. Section V discusses in more detail the choices
of the utility functions and the numerical results. In Section
VI, we draw the conclusions and elaborate on further possible
developments.

II. BACKGROUND
A. Dynamic games of complete perfect information

Dynamic games of complete perfect information are the
simplest scenario of game theory where the interaction unfolds
over multiple time instants. In this type of games, players are
fully aware of all the past actions of the players, i.e., each
information set in the game is a singleton [21].

In general, dynamic games can be represented in extensive
form by defining the set of players, the utility function of
each player, the order in which the players move, the actions
allowed to the players every time they move, the information
that they have when they move, and the probability of external
events. All of the above must be common knowledge between
all the players. The absence of external events and the common
knowledge of all this information is the key characteristic of
dynamic games of complete information. The extensive form
of a game can be represented as a tree in graphical form,
and for the case of complete information, this is a standard
representation. We use the nodes of the tree to represent not
only the stage of the game and the sequence of actions but
also the information available to each player when moving. If
each information set in the game is a singleton we call that
game a dynamic game of complete perfect information.

B. Strategy profiles

In dynamic games of complete perfect information played
by N players, a strategy profile for player i € {1,2,..., N}
is a sequence of actions s; = {al, ..., at}, which specifies the
action of the player ¢ for each information set of the player;
since we are in a perfect information case, it means that an
action is foreseen for each node of the tree. Then, we can
define a global strategy profile as a set of the strategies of all
players s = {s1,..., SN }.

C. Nash Equilibrium

The best response s; of the player ¢ to the vector of strate-
gies of the other players s_; = {S1, ..., Si—1,Si+1,-.-, SN } 1S
the strategy of ¢ that maximizes its utility given that s_; is
chosen by the others. Thus, s is s.t.

Vs; € S; (D)

where S; is the set of all possible strategies of player i. Given
this formalism, we can define a Nash equilibrium (NE) as a
global strategy profile, in which each player is choosing a best
response. In other words, at an NE, given the strategies of all
the other players, each player has no regrets about his choice
[21]. NEs might lead to bad outcomes for all the players,
which is known as the tragedy of commons [22], but in our
case there is no real competition among the players, so the
choice of an NE seems to be appropriate.
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Fig. 1. Example of a small initialized map with randomly initialized obstacles.
The map used in the problem is 20 x 20.

III. PROBLEM STATEMENT
A. The Map

We consider N = 5 robotic surveyors, which move in an
area represented as a 20 x 20 bidimensional matrix, so that
the robot positions are written as indices in the resulting grid.
Obstacles in the map are represented by negative values in
a particular matrix position. Positions that have already been
explored by some robots are also tracked in the corresponding
matrix entry. We have used both random initialization of
obstacles positions and by-hand initialization to check the
behavior of the robots in various conditions [9]. An example
of a randomly initialized map can be seen in Fig. 1.

B. The Robots

First of all, we need to specify the information available to
each robot at each time step. Each robot knows its absolute
position, as well as the absolute position of all the other robots,
and so the relative distance from them; also, the outer limit
of the map is known, so robots are aware of when a move
would lead to exiting the map. However, robots know the
characteristics of the area only related to the closest cells to
their current positions, i.e., the ones in which they can decide
to go in the next time step. In this way, it can be known if
these close squares are an obstacle or have already been visited
by another robot. Importantly, robots do not know the entire
map, they do not have any a priori knowledge of obstacle
placements, but they can detect obstacles when they are near
(for example using a proximity sensor), to avoid them [17].

The actions available to each robot at each time step are
to move one step in the four directions, i.e., up, down, left,
or right. Diagonal moves are not allowed. Finally, to fully
characterize the robots, a utility function must be specified,
which they use to compute the reward obtained by choosing a
particular action [18]. This last element, described in Section
V, is the core ingredient to obtain a good behavior of the
robots, and we go through multiple options to improve its
performance.

C. The decision process

The decision process is modeled as dynamic choices over
multiple time epochs. At each step, the robots make a decision
on the best action based on their available information (i.e.,
their positions, and the surrounding environment only). Yet,



our proposal is to analyze the problem from a game theoretic
standpoint, and to this end we assume that the game is a
dynamic game of complete information. Then, we solve the
game by backward induction to find one suitable NE, which
has the further characteristic of being subgame-perfect [21].
As a final step, we update the robot positions and the state of
the map according to the outcome of the backward induction.
This process is repeated until the robots achieve full coverage
of the map or the number of time steps hits a limit.

