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Abstract—Remote sensing systems can exploit age of informa-
tion as a performance metric to track the freshness of the data
exchanged. However, sensing terminals often have a finite time
span to perform their task, for example due to their limited
batteries or because of mission-critical contexts. A realistic
model of such scenarios ought to consider the importance of
a performance metric evaluated over time, with lower weight
given to future evaluations. We propose to take into account
these aspects through a discounted age of information. We show
how this admits some non-trivial closed form expressions, and
we consider the problem of minimizing a linear combination
of the discounted age of information with a transmission cost
term for two different scenarios of interest, a single terminal
case, and a slotted ALOHA medium access. We discuss the
implications of system parameters on this metric, and its overall
characterization of the resulting system performance.

Index Terms—Age of Information; Internet of Things; Data
acquisition; Networks; Modeling.

I. INTRODUCTION

A recent trend has emerged in the analysis of remote
sensing that relates to the use of the age of information (AoI)
as a performance metric for scenarios where terminals send
sporadic updates to a data collection point [1]. This is the case
in many applications of the Internet of Things (IoT) such as
industrial, agricultural, or medical IoT [2].

In most of the related literature, we can identify three
directions for the application of the general idea that AoI
is worth considering as an objective for the network man-
agement, which might lead to different conclusions that a
standard throughput or delay optimization. First, there are
some seminal papers that illustrate the purpose of AoI and
its usefulness in some specific scenarios like those already
mentioned [3]–[5]. However, as a second line of investigaton,
because of its advantage of allowing closed-form expressions,
the AoI is also often used as a characterization metric, mostly
concerning the data link layer. This ground is particularly
fertile as it allows for many variations on the basic AoI
subject, i.e., including energy harvesting [6]–[8], automatic
repeat request [9], [10], or possible game theoretic approaches
for a distributed management [11], [12]. Finally, a third and
last outcome of employing AoI is its quantitative performance
analysis in comparison with other terms to assess costs and
benefits when acquiring new data [13], [14].

Our contribution in the present paper is to introduce a
theoretical extension that may advance the state of the art
under all these three aspects. The starting point of our
investigation is that most of the related papers discuss AoI
over an infinite horizon, often resorting to a long-term average
computation. We argue that this fails to represent practical

situations where the evolution of the system monitoring
cannot be tracked in a constant way for an infinitely long
time. Indeed, the operation of sensing devices is often limited,
for several possible reasons, like a restricted lifetime due to
a finite battery [15] or deterioration of components [16], or
a time span between recharges [17]. Also, when mission-
critical operations are considered, future evaluations can be
considerably less important than present-time ones [18], [19].
To keep this into account, we investigate the introduction of
a discount factor in the AoI computation and we investigate
the analytical consequence of this extension in the formulas.

As a result, our model can be considered as an augmen-
tation suitable for many scenarios where infinite duration of
the sensing operation is not appropriate. We show that this
can still be framed as the usual formulas for AoI evaluations,
albeit with some mathematical intricacies, which neverthe-
less admit closed-form derivations. Finally, we present the
comparison of this extended metric with cost parameters
[9], to investigate how some results of AoI-based network
management extend in this case.

In particular, we will show some analytical results for
two standard settings, i.e., a single terminal sending updates,
and a network of terminals under a slotted ALOHA medium
access constraints. These are just sample references, yet they
can be regarded as representative of other realistic cases in
the Internet of Things, with similar rationale. For example,
even when modern random-based access control protocols
are considered, the results are still based on those for classic
ALOHA-like scenarios [20], [21].

More in general, we will discuss how our proposed in-
troduction of a discount factor in the AoI can lead to more
challenging problems related to a better physical characteriza-
tion of practical scenarios, also possibly considering dynamic
multi-agent or multi-objective optimizations [1], [19], [22],
[23].

II. DISCOUNTED AOI – ANALYSIS

Consider a discrete (slotted) time where information up-
dates can be sent from a general terminal to a sink. The AoI
is defined as the difference between the current time index
and that of the last slot where a successful update occurred.
This also means that the AoI is equal to 0 in all the time
slots where a successful update occurs.1

1Throughout this paper, we consider both a discrete time and also, as
a result, a discrete-valued AoI [13], [17]. Thus, the formulas are slightly
different, but substantially equivalent, to papers such as [3], [4] where the
AoI is taken as a continuous value.



The success of an update is a stationary random process,
which means that, whenever an update is attempted, it is suc-
cessful with conditional probability Psucc, which is assumed
to be independent and identically distributed (i.i.d.) for all
the attempts. Thus, if we denote with p the probability that
an update is attempted (which, from a sensor’s perspective,
is nothing but the transmission probability) in a given slot,
we can denote the probability of a successful update as
ρ = pPsucc. For the sake of simplicity, we focus on the case
of sensors acting without any coordination or information on
the current AoI, so they set their probability p and attempt
an update with i.i.d. probability p for all the slots, which is
a quite standard setup in the literature [5], [15], [24].

