
Status Update Scheduling in Remote Sensing Under
Variable Activation Delay

Leonardo Badia
Dept. of Information Engineering (DEI)

University of Padova, Italy
email: leonardo.badia@unipd.it

Andrea Munari
Institute of Communications and Navigation

German Aerospace Center (DLR), Weßling, Germany
email: andrea.munari@dlr.de

Abstract—Sensor data exchanges in IoT applications can
experience a variable delay due to changes in the communi-
cation environment and sharing of processing capabilities. This
variability can impact the performance and effectiveness of the
systems being controlled, and is especially reflected on age of
information (AoI), a performance metric that quantifies the
freshness of updates in remote sensing. In this paper, we discuss
the quantitative impact of a variable activation delay on AoI.
We consider an offline scheduling over a finite horizon, and we
show the main role of the first and second order moments of
the activation delay. Our analysis gives a quantitative boundary
on when such term can be neglected and also prompts possible
further investigations that can be used to mitigate the increase
of AoI and improve the overall performance.

Index Terms—Age of information; Delay effects; Optimal
scheduling; Single machine scheduling.

I. INTRODUCTION

Age of information (AoI) is a performance metric that
is recently enjoying great popularity especially in remote
sensing scenarios [1]–[4]. It refers to the difference between
the present time and the generation instant of the most recently
received packet and represents the freshness of the data
available at the final endpoint. As such, it is an important
metric for evaluating the real-time performance of sensor
networks, especially for ambient monitoring, surveillance, and
automation in Industry 4.0 or smart living environments, where
the timely and accurate detection of events is crucial [5], [6].

Generally, most AoI evaluations [1] assume a negligible
delay between the request of a status update and its activation.
This approach also addresses situations in which such delay
is non-negligible but constant, as the resulting AoI at the re-
ceiver’s side is simply biased by a constant offset. Conversely,
if this delay is variable, it may make sense to include it and
evaluate its overall impact [7], [8].

The reasons why the delay may be variable to the point
of significantly impacting the AoI may be different, being
related to the acquisition technology or the transmission chain
process. For example, smart living environments use a variety
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of transducers such as motion, light, or sound, to detect
the presence of occupants and trigger various actions, e.g.,
turning on lighting or raising alarms [9]. Depending on the
sensitivity of the sensor and the distance of the object, the
delay for this detection can be variable and therefore impact
the performance of the systems controlled by the sensor. At
the same time, other sensors may be used for closed loop
control, such as regulating temperature or humidity in a room,
by activating HVAC systems. In this case, the delay between
the ambient parameters changing and the sensor detecting
their variation also depends on the effectiveness of the control
systems adopted [10].

Moreover, in sensor networks, it is common for nodes to
be responsible of multiple tasks or functions in addition to
responding to requests. This resource sharing can lead to
delays in response times, as the sensor may be busy processing
other tasks when a request is received. It is worth noting that
properly prioritizing tasks and adopt a fair resource sharing
is often made complex by the required overhead in practical
scenarios, and very often selfish (i.e., not fully efficient)
approaches are adopted [11]. Thus, the global delay may
be variable because of queueing or congestion delay at the
sensor’s buffer, depending on the queueing discipline and
whether there are multiple users accessing the same link [12]–
[14].

Moreover, there may be additional delay components such
as processing delays, for example if the received data must be
interpreted or extrapolated from multiple sources, or retrans-
mission delays, depending on specific mechanism for error
recovery after data packet losses due to noise or interference,
such as automatic repeat request (ARQ) [15], [16]. Finally,
additional compound delays for multi-hop networks, where
the request must be forwarded through multiple nodes before
reaching its destination [17], [18].

For the purpose of quantitatively evaluating the impact
of delay variability on AoI, we consider in this paper the
problem of a finite-horizon offline scheduling of a fixed
number of transmissions [19], where the time of departure for
a fresh status update may be subject to an extra non-negative
activation delay. We show how, due to AoI computations, the
relevant terms impacting on the AoI evaluation are the first
and second order moment of the random quantity [2], [18].



Our study reveals that a variable activation delay can impact
the AoI performance and, as a consequence, the effectiveness
of the systems being controlled [20]. As a matter of fact, the
increase of AoI is generally limited. Still, this variability may
be undesirable and can be mitigated through techniques such
as adaptive control or machine learning [21]–[23], in the effort
of achieving an overall improved performance of the remote
sensing system.

