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Abstract—We are facing a transition towards interconnection
of computing systems, people, and things, where boundaries are
disappearing and new challenges are emerging. This trend also
applies to smart living environments, which are becoming a
cyberphysical ecosystem of devices and individuals. Generally,
meta-descriptors such as age of information are exploited to
obtain efficient content representation and semantic characteri-
zation, with the advantage of better data handling. However, the
strong relevance of living support in the involved applications
imposes to rethink of this approach whenever it is important to
factor the human-in-the-loop. In this paper, we discuss how the
investigations related to age of information, in particular aimed
at statistical descriptions and/or network operation modeling, can
be influenced in such scenarios, for what concerns overarching
machine learning for data classification and its impact on the
sensing frequency, as well as the presence of data correlation
that allows for a parsimonious handling of the updates.

Index Terms—Age of Information; Internet of Things; Data
acquisition; Networks; Modeling.

I. INTRODUCTION

The last decade has seen an unprecedented development
in smart environments due to the technological advancements
in the Internet of Things (IoT), sensors, and artificial intel-
ligence. There is a wide gamma of applications for these
innovations in smart living environment, from smart houses
to assisted living, especially for elderly people [1], [2]. Also,
IoT techniques contribute to achieve better sustainable energy
consumption [3] and the introduction of these solutions for
sensing, data analysis, and active system control, enables the
creation of smart cyberphysical ecosystems, where machine
and people are interconnected [4]. Unfortunately, using such
new technologies also leads to a tremendous increase in
the amount of data produced and consequently hinders their
management [5].

Novel approaches are needed to address these problems
from a holistic perspective. A possible solution comes from the
concept of Age of Information (AoI). In the context of network
analytics, AoI [6] is often proposed as a new metric to quantify
freshness of data coming from real-time monitoring of status
updates or control [7], [8]. Thus, instead of just exchanging
data, we also track their degree of innovation they bring to the
historical description of the cyberphysical ecosystem.

Over the years, different approaches have been proposed
to optimize various network features with an eye to AoI
as a key performance indicator. For example, [9] optimizes
transmission and sampling cost in a wireless network under

AoI constraints through Lyapunov optimization theory. In [10],
game theory is used to minimize the AoI from two different
competing sources. Another area where AoI is becoming
increasingly important is energy optimization like in [11]–
[13] where the problem of assessing the impact of energy
harvesting on AoI is analyzed.

Nonetheless, various challenges remain open in the field
of smart living environment. Despite its popularity, AoI is a
simple metric that does not codify the intrinsic value of infor-
mation in a possibly complex scenario. From the perspective
of AoI, an anomaly has the same importance of a normal status
update, which is clearly undesirable whenever the scenario is
supposed to provide some application in a smart living context.

Another important factor that can be considered to optimize
the data exchange by keeping AoI into account is source
correlation [14], [15], i.e., the fact that an update from a source
could also contain information related to other sources. This
is especially the case when we have multiple uncoordinated
sources that monitor different but related metrics, or are just
redundant.

Also, while AoI can be very adequate to increase data rep-
resentation and explainability, it can also introduce a bias and
be subject to error propagation [16]. Indeed, AoI assumes an
underlying binary information. In reality, information coming
from sensors, especially tracking smart living applications,
can be multistructured, and an interpretation is often required.
We can think of applying machine learning (ML) to manage
multidimensional data and extract meaningful information that
can be handled in the updates [17]–[20]. In light of the
aforementioned points, this approach can offer both pros and
cons for smart living ecosystems. First of all, ML applied to
multiple measurements from different sources can leverage the
correlation among the updates and therefore reduce the redun-
dancy and eventually limit the signaling and consumption of
the remote sensors. On the other hand, the superimposition of
ML techniques can make data handling less robust, because of
error propagation and the critical impact of misclassification
in the learning procedure.

In this paper, we are touching the aforementioned points,
by giving some numerical results that highlight and possibly
quantify the impact of these challenges, and we suggest possi-
ble developments for future applications of the AoI paradigms
in smart cyberphysical ecosystems.

