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Abstract—We consider a two-tier approach for the classification
of user-generated data, where low-complexity decision algorithms
are available on mobile devices, and a better assessment can be
performed on a shared edge server to which the samples can be
offloaded. While an overall accurate classification can be achieved
by either massive offloading to the edge server alone or performing
a computationally intense domain partitioning for local evaluation,
both these solutions taken individually are excessively demanding.
Importantly, the former strategy achieves higher accuracy, yet
is very bandwidth-consuming, while the latter results in lower
accuracy while reducing bandwidth usage. To cope with these
challenges, we take a quantitative stance to investigate the benefit
of combining these two strategies, i.e., performing most of the
evaluations with a local decision over constrained domains, while
at the same time offloading to the edge server a small fraction
of the samples for which the classification is expected to be less
accurate. If properly harmonized, such an approach is shown to
lead to a sharp increase in classification accuracy, with overall
limited resource usage, which makes it suitable for practical
implementations.

Index Terms—Edge computing, Supervised learning, Domain
adaptation.

I. INTRODUCTION

The real-time processing of information-rich samples is an
important challenge, that can be solved only by bridging the
pervasive sensing capabilities of the Internet of things (IoT)
with data-efficient analysis and machine learning (ML) [1].
Potential applications include a plethora of scenarios such as
manufacturing, automotive, and smart healthcare. The hurdle
between massive data acquisition and proper exploitation
for decision-making (DM) lies in that the involved artificial
intelligence techniques, such as deep neural networks, are
often complex and resource-hungry, which is at odds with
the limitations of mobile devices (MDs), in terms of energy,
computation, and memory [2], [3].

Many industrial and research applications exploit two com-
mon solutions to tackle such an issue, namely: (i) simplification
or compression of the ML models to account for the constraints
of the MDs [4], [5]; and (ii) offloading the computing tasks
to more powerful devices located at the network edge [6], [7],
[8]. We claim that neither of these two approaches is ideal for
exclusive adoption in some settings, as the former is prone to
performance degradation, while the latter may use excessive
channel resources [9].

For this reason, we investigate the benefits of a hybrid
solution within an online semantic domain-restricted classifi-
cation. The idea is to perform the classification of a wide set
of samples by making use of classifiers at two tiers, either
locally or in the ES. Thus, we define the local-scaled domains,
named the local classification domains (LCDs). An LCD is a
confined area of the feature space that incorporates a subset of
samples for local classification [10]. In the binary classification
case considered herein, we use simpler linear classifiers
with LCD-specific parameters to approximate the decision
boundary. The adaptation improves accuracy with respect to
a global approximation, but may not entirely eliminate the
need for offloading some of the samples for a more accurate
classification at the ES.

Both solutions can individually lead to high accuracy if
pushed to the extreme, i.e., exploiting many LCDs or offloading
the entire set of samples to the ES, but these extreme points
are often impractical due to their high resource demands.
Yet, we argue that the highest incremental benefit of each
individual technique is achieved with a relatively limited
usage, which prompts us to investigate whether it is actually
convenient to identify a resource-efficient harmonization of
the two approaches. As a result, the present paper investigates
the development of a hybrid approach where both strategies
are used in a balanced way. We evaluate the practicality of
combining offloading to an ES of a small part of the samples
while exploiting the limitations of LCDs with low-complexity
classifiers [11]. Moreover, for some specific applications, it
may be convenient to only focus on potential false negatives
[12], which is explored as a way to improve performance.

To summarize, this paper makes the following contributions.
First, we develop a combined technique for domain-constrained
classification with proper exploitation of the edge computing
architecture. Moreover, we investigate from a quantitative
standpoint the performance of using local classifiers with
properly trained domains versus offloading to the ESs, and we
evaluate the total benefit that can be achieved by combining the
two techniques. Additionally, we discuss the role of a proper
selection of the samples to offload, where we seek maximal
accuracy of the classification and compare it with a simple
random selection. Finally, we also investigate the option to
minimize false negative rates as opposed to improving the
accuracy of the entire classification, which can be useful for
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Fig. 1: System architecture of the proposed method.

certain specific applications. Importantly, the proposed domain-
constrained method is different from existing methods in the
literature, which mostly rely on a general domain of the dataset
with model simplification. Instead, our technique focuses on
local domains to build lightweight classifiers.

II. PRELIMINARIES AND SYSTEM ARCHITECTURE

The need for the timely analysis of real-time data character-
izes a broad spectrum of applications. To make an example,
ML approaches can be used for the prediction and early
detection of emergencies in many IoT applications of assisted
living and smart environments. This includes smart healthcare,
autonomous driving, smart cities, and monitoring of industrial
plants [13], [14], [15].