IV. THE BACKWARD INDUCTION ALGORITHM

To solve the dynamic game at each time step (namely an
action for each robot), we build the following algorithm. As a
first step, a matrix containing all the possible joint strategies
s € S is computed. For each joint strategy in the matrix,
we move all robots except the one that has to evaluate its
utility, calculate it and all the procedure is repeated for each
robot. The obtained utility matrix includes in each column
the final payoff of each robot, corresponding to a particular
combination of all the actions chosen by the robots. Thus,
because we need to simulate the move of all the other robots
for each possible choice of the one that we are considering,
this part of the process is the slowest.

Algorithm 1 BackwardAlgorithm
1: Parameters: N (number of robots)

2: matrix A (all joint strategies)

3: Initialize U(r,s), forall s € A, r € R

4: for s’ € A do

5: for all robots r do

6: Initialize map _
7: Move all robots except r following s’ ,.
8: update map _

9: U(r,s) < up(sl,s" )

10: Initialize A’ = A
11: for robot r from N to 1 do
12: for s_,. € A’ do

13: Sy = arg max
. a
14: ur(a,s’,)
15: Append col,(A’) to A’

As a second step, the algorithm proceeds by backward
induction to find a subgame-perfect NE [15], which is done as
follows: it selects the first NV (five, in our setup) columns of the
matrix and checks the values of the payoffs in their last row.
These are the possible payoffs of the last robot depending on
its chosen action, assuming that the other robots have already
made their strategic decisions. Thus, we can find the best
action of the last robot and set it, after which, we can proceed
in the same way for all the subsequent groups of N columns
in the matrix. In the end, we have obtained a smaller matrix
that corresponds to the payoff matrix at the penultimate level
of the tree with the action of the last robot (considered in the
previous step) fixed. Now, we apply the same reasoning to
this smaller matrix and repeat it until only one column of the
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Fig. 2. Example of a final map obtained with the first implementation of the
utility function

matrix remains. This last column is the one that corresponds
to the NE actions and payoffs.

V. CHOICE OF THE UTILITIES AND NUMERICAL RESULTS

How agents quantify the utility w.r.t. a particular action
choice is a key element of the decision process in a game
[18]. We start with a simple way to compute the utility for the
robots and then we apply subsequent changes in the effort to
reach full coverage of the area in a faster way.

A. First Implementation

In the first implementation, we evaluate the utility of a
particular action only based on the value that is stored in the
position that the robot would reach if choosing that particular
action. So it is computed as follows.

ui(a;) = unk 2)
where
u; = utility of player i

a; = jth action of player i
up, = entry of the map matrix in row h, column k

In this way, if the action leads the robot against an obstacle,
represented in the matrix with a negative value, that action
yields an extremely low utility. Moreover, every time that
a robot visits a particular position, the value stored in the
corresponding map matrix entry is set to the standard negative
value of —50. In this way, the robots can avoid visiting a
position that has been already explored by someone else. If
more than one action lead to the same utility value, the robots
choose randomly between them.

To check the performance with this first implementation of
the utility function, we run the simulation 100 times with 5
robots and a different randomly initialized 20 x 20 map each
time. In this first case, we achieve a mean number of steps to



obtain fully coverage of the area of ~ 382 (most of the time
the algorithm stop because it hits the maximum number of
steps). In Fig. 2, we show an example of the final coverage of
the map using this first type of utility function. In this figure,
each square in the map is colored based on the last robot that
has visited it. The black squares are obstacles.

However, the results are not satisfactory: even though the
algorithm leads to full coverage of the area, there are mul-
tiple cases in which the algorithm stops because it hits the
maximum number of epochs that are allowed. Moreover, it
can be seen that we get a lot of isolated colored squares,
which means that the robots are spending the majority of their
time exploring positions in the map already explored by other
robots.

B. Second Implementation

To solve the problems encountered in the first implementa-
tion, we introduce two additional elements in the computation
of the utility corresponding to a particular action. The first one
tries to include the distance from other robots as a relevant
element in the utility calculation. Each robot computes the
mean distance from other robots and increasing the value of
this quantity is considered beneficial, so it improves the utility
of the relative action. In this way, we are trying to stimulate
our robots to select actions that increase the distance between
them, still considering that visiting new positions is always
better. The second change is to increase the penalty to visit a
position that has been already visited many times. To do that
we allow the robots to decrease the value stored in the map
matrix corresponding to their actual position if that position
has been already visited by someone else. So the utility is
computed according to the following formula