The rest of this paper is organized as follows. In Section II,



we discuss our main scenario, what are the typical updat-
ing epochs in a smart environment, also in relationship to
power consumption of the battery and how to exploit possible
correlation between the multiple sensors. In Section III, we
discuss the application of ML and show how this could lead
to different possible results. In Section IV, we present some
numerical results. Lastly, Section V presents the conclusions
and future work.

II. SCENARIO AND METHODOLOGY

Consider a smart living environment monitored by a net-
work of N sensors, i.e., belonging to set N = {1, 2, . . . , N},
that samples information and sends it to a central server,
where they are processed and analyzed. Time is assumed to
be discrete, i.e. t ∈ Z+, and in each slot a sensor can decide
to sample new information and send an update to the central
server.

Modern sensors can have a high sampling rate, up to the
order of seconds, but this is not always useful in smart living
scenarios, where the application to track has slow dynamics.
For example, sensors that monitor the temperature inside a
room would waste resources even by sending updates every 10
seconds, since the changes in temperature of a living environ-
ment are usually slower. More in general, a dense sampling of
information from the sensor can present two major drawbacks.
Firstly, from a network perspective, sending all updates from
every sensor will cause an overload, together with all the
related problems, like collisions and reduced throughput and
available bandwidth [21]. Secondly, from the individual sensor
standpoint, sending frequent updates will consume a high
amount of energy, which goes against principles of efficiency
and reducing carbon emissions. In addition to the general
requirement for low energy consumption, depending on the
specific kind of ecosystems, nodes can be connected to the
grid or they can be fully wireless and rely on batteries, which
implies different approaches to the power management [12].

It is therefore necessary to find an adequate sampling rate,
that allows to optimize the energy consumption and at the
same time to maximize the information received [22]. From a
theoretical perspective, reducing the frequency of sampling of
the sensors can be related to Nyquist theorem [23]. Suppose
for example that a sensor that can send an update every minute.
If the sensors are tracking a process that changes once per hour
(frequency f = 1 hour−1) then you may want to sample as
frequently as twice that (i.e., two times an hour) and not every
minute. In this scenario, AoI represents an important metric
to reach our objective since it allows to quantify freshness of
information, and together with the knowledge of the process
monitored, it can be used to make the update process efficient.

We can add the further condition that the measurements of
a generic sensor i in the smart living environment are at least
partially correlated with those of other surrounding sensors,
i.e., its neighbors, belonging to a neighborhood ni. The exact
nature of this neighborhood can be physical, in particular
whenever there is spatial redundancy of the metrics tracked in
the living environment (e.g., the temperature in two different

positions of the same room), or logical, which happens if the
nodes in the neighborhood ni are those measuring metrics
with strong correlations [24]. Whatever the reason for the
correlation within a neighborhood, it is clear that, when a node
sends data, its update can be also useful to its neighbors. Thus,
we can exploit it for either decrease unnecessary updates, and
also in the context of applying ML to extrapolate meaningful
information from aggregation of multiple measurements.

In the following, we will show that even a basic scenario like
this presents challenges in the application of ML techniques,
and, more generally, non-negligible practical consequences,
which are at the same time enabling a more efficient data
handling but also prone to misdetection and error propagation.‘

III. MACHINE LEARNING FOR AOI

AoI often assumes a simple view regarding the data, since
it just describes how recent the last update was regardless of
its content [7]. In real world scenarios, however, information
coming from sensors can be multi-structured and data can have
different importance levels for the end user. The application
of ML offers a powerful instrument to integrate this aspect
and extend the concept of AoI in the more general concept
of “value of information,” where also the semantic aspects of
the data themselves are important to evaluate when to transmit
them or not.

Consider the scenario presented in Section II, where N
sensors monitor a living environment and send their updates
to a server. Instead of simply adjusting update rates based
on their age, an ML algorithm can further analyze the data
and classify each update as normal status or anomaly. This
adds a further processing step to the system and might lead
to different possible results.