From an abstract perspective, such detection algorithms can
be built through the collection of considerably large datasets
tracking many parameters in a centralized repository, and the
application of complex ML techniques. Delay and connectivity
constraints push toward a paradigm where the ML algorithm
is executed at the ES and part of them, albeit simplified, to the
MDs themselves. A tradeoff arises between a rapid localized
analysis of user data, but with lower accuracy, and a more
refined analysis performed at the ES [16].

We focus on a general problem of binary classification on a
set of supervised data samples where each data sample needs
to be classified as belonging to either the 0 or 1 class. We note
that, depending on the application, false negatives can be a
source of larger concern compared to false positives as they
can potentially lead to missing a due intervention [12]. For
this reason, in the following analysis, we will explore both
the case where errors are equivalent and a scenario where we
emphasize the need to avoid false negatives.

Fig. 1 shows the system architecture, where the MD is
responsible for collecting data and forming the LCDs, defined
as subregions of the overall feature space. We assume that,
while the ES is capable of accurately classifying all samples
through sophisticated deep learning, the ML techniques em-
ployed at the MDs are much more limited. If the input sample
distribution is known a priori, simpler classifiers (e.g., linear

support vector machines) can be used by focusing on a specific
feature region, obtaining good accuracy. Such knowledge of the
distribution can be assumed by a continuous domain adaptation
process performed by the ES, training (and retraining) the
parameters of the local classifiers for each LCD. This is driven
by a lightweight deep reinforcement learning (DRL) agent
residing at the ES [3], [17], which controls resource allocation.
This would allow conveying the rich knowledge available at
the ES down to the MD by exchanging appropriately trained
labeling parameters. Then, the MD performs the classification
and employs an offloading policy to send a fraction of the
samples to the ES.

The performance of local classification is highly sensitive to
the size of the LCDs and the ability of the ES to update the
model parameters in the system. In particular, finely tuned
training of a large number of domains can achieve good
accuracy but would be computationally heavy. If the domains
are too small, the ES can have too few samples to properly
estimate the correct parameters. On the other hand, decreasing
the number of domains diminishes the effectiveness of the
approach itself. For this reason, in the following, we investigate
this tradeoff by varying the number of domains. At the same
time, we will assume an idealized instantaneous training that is
to be interpreted as an upper bound. However, as the main point
of our investigation, we will show that both local classification
and offloading techniques can be jointly employed, thereby
leading to the high accuracy of the classification with overall
limited and manageable efforts in terms of computation and
communication exchanges.

III. SYSTEM MODEL

Our two-tier edge-enabled system contains an IoT layer
and an edge layer. The former consists of M MDs, where
i =1,... M indexes the ith MD, whereas the latter includes an
ES interconnected with the MDs through reliable wireless links,
which are used to submit parameters from the ES for the local
classification in the MDs, as well as to offload samples from
the MDs to the ES. Since the capacity of the communication
channel is limited, it ought to be used parsimoniously. The
main objective of our investigation is to show that very high
accuracy can be achieved by combining the two approaches
of edge offloading and local classification, both with limited
resource usage, as opposed to only using either of them, which
would lead to achieving high accuracy only under an excessive
usage of the wireless channel.

While the data collection operation is periodically repeated
by every MD over time, we concentrate our attention on a
specific time frame, where a generic MD acquires N samples
represented by X = {x1,X2,...,Xn}, each of them being a
vector of n real values, i.e., x; € R™ for all j. The objective of
this architecture is to perform a binary classification by which
each x; is assigned to either a positive or a negative class. We
let § : X — {0,1} be the ground-truth function, according to
which the set of all possible samples X can be partitioned into
two disjoint subsets X} and Xy = X\X; corresponding to the



positive and negative classes, respectively, where 6(x) = k iff
x € Xy, ke {0,1}.

We assume that a perfect implementation of ¢§ is available
at the ES, for instance as a result of a careful training process
that allows the acquisition of a near-perfect knowledge of the
distribution of samples [18]. Instead, this is not accessible at the
MDs due to their inherent limitations, therefore, they implement
a simplified auxiliary decision rule dg, parameterized by O.
That is, at each MD, g : X — {0,1} is used to approximate
the inaccessible ground-truth § with g (x), based on the sample
x € X. However, the computational complexity of § and do
are different, and 5@ can be considered as a lossy form of § [6].
Hence, the classification can be performed in the form of either
local or external classification. The MD can also check first if
the set of the model parameters, i.e., ©, guarantees an accurate
prediction for the sample, and exploit this assessment to decide
whether to perform the classification locally or externally at
the ES’ side, where the label can be computed with ¢ that is
a perfect match with the ground-truth.