The rest of this paper is organized as follows. Section II
discusses related work. Section III presents the analysis and
gives a formula for the expected AoI under a variable delay
in the case of stateless optimization. Section IV presents some
quantitative results and, finally, we conclude the paper in
Section V.

II. RELATED WORK

When evaluating the impact of delay, it is common to treat
some terms as constant for the sake of simplicity, especially
if they relate to non controllable aspects of the transmission
pattern [1], [24]. Thus, it makes sense that delay terms are
neglected in AoI evaluation if they just correspond to a
constant bias in the evaluations. Moreover, many AoI evalua-
tions related to the approach presented here exploit geometric
reasonings on the saw-tooth pattern of the AoI increase over
time [5], [19], [25], where the introduction of a constant delay
would just rescale the involved areas. This is still the case even
if more refined approaches are considered, such as dynamic
programming or constrained optimization [26], [27].

However, some existing papers explore the connection be-
tween non-trivial cases for the delay and the resulting AoI. For
example, [14] studies the relationship between delay, albeit
meant as a performance indicator and not an input value,
and AoI. This reference is similar to our approach as it
considers a single agent scheduling with an optimal pattern
for transmission of updates, although the main considerations
are based on a general queueing model for AoI, which is a
classic parallel line of research [5], [13]. On the same line, [27]
considers an analogous problem, tracking more AoI related
statistics (e.g., peak, outage) and a joint optimization of AoI
and delay.

Conversely, [12] explores the role of a delay externality
on the resulting peak AoI, i.e., of the delay elapsed between
sending the request and receiving the update. In our case,
transmissions are planned beforehand, and we see the delay as
involved in the generation of the update itself, which is always
generated as fresh but postponed from the desired schedule.
However, the computations are analogous. Another difference
between [12] and the present work is that the authors of
the former consider a queueing processor for computing the
AoI, and discuss the role of packet preemption and the
related online scheduling, whereas the updates we consider
are instantaneous, and we quantify the increase in AoI for an
offline scheduling where a simpler optimization is performed
beforehand.

Another related study was performed in [18], where a
multi-hop network is considered, each hop adding independent

∆(t)

t0 Lt1 t2 t3 t4

d1 d2 d3 d4

y0 y1 y2 y3 y4

Fig. 1. Example of growth pattern of AoI, considering 4 transmissions over
a finite time horizon of duration L. In the diagram, the terms di represent the
realizations of the random activation delays Di affecting the corresponding
updates.

and identically distributed (i.i.d.) delays, and evaluating the
AoI. In that case, the analysis corresponds more to that of a
propagation delay, rather than an activation, and also the issue
of scheduling of updates in advance is not considered, rather,
there is a dynamic forwarding of data with proper policies to
keep the AoI contained.

In this same spirit, [25] considers a non-negligible propa-
gation delay in a queueing analysis for AoI. In that analysis,
a geometric approach akin to what used here is employed,
as originally proposed by [2] and further exploited in many
papers [19]. In [7], an aerial link with non negligible prop-
agation delay is considered, so as to discuss the impact of
ARQ on AoI, showing a threshold criterion for the delay
term beyond which retransmission is no longer convenient,
similar to what also explored in [16]. In [21], an optimal
controller is developed for an online scheduler in the presence
of random two-way delay. Such an approach stands out as
a possible solution for the problems identified in the present
paper. Finally, [28] considers the impact of AoI of a variable
delay with very general statistics. Even though that paper is
similar in motivation to the present one, the development is
different as they consider a queueing system and the delay is
again meant there to increase the propagation time, not the
activation time as we do here. Clearly, these two perspectives
can be unified in a future investigation.

III. ANALYTICAL FRAMEWORK

We consider a sensor node sending M status updates to a
receiver during a finite horizon of duration L. Transmissions
are scheduled at instants t1, t2, . . . , tM . The instantaneous AoI
δ(t) is defined as the difference between the current time t and
the last instant of reception of an update u(t), i.e.,

δ(t) = t− u(t) (1)

since we consider fresh updates to be generated at will [10],
[12], [29], and every transmission by the sensor resets the AoI
to 0 upon its reception.1

1We remark that we assume that the updates reset the AoI value to 0, since
we consider a continuous time axis [19], [30]. In some similar investigations,
especially when the time domain is discrete, a lowest AoI value of 1 is
considered instead [2].