For example, the update can have no important information
(normal status), so the AoI for that process can be updated
less frequently (i.e., to save power and leave bandwidth
free for other sensors). Alternatively, an alarm needs to be
raised (anomaly detected), and AoI must be kept very low
in the short-term, so the update rate is increased, neglecting
possible higher energy consumptions (i.e., avoid power saving
modes) at least for the time being. Finally, the update can be
inconclusive. This happens when the content of the update is
not clear, so old data are kept being used, with an AoI value
that is increased by 1.

The main drawback of this method resides in classification
errors. For example, there can be an apparently valuable update
(anomaly), which is actually a false positive. This error has a
weak impact on the system since its main consequence is to
force a fresh update from a process that carries little relevance.
Still, energy is wasted, which may lead to inefficiency at the
ecosystem level. On the other hand, if no valuable update
(normal status) is reported, but this is actually a false negative,
the problem is even more acute [16]. This error is harmful
since an anomaly that can damage the system is undetected,
but the sensor that monitors the process has no reason to
maintain its AoI low, and thus, no frequent updates are
performed to keep the process monitored.



(a) Baseline updating scheme (b) ML-empowered updating scheme

Fig. 1: The role of ML in the AoI evaluations. A baseline scheme without ML (a) is compared with an ecosystem with ML in the loop (b), with a dynamic adjustment of the AoI
policies (updating threshold).

Another option to increase the robustness of analysis is
to use ML to aggregate different measures taken over time
instead of simply classifying each update. This process could
potentially localize anomalies that require multiple measures
to be found and provide in the end more accurate classification
based also on historical records [20].

A possible insertion of ML techniques in AoI procedures,
which will be explored further, concerns the adjustment of
AoI operating policies according to the actual content of the
updates [19]. For example, one can think of comparing a
baseline scheme, where an update is sent whenever AoI is
greater than a predefined threshold T , with a scheme extended
through ML-based classification of the updates into anomalies
or normal data, so that the value of T is updated accordingly,
e.g., to give higher priority to signaling anomalies. A logical
scheme of this comparison is shown in Fig. 1.

IV. IMPLEMENTATION, RESULTS, AND DISCUSSION

We now present some numerical results obtained through
our simulations for the previously described scenario. We
consider a network of multiple sensors that are used to monitor
a common environment. The time is slotted and in each slot
a sensor i ∈ N can send an update with probability pi and
reset its AoI, or not sending an update, with probability 1−pi
and increasing its AoI of 1. Also, we assume the cardinality
of neighborhoods to be n nodes, so that if in each time slot, at
least one of the n neighbors of the sensor sends an update this
will also reset the AoI of the sensor itself with probability qi.
For the sake of simplicity, we consider a symmetric scenario
where pi = p and qi = q, for all i ∈ N .
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Fig. 2: AoI vs. number of neighbors in a loosely correlated scenario (q = 0.05).

A. Exploiting data correlation

We investigate how the presence of correlation in the
monitored data of the smart living environment can improve
the AoI. Specifically, every update from a sensor, happening
with probability p, does not only benefit the specific AoI value
it refers to, but can also benefit the AoI of another node in the
neighborhood (and thus reset its AoI to 0) with probability q.
We investigate how this is impacted by the numerical values
of p, q, and the size of the neighborhood n.

The results are reported in Figs. 2 and 3, which show the
average AoI of a node versus the number of neighbors n for
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Fig. 3: AoI vs. number of neighbors in a strongly correlated scenario (q = 0.1).

different values of the transmission probability p [25]. The
two figures report different values of the probability q, i.e.,
that a neighbor transmission is useful; specifically, they show
q = 0.05 and q = 0.1, respectively.

In both figures, it is possible to note how the average AoI
decreases if the number of helpful neighbors increases. One
interesting fact is that the decrease is more evident for a
lower probability of transmission (blue continuous line). This
is likely due to the fact that, when each node updates more
often, the contributes of its neighbors are marginal. Instead,
for lower p, the neighbor updates gain more weight.

This can be leveraged whenever we want to reduce the
energy consumption of the sensors without significantly af-
fecting the AoI. In fact, based on this simulation, with enough
neighbors we can have a small p (i.e., sparse updates) but
also keep the AoI low. The main advantage will be to extend
the battery life of the sensors, because fewer updates means
fewer transmissions and, thus lower energy consumption. At
the same time, fewer transmissions means lower network
overload and this will reduce the likelihood of collisions and
the consequent loss of data.