This implementation can be further refined via some other
details that for the sake of simplicity are omitted here, as
they are out of scope with the present analysis that is just
concerned with harmonizing local and external classifications
to achieve the highest accuracy possible. First, we consider
that © is always updated by the ES at each frame so that the
model available at the MDs is closely matching as their local
distribution change within the data and the only losses are due
to the inefficiency of the domain specialization and the lower
complexity of the local classifier. The auxiliary decision rule dg
would require supervision from the ES with the transmission
of parameters © at a rate that depends on the dynamics of
the data themselves. This is also another aspect that is out
of the scope of the present evaluations, as we consider an
instantaneous classification of the data, without any dynamics
in their acquisition.

At any rate, the exchange of parameters ©, and the resulting
occupancy on the ES-MD channel, is proportional to the
number of LCDs. Thus, it is interesting to evaluate the impact
of the number of LCDs on the accuracy. Finally, it is worth
observing that © represents a distribution-wise set of parameters
for the entire dataset. Thus, it is more or less constant (and
becomes more precise) if the dataset grows. On the other hand,
the data offloaded to the ES grow proportionally with the size
of the dataset to evaluate, as we consider a tunable fraction of
the data to offload.

Accordingly, the independent parameters to explore in our
architecture are (i) the fraction 8 of data offloaded to the ES;
and (ii) the number n. of LCDs in the local online domain-
constrained classification. An efficient harmonization of our
techniques is achieved if we can reach adequate accuracy in
the classification for low values of both 3 and n.. Moreover,
it is worth exploring how the selection of the specific data to
offload is performed, since the objective is to send to the ES
the samples for which the classification is more likely to be
incorrect, to exploit the better classification rule 4.

The model at the ES is trained with stochastic gradient
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Fig. 2: Original dataset (a) vs application of linear classifiers
in local domains trained on specific subsets (b).
descent using cross-entropy loss, defined as
f(X,0)=-6(X)Inde(X)—(1-8(X)) In(1-de(X)). (1)
Using the logistic regression theory, the error probability is
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that implies that the loss f(X,©) can be used as a guiding
criterion for minimizing the probability of misclassification
as they have the same monotonic character, i.e., Pey(0;P)
increases with f(X, O).

We use (1) both as an evaluation metric, as well as a guiding
parameter to select the samples to offload to the ES; namely,
each MD, will be allowed to send a fraction /3 of the samples to
the ES for an error-free classification, and this will be decided
either randomly, or with a greedy choice based on putting all
samples in decreasing order of loss and sending those who
score more on this metric, up to filling the allowed offloading
ratio 3.

As a side evaluation, we also consider the minimization of
false negative ratio (FNR) as a possible alternative objective.
Indeed, this would consider the same approach of increasing the
accuracy, mainly focusing on avoiding false negatives, which
may be more dangerous in certain applications.

IV. PERFORMANCE EVALUATION

In this section, we assess the proposed architecture in a
scenario where an MD connected to an ES through an ideal
channel tries to classify data as shown in Fig. 2.

The whole dataset consists of N=10* samples of synthetic
data, each with n=2 features following a Gaussian distri-
bution with zero mean and unit standard deviation, using
the make_gaussian_qguantiles function predefined in
Python. The positive class contains samples with a feature
norm less than 1, while outliers are the negative class. The
ES is assumed to know the ground-truth and can send training
parameters for the n. specialized domains on the circle border,
to allow the application of a support vector machine (SVM)
with a linear kernel at the MD, also implemented in Python
[19]. The channel capacity is intentionally unconstrained but
at the same time, we investigate the accuracy achievable with
minimal data exchanges between the MD and the ES.

Under our assumptions, each MD is responsible for collecting
data in every time-frame, forming LCDs, and classifying the
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Fig. 4: Cross-entropy loss vs. 8 for n, = 4 LCDs.

samples within each LCD, locally. The ES, on the other hand,
is responsible for providing the MD with an updated model
w.r.t every LCD the MD aims to perform the classification for.
Finally, the MD can offload a fraction § of its data to the ES.
The performance of the proposed architecture is assessed in
terms of accuracy, loss, and FNR, by changing the offloading
ratio 8 and the number of LCDs n., under different policies
for the selection of the samples to offload. The considered
policies are listed below.
No Offloading: The model is updated for each LCD, yet no
sample is offloaded to the ES for classification. This is our
baseline performance to see the impact of applying LCDs.
Random Offloading: Used as a further benchmark, the model
is updated for each LCD, and samples are randomly chosen
to be offloaded to the ES.
Random™ Offloading: The model is updated for each LCD
and only samples with negative labels are randomly chosen to
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100 _.-=¥=='—A— No Offloading
© —»- Random Offloading
l' -{-1J- Random™ Offloading
99 ;’ —»- MaxAcc Offloading
g 'r! --3- MaxAcc™ Offloading
] RO,
> ! PR
b NI TR I IITCEELLE
E 98 : @ .......... )
> F
8 ! M
& 97 :f
', -_.- ,.»-E‘ .......... {1 . <>
Ll’ ........... g T :
0.00 0.01 0.02 0.03 0.04 0.05

Offloading Ratio

Fig. 6: Accuracy vs. 8 for n. = 6 LCDs.

be offloaded, which is meant to decrease the FNR.