Reception of the update is subject to a random activation
delay D ≥ 0. Accordingly, if an update is scheduled at time
t, it actually takes place at time t+D. This results in the AoI
trend displayed in Fig. 1. Updates scheduled at times t1, t2, . . .
are subject to respective activation delays D1, D2, . . . that are
i.i.d.. We denote their pdf as fD(d).

In our study, we will focus in particular on the average AoI

∆ = E

[
1

L

∫ L

0

δ(t) dt

]
(2)

where the expectation is taken over the r.v.s Di, i ∈
{1, . . . ,M}. Note that ∆ is function of the chosen transmis-
sion times, i.e., of the schedule.

Note that we consider an offline schedule over a continuous
time axis for the transmission of updates over a finite time
horizon [19]. The motivation for this choice lies in that most
sensing applications perform their monitoring tasks over a
finite time span, over which they are allowed to send a limited
number of status updates for their measurements, mostly
due to hardware limitations, finite battery capacity, or even
normative reasons [4].

In view of this, we consider a stateless optimization of the
transmission pattern, i.e., the schedule is computed in advance,
prior to the start of the monitoring task, and cannot be modified
online, e.g., accounting for the experienced delays. While this
choice might seem restrictive, it may be practical in many
settings, where handling the online schedule adaptation is not
feasible for low-complexity and battery-powered IoT devices.
Moreover, the intent of this paper is to give a quantification
of the impact of the activation delay, which would apply in
both stateful and stateless optimization [30]. Thus, our findings
can be translated to the aforementioned related approaches
considering an online scheduler [12], [21], [25], [26].

Without loss of generality, the length of the horizon L is
taken as a unit of time. In other words, we set L = 1 since
this will allow us to reason in normalized terms; this means
that both delay and AoI are to be meant as a fraction of L.

A. Periodic update neglecting the delay

If the activation delay is not present, i.e., for the case of D =
0, it is immediate to see how the updates ought to follow a
regular pattern, where each of them is performed every integer
multiple of Q = 1/(M + 1).

If we assume that such a periodic pattern is used even in
the presence of the activation delay, we can obtain the result-
ing AoI through geometric considerations over the sawtooth
diagram shown in Fig. 1. In particular, the expected AoI can
be computed as the normalized sum of the areas of the M +1
right isosceles triangles in the AoI pattern [2], [10], [18],
whose indices are taken as 0, 1, . . . ,M (i.e., the first triangle
is denoted as the 0th), and the side of the jth triangle is Q+D1 for j=0

Q+Dj −Dj−1 for 1 ≤ j < M
Q−DM for j = M

. (3)

Thus, the average AoI is promptly computed as

∆ =
1

2
E
[
(Q+D1)

2 +

M∑
j=2

(Q+Dj−Dj−1)
2 + (Q−DM )2

]
(4)

=
Q

2
− (M−1)

(
E[D]

)2
+ME[D2]

due to different delay terms being i.i.d., which leads to
E[DjDk] =

(
E[D]

)2
whenever j ̸= k.

B. Optimal stateless allocation

A better allocation over time of the M updates can be
obtained through an optimization, which, according to the
discussion above, is implemented within an offline scheduling.
Note that the previously derived periodic allocation of one
update every Q is optimal if D = 0. Otherwise, the optimal
stateless scheduling can again be obtained through geometric
considerations over the sawtooth pattern increase of AoI.

In the general case, the problem can be stated by first
computing the expected AoI as in (4), and by then minimizing
it, to obtain

min∆ =
1

2
E
[ M∑

j=0

(zj+1 − zj)
2

]
(5)

s.t. zj = min(tj +Dj , L) .

The analytical computation is in general difficult due to the
presence of the minimum that gives a non-linear term. How-
ever, if the probability of Dj being larger than Q is negligible,
which is sensible since activation delays larger than the gap
between the regularly planned updates would severely impact
AoI, the analysis becomes tractable, as min(tj + Dj , L) =
tj +Dj .