This discrete-time representation prompts a direct repre-
sentation through renewal processes, since the AoI simply
increases by one at each slot, unless a successful update
occurs, in which case it is reset to 0. Thus, the average
AoI can be computed as the average of the reward δ of
a renewal process over the average duration of a renewal
cycle, where δ is increasing by 1 at each step and is set
to 0 at every renewal (successful update, happening with
probability ρ). The duration of a renewal cycle has geometric
distribution, i.e., an update occurs after κ + 1 slots with
probability ρ(1− ρ)κ, with κ = 0, 1, . . ..

We can introduce a discount factor a, whose meaning is
to devalue the future over the present. Discount factors are
used in economics, but also in game theory, infinite-horizon
optimizations, and reinforcement learning [9], [25], [26], to
represent a decrease in value over time, since it is commonly
assumed that present-day benefits are more important for
an individual than future ones. This is also relevant in a
scenario where AoI is to be minimized, since AoI indefinitely
increases if no update is performed [3], but this is only
attained asymptotically, and it may be less relevant if the
horizon of interest is limited to few interactions. On the other
hand, the only way to decrease the AoI is to perform an
update, which can be assumed to have a cost. In this situation,
a present expense is borne to obtain a benefit (lower AoI)
in the future. We will discuss how, when the discount factor
has a strong impact on the future evaluations, it may be more
convenient to limit the updates.

The discount factor a is chosen such that 0 < a < 1, and
geometrically multiplies all future values, so that any metric
computed at discrete time slot t = 0, 1, 2, . . . is weighted
as at. If we consider a discounted AoI with such a discount
factor a, we can apply the same reasoning and compute the
average discounted AoI as the average discounted reward of
a renewal process divided by the average discounted duration
of the cycle [26]. In other words, we are looking for a value,
denoted as Da, and computed as

Da =

∞∑
κ=0

( κ∑
j=0

jaj
)
ρ(1− ρ)κ

∞∑
κ=0

( κ∑
j=0

aj
)
ρ(1− ρ)κ

(1)

where one can exploit the notable sums
κ∑
j=0

jaj = a
1− (κ+ 1)aκ + κaκ+1

(1− a)2
,

κ∑
j=0

aj =
1− aκ+1

1− a

and after some algebra obtain

Da =
a

(1−a)2
ρ(1−a+aρ)

(
1

ρ
− 1

1−a+aρ
− a(1+a)(1−ρ)

(1−a+aρ)2

)
(2)

Despite its more complicated expression than the regular
AoI for a slotted time, we remark that this value Da obeys
the following properties, which are immediate to verify.

Property 1: The limit value of Da for a→ 1− is ρ−1− 1,
which corresponds to the case without any discounting [13].

Property 2: The limit value of Da for ρ→ 0+ is a/(1−a).
This implies that when the information is never updated, the
value of the discounted AoI is still kept limited, which is
different from the AoI without discount, that goes unlimited.

Property 3: Da is decreasing in ρ. This follows the same
trend of the AoI without any discounting, as is pretty intuitive.

According to the last property, to minimize the discounted
AoI, the best sensing policy will be to maximize the prob-
ability of a successful update, which does not make any
difference from the non-discounted case. However, similar to
that case, a limitation to an aggressive updating policy can be
given by the combination of Da with a transmission cost, and
its differences with the standard analysis will be discussed
next. To do so, we consider two special cases, namely, that of
a single terminal (or access without collisions) and a slotted
ALOHA medium access, and we discuss them in relation to
the implications of employing the discounted AoI instead.

A. Single terminal

We consider a scenario where a terminal is sending updates
that are always successful. This corresponds to a single ter-
minal case, or a setting where sporadic updates take place at
the application level, over a collision-free medium. The only
factor that prevents such a device from constantly updating
the information in every slot is the transmission cost.

Thus, we can set ρ = p, where p is the transmission
probability of the single terminal. In other words, we assume
Psucc = 1. In such a case, the minimum possible value of
the AoI is obtained for p = 1, and this is also true for Da,
which is decreasing in ρ according to (2). However, a way
to regulate the transmission probability of the terminal might
be to consider a cost for sending updates, proportional to
a coefficient c. This implies that the terminal is trying to
minimize a weighted sum of the expected AoI and cost. If
we consider the expression of the discounted expected AoI
for this computation, we are looking for the solution of

min
(
Da + cp

)
. (3)

It can be noted that Da is decreasing in p ∈ [0, 1], thus when
c = 0, one can minimize Da by trivially setting p = 1, but
if a higher cost is introduced, (3) is solved when

−dDa/dp = c. (4)

In other words, c imposes a specific transmission probability
p∗ < 1 to the terminal, which is the solution of (4).