MaxAcc Offloading: The objective of this policy is to achieve
accurate predictions by offloading dubious samples to the ES.
To this end, the samples are sorted in descending order of
prediction loss f; thus, the samples with the highest loss are
offloaded to the ES.

MaxAcc~ Offloading: This policy aims to maximize the
accuracy of the negative predictions with the lowest accuracy
to the ES. Similar to the previous one, samples are sorted
in decreasing order of f, but only negative predictions are
offloaded to the ES.

Two investigations are considered in this regard. In the first
one, simulations are performed for n. € {4, 6,8} LCDs. For
each n., the samples are classified for different values of the
offloading ratio 8. In the second one, we set 8 € {0.02,0.05}
and we consider a variable number n. of LCDs.

Fig. 3 considers accuracy versus the offloading ratio (;
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without any offloading, the accuracy is just 93%, whereas
MaxAcc Offloading converges to an accuracy of 100% with
B = 4%. The Random Offloading policies do not significantly
improve the accuracy, thus proving the importance of a careful
selection of samples offloaded to the ES.

Fig. 4 confirms this trend from the point of view of the loss,
which is the opposite of the accuracy, as per (2). Fig. 5 instead
shows that MaxAcc™ Offloading is effective to decrease the
FNR. Once again, some offloading is required but 8 > 0.02 is
enough to push the FNR to zero.

Figs. 6 and 7 indicate instead the accuracy for a higher
number of LCDs, equal to 6 and 8, respectively. Loss and FNR
are not shown for the sake of brevity, yet they have the same
trend as Figs. 4 and 5. These plots demonstrate how a higher
number of LCDs improve the accuracy as the distribution of
samples is more closely matched. Still, some offloading is
required to get a fully accurate classification. Clearly, one can
trade off (3 for n. but these results strongly justify our proposal
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Fig. 10: False negative ratio vs. n. for offloading ratio 5=0.02.

of harmonizing local domain classification and offloading to
the ES.

To show the effect of n. on the performance of the proposed
policies, we perform simulations for different values of n. with
respect to constant 3. Results obtained in Figs. 3, 6, and 7
indicate that 8 = 0.05 always converges the accuracy of 100%.
On the other hand, the accuracy is variable between 97%
to 100% for B = 0.02. Figs. 8-10 show accuracy, loss, and
FNR, respectively, for different values of n. and 5 = 0.02. In
general, as seen in Figs. 8-9, by increasing n., the performance
is improved.!

Figs. 8 and 9 show the superiority of MaxAcc Offloading
over the other policies, whereas Fig. 10 implies that MaxAcc™

I'This improvement works only from a theoretical standpoint, because, in
practical scenarios, if the size of an LCD is tiny, the ES can have problems
in estimating the model parameters ©.
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Offloading can be very effective in reducing the FNR. All of
these results were achieved for limited offloading of 5 = 0.02,
and Fig. 11 confirms these results for 8 = 0.05.2 Overall, this
shows that near-perfect accuracy of classification (as well as
low cross-entropy loss and false negatives) can be achieved by
carefully combining offloading and domain classification, with
just limited effort from either component.

V. CONCLUSIONS

We investigated a two-tier architecture for data classification
in IoT scenarios, where both individual devices and the
reference ES have decision capabilities, but with different levels
of accuracy. We proposed a harmonized approach that combines
offloading to the ES of the most critical data, while at the same
time adopting a domain classification on the majority of the
data for local processing at the MDs. We analyzed the resulting
performance and quantitatively showed that the two proposed
policies are able to complement each other, therefore leading to
a near-100% accuracy with limited offloading and a reasonable
choice of the local classification domains. This validates the
option of such an architecture for efficient decision-making in
data-intensive contexts.

Future developments include the analysis and implementation
of this technique in practical applications with real data,

possibly involving dynamic data acquisition in transient phases.

At the same time, it would be interesting to frame the analysis
by accounting for the constraints in terms of computational
complexity and communication capabilities of the ES-MD links
with a best-effort approach, as well as a real-time choice of
the harmonization parameters between the two techniques in
a fully adaptive setup without any prior knowledge of data
distribution or their size.

2Loss and FNR diagrams have not been provided to avoid redundancy.
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