Focusing on this case, as displayed in Fig. 1, it is
more convenient to quantify, instead of the transmission
instants t1, . . . , tM , the M + 1 inter-transmission intervals
y0, y1, . . . , yM , with yj = tj+1 − tj , with t0 = 0 and
tM+1 = 1. The two notations can be easily translated into
one another, accounting for the following constraints

yj > 0 , for all j = 0, . . . ,M ;

M∑
j=0

yj = 1 . (6)

At this point, since the time instants t1, . . . , tM of the
updates are delayed by M i.i.d. terms D1, . . . , DM , the side
of these triangles is y0+D1 for the first of them, yM−DM for
the last one, and yj+Dj+1−Dj for the intermediate ones. The
offline scheduling minimizing the expected AoI can be found
through solving the following problem, with D0 = DM+1 = 0
to simplify the notation

min∆ =
1

2
E
[ M∑

j=0

(yj +Dj+1 −Dj)
2

]
(7)

s.t. (6) .

By merging (6) into the objective of (7), we can reformulate
the minimizing condition setting the gradient to 0. This



actually implies that the first M terms, y0, y1, . . . , yM−1 are
the solutions of a system of equations, whereas yM is obtained
from (6).

When computing the gradient, it is to be noted that the yjs
are deterministic and not subject to any random effect, so they
can be taken out of the expectations. Thus, the only random
variables are the Djs that appear only in E[D] terms, and they
cancel out in many cases. This leads to the following system
of equations

y0 +

M−1∑
k=0

yk = 1− 2E[D] (8)

yj +

M−1∑
k=0

yk = 1− E[D] for j = 1, . . . ,M−1

with solution

yj = Q for j = 1, . . . ,M−1 (9)
y0 = Q− E[D] (10)
yM = Q+ E[D] . (11)

As a result, the objective function in (5) is obtained as

∆ =

M∑
j=0

E
[
Q− rj + rj+1

]2
2

(12)

where r0 = rM+1 = E[D] and rj = Dj for j = 1, . . . ,M .
Plugging in these quantities, a compact expression for the
minimum AoI follows:

∆ =
Q

2
+M

(
E[D2]−

(
E[D]

)2)
(13)

=
Q

2
+Mσ2

D , (14)

where σ2
D is, by definition, the variance of D.

IV. NUMERICAL RESULTS

We show some numerical evaluations of the optimal AoI
from (14), for different choices of the statistics of D as well
as the number M of transmissions updates available. We notice
that increasing the number of transmissions is expected to
lower AoI in general, but if these updates are delayed, this
noisy effect can cumulate and actually lead to an increase of
AoI if the variability of the noise terms is high.

We consider two cases, i.e., with M=4 and M=5 updates
in the time horizon, which are reasonable choices over a short
time span for a sensor with limited capabilities [6]. Moreover,
we analyze two different distributions for fD(d), namely:

• a uniform distribution between 0 and Dmax,where
Dmax = 2E[D], i.e.

fD(d) =


1

2E[D]
for 0 ≤ d ≤ 2E[D]

0 otherwise
(15)

for which, as is well known, E[D2] = 4
3E[D]2.
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Fig. 2. Normalized expected average AoI.

• an exponential distribution with mean E[D], i.e.

fD(d) =


exp(−d/E[D])

E[D]
for d ≥ 0

0 otherwise
(16)

where E[D2] = 2E[D]2.
We take E[D] going from 0 to 8% of the whole horizon,

the latter corresponding to an extremely high variability of
the scheduled time instants. We remark that, with choice
of parameters, the uniformly distributed random delay never
exceeds the finite horizon boundaries, since the lowest average
distance between transmission instants is Q = 0.167 for
the case of M=5 scheduled transmissions, and the highest
possible activation delay is 2E[D] = 0.16, which barely fits
the pattern between updates and still avoids pushing the last
update beyond the end of the horizon, which is a requirement
of our analysis.

Conversely, the exponentially distributed random delay can
cause the scheduled update to fall after the end of the horizon,
but has a negligible probability of doing so. The highest
probability of D exceeding L, for the highest considered value
of E[D], is below 5%. This confirms the validity of the
previously presented analysis up to a reasonable numerical
confidence.