ui(a;) = unk + uf (3)
where
u; = utility of player i
a;j = j'" action of player i
up = entry of the map matrix in row h, column k

ud = utility for increasing the distance from other robots

d

%

We paid particular attention to how
the end we chose the following way

is computed, and in

N
1
u?:NZIOlog(foij+1)f5O 4
JFi
where

x; = position of the ith robot (the one under consideration)

x; = position of one of the other N — 1 robots

N = number of robots

We used the logarithm in such a way that already distant
robots have little influence in our action selection process.
It is important to notice that positions are considered as the
vectors containing the position indexes of the robots. After
running the simulation for 100 more times, we obtain a mean
number of steps to obtain full coverage of ~ 172. Fig. 3
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Fig. 3. Example of a final map obtained with the second implementation of
the utility function

shows one of the final maps obtained with this second utility
function implementation. This shows that this utility function
can achieve a better division of the area and fewer number of
steps to obtain full coverage.

Fig. 4 shows the fractional coverage of the area with respect
to the number of epochs (the number of simulation runs
performed enables a very tight confidence). Evidently, a great
portion of the time is used by the robots to search for the last
squares that remain unexplored. The main problem is that the
robots usually leave unexplored positions behind them, which
are tedious to find at the end of the simulation. To try to
solve this problem we introduce another change in the utility
function, detailed in the next implementation.

C. Third Implementation

To further improve the performance, we introduce the last
change in the computation of the utility function, whose aim
is to increase the reward of visiting positions on the map
that are next to already visited positions. By including this
modification, we are trying to decrease the probability that a
robot leaves an isolated unexplored position behind him.

To implement this, we proceed in the following way. Each
time that a robot changes its position, it checks the eight
nearest squares, and if they have not been visited yet, it
increases a little bit the value of the corresponding map matrix
entry. As usual, it also decreases the value of its actual position
to mark it as an already visited position. It is important
to underline that, even in this last implementation, all the
modifications implemented in the second version of the utility
function are kept. In Fig. 5, a typical map obtained using this
third version of the utility function is shown. With this version
of the utility function, we have obtained a mean number of
steps ~ 142 to obtain full coverage.
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Fig. 5. Example of a final map obtained with the third implementation of the
utility function

To compare the three approaches, check once again Fig. 4
for the fraction of covered area with respect to the number
of epochs. The problem with Fig. 5 is that, despite the better
performance, the map goes back to the principles of the first
implementation contradicting the second one. So it is clear
that this third implementation is not always able to improve
the performance in the way that the second version of the
utility function does. This is clearly visible in Fig. 6 where
a comparison of the second and third utility functions is
performed, and the former shows generally fewer repeated
visits of a square.

In conclusion, both aspects must be carefully balanced,
including the effort to push the robot to split the map into

2 4 6 8 10 12 14 16 18 20

Fig. 6. Heatmap representation of the final map using the second (up) and
the third (down) implementations of the utility function. Yellow squares are
obstacles. Green and lighter blue squares represent highly visited positions.

macro areas, but at the same time decreasing the number of
times that one robot visits an already visited position, and also
avoiding leaving areas behind.

VI. CONCLUSIONS AND FUTURE WORK

We have explored the use of game theory to allow collabora-
tion among robots that have a common goal of area surveying.
The result obtained using the last implementation of the utility
function could be considered good, still further changes could
be explored to improve the final outcome.

A possible useful improvement would concern the robust-
ness of the algorithm, especially avoiding loops and lengthy
deadlocks. Even though our last implementation of the utility
function was always able to avoid forced terminations due to
reaching the maximum number of steps, the length of the path
to fully cover a particular map of the same dimension can vary
a lot from one experiment to another. So we ought to stabilize
the number of steps that are needed to fully cover the map,



and more in general, challenges of distributed implementations
can be tackled [23], [24].

Other important changes may relate to the performance of
the algorithm when the information available to the robots
changes. For instance, this can be due to erroneous feedback in
reporting the position between robots, or their communication
range can be varied in such a way that the position of a far-
away robot is unknown [16], [25]. Or, we can even address a
possible variation in the field of vision of the robots to consider
larger distances than nearby cells. All of these aspects can
be included by allowing for a wider state space, which may
require non-trivial modifications for scalability.

The last idea to improve the present work is to adjust
the algorithm with the goal of increasing the size of the
dynamic games, for example considering multiple moves for
each robot. The main hurdle with this last modification is the
computational effort needed to both build the tree and to solve
it, but finding efficient ways to solve these two problems could
be the primary goal of possible future work.
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