The interpretation of this result is two-fold. On the one
hand, c can be seen as an exogenous parameter that de-
pends, for example, on the energy expenditure to perform
a transmission. In that case, p∗ is simply determined as a
side effect [9]. On the other hand, one can also consider c
to be a tunable parameter (especially if it is introduced as a
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Fig. 1. Average discounted AoI Da vs. the transmission probability p, single
terminal case.

virtual cost, unrelated to physical consumption) and use it to
regulate the frequency of updates sent by the terminal [13].

To gain some numerical insight, Fig. 1 plots the average
discounted AoI Da for different values of the discount factor
a, as a function of the transmission probability p. The case
of non-discounted AoI is plotted for comparison. The curves
overlap for p→ 1, while the asymptotic behavior for p→ 0
is different, as per Property 2.

Fig. 2 presents the value of p∗ as a function of the cost
parameter c, according to (4). For the non-discounted AoI, a
higher cost implies imposing an ever decreasing transmission
probability p∗ that never reaches 0, though, whereas this trend
is much more rapid for the discounted case, and in particular,
there is a threshold value of c that gives p∗ = 0. Therefore, if
the cost turns out to be higher than this threshold, the device
never sends an update since the cost for doing so is not worth
the ultimate benefit of a lower discounted AoI.

B. Slotted ALOHA

These results can be extended by considering a slotted
ALOHA medium access. This is a common reference for AoI
investigations, and there can be expansions also considering
more sophisticated medium access protocols, still based on
the rationale of ALOHA [4], [5], [20], [21].. In this case, we
assume N identical terminals to be perfectly syncrhonized
over the slotted time axis, where they all randomly send
updates in each slot with probability p. The probability that
a transmission is successful depends on the medium being
collision-free, which means that Psucc = (1 − p)N−1. Thus,
ρ = p(1− p)N−1.

Hence, not all updates are successful, and an aggressive
transmission policy p = 1 leads to ρ = 0. In the classic
case without discount, it is immediate and well-known to
derive that the best choice is p = 1/N .2 However, this is true
when no cost is considered for the transmission. We can keep
the same approach of the previous subsection and consider

2More specifically, it is intuitive that the non-discounted case, where the
AoI is equal to ρ−1 − 1, has a minimum when ρ is maximized, which is
immediately found to happen when p = 1/N .
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Fig. 2. Imposed transmission probability p∗ vs. the transmission cost c,
single terminal case.

a transmission cost cp, i.e., proportional to the frequency of
transmission, so that the single terminal is trying to solve (3).

Note that the terminals are assumed to be identical in terms
of their objectives and also the discount factor, so they all use
the same optimal value p∗. Also, it is still true that Da has a
dependence on p, albeit more complicated than before, and
therefore the result of p∗ is obtained through (4).

To assess the resulting performance, we focus on a sample
case with N=10 and we consider once again the average
discounted AoI Da for different values of the discount factor
a, as a function of the transmission probability p, which is
reported in Fig. 3. It is visible that the minimum AoI is
obtained for p = 0.1, which is 1/N , even for the discounted
case, which is in accordance to Property 1 of (2).

However, when a cost term c is introduced, the choice of
p∗ is strongly impacted by the discount factor. In fact, setting
the transmission probability under a non-zero transmission
cost would correspond to moving away from the minimum
of the curves in p = 0.1, towards the left. The lower a,
the less steep the slope of the curve, which implies a lower
resistance towards decreasing p once a higher transmission
cost is set. This is visible also in Fig. 4 where the required
c to obtain a certain p∗ is plotted versus the value of p∗

itself. It is evident that for lower discounts, the required
cost becomes lower; in other words, a terminal seeking to
minimize the discounted AoI is more inclined to decreasing
the transmission probability when the cost increases.

III. FUTURE DEVELOPMENTS

We showed how to compute the discounted AoI for a
remote sensing system, and remarked how this implies in-
teresting extensions of the analysis. The idea of applying a
discount to the AoI can be inserted in any existing analysis.
Although this admits closed-form expressions, the equations
become more complicated. Still, a numerical analysis is easy
to perform, and offers the advantage of realistically repre-
senting a scenario where the terminals are more concerned
of the present expenditure for transmitting an update than its
benefits of decreasing the AoI in the long run.
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Fig. 3. Average discounted AoI vs. the transmission probability, slotted
ALOHA with N = 10 terminals.

This contribution is not limited to the extension of the
mathematical relationships, but can also open the door to fur-
ther investigations. It may be interesting to relate the duration
of the time horizon to the lifespan of the terminal’s battery,
which in turns depends on the rate at which updates are sent.
In other words, instead of being unrelated parameters, the
discount factor a and the transmission cost c can be put in
relationship depending on the battery consumption [9]. This
looks like an interesting extension for future work.

Another aspect that may be worth considering is the atti-
tude towards an aggressive updating approach represented by
the discount factor, whose lower value ultimately represents
an intention to be less persistent when the update is costly. In
a multi-agent scenario, this can be seen as a Bayesian type
of the terminal [23], which the other terminals may want to
discover or keep into account.
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