Fig. 2 shows the expected average AoI as a function of
the average activation delay. We see that the exponential
distribution, which corresponds to a higher variability with
respect to the uniform distribution with the same average,
causes a slightly higher AoI. Moreover, performing fewer
updates naturally causes a higher AoI value, so the curves
for M=4 updates are lower than those for M=5. When there
is no delay, the AoI is, as expected, [2(M + 1)]−1. As the
average activation delay increases, this gap progressively re-
duces, which is especially true for the exponentially distributed
activation delay. This happens because more variable delays
cumulate over the time horizon, and ultimately the curve for
exponentially distributed activation delay and M=5, compared
to those for M=4, overtakes those for uniform distribution
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Fig. 3. Ratio between the actual average AoI and the value with zero activation
delay vs. total activation delay over the time horizon.

of the activation delay and approaches its counterpart of the
exponential distribution.

Fig. 3 displays the multiplicative increase of the expected
average AoI with respect to the case of no activation delay.
Here, the x-axis displays instead the total delay that is experi-
enced in the whole horizon, i.e., ME[D]. From this figure, two
conclusions can be drawn. First, if we consider an identical
cumulative activation delay induced by the individual terms,
the increase in the age of information is basically the same. All
that matters is the distribution of the random variable D, which
is easy to explain by looking at (14), as the only changing
terms between the exponential and uniform distribution of the
activation delay with the same total is indeed E[D2].

Also, the increase of AoI is superlinear in the total average
activation delay experienced over all of the transmission
opportunities, and, as a result, it stays relatively limited as long
as the local delays are small. Numerically speaking, and for
these choice of parameters, one can say that if the activation
delays are exponentially distributed and their total is 20% of
the horizon, an AoI increase by around 10% is experienced;
if the total activation delay is lower, or the statistics are more
favorable (e.g., the activation delay is uniformly distributed),
the increase of AoI is even smaller, so that it may make sense
to neglect it.

Conversely, at the opposite end, for total activation delay
amounting to 25%–30% of the horizon or more, the AoI soars
more rapidly, but we notice that in this case the assumptions
for the analysis are weakened and the schedule may actually
perform even worse.

Finally, Fig. 4 shows a comparison in terms of AoI increase
between the simpler periodic scheduling and the optimal
stateless scheduling, discussed in Subsections III-A and III-B,
respectively. More precisely, we plot the increase in AoI due
to using the suboptimal periodic scheduling of (4) as opposed
to (14). Since the optimal stateless scheduling actually boils
down to a pseudo-periodic update with a bias of E[D], the
difference is just proportional to this term.
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Fig. 4. Average AoI difference between a regular scheduling and the optimal
one (with offset), vs. the average delay.

On the one hand, it can be argued that the difference is
limited and therefore even a periodic scheduling would suffice
to obtain limited AoI, whereas the main problem is actually
the value of E[D] that is an externality. On the other hand, the
implementation of the optimal scheduling is also very easy as
it just corresponds to a simple offset in the updates, which is
therefore reasonable to apply not to cause the increase shown
in the figure.

V. CONCLUSIONS AND FUTURE WORK

We considered an offline scheduling of status updates com-
ing from a remote sensor over a finite time horizon, evaluating
the impact of the activation delay in the update request and
its actuation. We showed how this noisy effect may lead to
an increase in the resulting expected average AoI, which is
in line with similar results where erasures and retransmissions
are considered [19], [30]. In general, the cost of waiting for
new information must be balanced against the cost of taking
a suboptimal or uncertain action.

This research can be extended in several interesting ways.
We could explore the impact of different types of delay on AoI,
both qualitatively and quantitatively, for example considering
different statistics and/or multiple delay terms such as sensing,
transmission, and queueing delay [24], [28]. All of this would
lead to different evaluations of the graphs in Fig. 1 and
more complex computations. Also, investigating the relative
importance of different types of delay could provide a more
comprehensive understanding of the factors that affect the age
of information in sensor networks.

Extensions of the implications found in this scenario to more
general semantic communications, e.g., involving retransmis-
sions, feedback, or the structural texture of the content such
as video and multimedia [20], [31] can be further explored.
Alternatively, future research could focus on developing new
techniques for minimizing sensing delay and improving AoI in
sensor networks, for example, by means of machine learning
techniques to predict the delay terms caused by competing
tasks [22], and this feature can be integrated in the scheduling



algorithms to further optimize them. Another way to improve
the AoI, which is particularly suggested in the context of
ultra-reliabile low-latency communications, is through data
duplication over different connectivities [32].

Overall, the study of the impact of sensing delay on the
age of information has the potential to lead to significant
advancements in the field of sensor networks and enable the
development of more efficient and effective sensing systems.
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