B. Testing the AoI of ML-empowered sensing

For assessing the impact of ML, we simulate the behavior of
a single sensor tracking the average AoI and the total number
of transmissions. We simulate two scenarios, one without ML
(henceforth referred to as the baseline case) and one with a
ML for classifying the received updates. We do not actually
consider a specific ML scheme, but we just account for the
misclassification events and the possibility of aggregating and
leveraging information from neighbor nodes.

The simulation considers a discrete time axis, with 10000
time epochs. The status of a single sensor and its AoI are
tracked at each time step, where 4 outcomes are possible: 1)
The sensor sends an update with probability p. Therefore, AoI
is reset to 0 and the number of transmissions is increased by
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Fig. 4: Total number of transmissions at the end of the simulation.

1; 2) At least one of the N neighbours sends a useful update
with probability q, therefore the AoI of the sensor is reset
but the number of transmissions is not increased; 3) The AoI
exceeds the predefined value T (set at the beginning of the
simulation to some quantity T0) and the sensor is forced to
send an update, so that once again the AoI is reset to 0 and
the number of transmissions is increased by 1; 4) None of the
previous cases, so no update is performed, in which case the
AoI is increased by 1 but the number of transmissions from
that sensor is kept the same.

In case of an ML-empowered scheme, we also consider an-
other option. Each update is classified through a ML algorithm
into a binary outcome (“normal status” or “anomaly”), with a
symmetric probability of misclassification equal to perr. Ac-
cording to our previous description (see Fig. 1), we modify the
AoI threshold according to how the ML procedure classifies
the update. In particular, the initial threshold is set to T := T0;
then, whenever an anomaly is detected, the threshold is set
to max(1, T/2) to force the system to sending more frequent
updates (ideally, every slot if the anomaly persists). Otherwise,
the threshold is increased by 1, so T := min(T + 1, T0).

We used N = 30, q = 0.05, e = 0.05 and T0 = 20. Then,
we simulate for different values of p and perr. At the end of
each simulation, we save the total number of transmissions,
namely Ntx, and the average AoI. The results are reported in
Fig. 4 and 5, respectively, where the two values are plotted
against the probability of transmission p.

As can be observed from both figures, the effect of ML is
more evident for lower p. For lower transmission probabilities,
the baseline scenario obtains an average AoI and a number of
transmissions that are only influenced by T0, since the only
way that the AoI is reset to 0 is when the sensor is forced
to update from hitting T0. In this same situation, the impact
of an ML-empowered tracking is to decrease the number of
transmissions, since it allows to exploit the redundancy present
from the network structure, but also consequently implying a
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Fig. 5: Average AoI at the end of the simulation.

slight increase in the average AoI. This effect vanishes, as is
reasonable, with the increase of the transmission probability.
No relevant difference was noted for the perr tested, thereby
implying that a limited error rate can be recovered thanks to
subsequent correct updates.

We can conclude that for a scenario with sporadic updates,
ML-empowered techniques can be useful to reduce the number
of transmissions, and therefore energy consumption as well as
network congestion. On other hand, the ML caused an increase
in the average AoI and makes the system possibly prone to
missing critical updates when anomalies are misclassified. Yet,
collecting data over multiple sensors and/or time instances may
obtain a richer description to avoid this problem. Future tests
in more extended setups, and possibly in real world scenarios,
will be needed to find the adequate trade-off between reduc-
ing the number of transmissions and the need for precisely
tracking the metrics of interests.

V. CONCLUSIONS AND FUTURE WORKS

In resource-constrained environments, the availability of
fresh information is an important challenge that can be
addressed through AoI. In this paper, we present possible
applications of AoI for monitoring smart living environments
and we show the importance of applying ML-empowered
classifications of the state of the ecosystem, to increase data
significance and avoid errors. Also, we show how considering
the neighbors of each sensors can be useful to further optimize
the network and the energy consumption. Future extensions of
this work will include more results regarding the implemen-
tation and impact of ML in this type of systems.
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