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Abstract—Vehicular networks involve communications be-
tween automobiles and roadside infrastructures, to improve
safety, traffic efficiency, and comfort. They require to establish
secure and efficient means of communication among smart
vehicles exploiting the advantage provided by real time data.
Thanks to the flexibility of its architecture, a vehicular network
is also prone to abuse by individual users and especially to
cyber attacks that can have serious consequences. Hence, the
assignment of communication opportunities within the network
with the purpose of data injection must be carefully monitored.
In this work, we develop a game theoretic model that seeks
to obtain the best trade-off solution and perform strategic and
dynamic decision-making on the available bandwidth assigned
to the vehicles. This can be further expanded to counteracting
specific types of threat, such as denial of service, or malicious
node detection based on the data sent by a vehicle.

Index Terms—Vehicular ad hoc networks; Vehicle-to-
Infrastructure; Denial-of-service attack; Game Theory.

I. INTRODUCTION

A vehicular ad hoc network (VANET) has the objective
of interconnecting smart nodes on the road, either moving
vehicles or stationary roadside units (RSUs), to efficiently
spread information and improve the efficiency of intelligent
decision making to ensure the safety of the road through
interactions and the infrastructure [1].

These networks are particularly important in light of the fu-
ture development of smart vehicles (SVs) that, incorporating
a rich set of sensors and software components, such as GPS,
onboard units to communicate with other vehicles, electronic
identity, event data recorder, [2], are capable of autonomous
driving as well as decision making [3]-[5].

VANETS operate in a highly dynamic scenario, since SVs
can move at different speeds and directions, and require real
time processing of a high amount of data, thus making their
connections extremely short but with strong requirements in
terms of freshness and accuracy [6]. In this context, two
problems arise: first of all, SVs need an up-to-date repre-
sentation of the surrounding environment, which translates
into a requirement of low age of information [7]-[10] and
forces them to frequently report considerable amount of data.
On the other hand, data injection from SVs is also subject
to concerns of available bandwidth, and the RSUs ought
to avoid that local data sent by vehicles saturate the entire
channel available. In a classic context of distributed/selfish
management of the agents, each SV would be trying to submit
as much data as possible, which is a typical selfish behavior
that can lead to a phenomenon known as the tragedy of the
commons [11], [12].

Finally, the injection of excessive amount of data by an
SV may even raise security concerns. Malicious SVs might
disseminate fake messages to disrupt network operation,
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Fig. 1. RSU and SV interaction in a VANET.

either by sending false information or just saturating the
available bandwidth [13], [14].

We claim that RSUs, being the gateways to the whole data
exchange on the VANET, play a critical role in controlling
data injection from the SVs, and ought to operate some
form of prevention for misuse or DoS attacks. RSUs have
the ability to make decisions on resource allocation to bal-
ance computational costs, energy consumption and resource
requirements [15], while on the other hand the SVs can
be aware of this capability and plan their data injection
accordingly. All in all, this calls for framing this vehicle-to-
infrastructure (V2I) interaction in the context of game theory
(GT) [16], [17].

GT allows for modeling, analyzing, and optimizing the
behavior of intelligent agents in smart systems such as
VANETS, and can be used to design distributed approaches
to network cooperation [18]. In this paper, we propose a
game theoretic model for the V2I infrastructure taking place
between a generic SV and an RSU, as depicted in Fig. 1.

We discuss a model for their interaction as strategic
players, where the SV chooses a data rate and the RSU
independently chooses a target for that rate, trying to have
the SV staying below that value. This is modeled first as a
static game of complete information, where we identify an
equilibrium point that allows for some slack in data injection,
yet keeping it below the target. Furthermore, we expand the
game to a dynamic setup, given the highly time varying nature
of VANETs. We consider a repeated game, where the time
of the network connection between the RSU and the SV
can be related to the discount factor adopted. This generates
further possible investigations on collaboration strategies with
an implicit agreement between the actors, which is relevant
in the context of detecting misbehaviors by the mobile users.

The rest of this paper is organized as follows. In Section
II, we review related work. Section III presents the system
model and the game theoretic analysis. We show numerical
results in Section IV and we conclude in Section V.



II. RELATED WORK

Our setup may be related to a combination of [19] and [4].
The former is interested in capturing VANET interactions
through GT, whereas the latter explores security concerns
related to data injection, in particular for DoS attacks.

An extended analysis, which does not directly relate to
VANETSs but include the issue of mobility of players into
account, is presented in [14]. In this paper, the behavior of
a node entering a network is uncertain between regular or
malicious, and this is accounted for through a Bayesian type.

In [5], congestion control in VANETS is investigated from
a game theoretic perspective. Differently from our model,
where the interaction takes place between an RSU and a
single vehicle, in their analysis a non-cooperative game is
introduced, where the vehicles act as selfish players. This
is compared with the allocation obtained from the Karush-
Kuhn-Tucker conditions, and a plain collision detection al-
gorithm.

Another related approach, still considering a wider network
scenario, is shown in [20]. While we focus on the interaction
between a single RSU and an SV (multiple RSUs are actually
present, but just as traffic redirection), that paper considers the
choice of the RSU to connect to, in order to achieve a proper
traffic balancing, also in consideration of the moving speeds
of the vehicles. The solution proposed, based on evolutionary
GT, can be seen as an extension for our approach.

A similar scenario to ours can also be found in [2]. Here,
the authors consider an opportunistic offloading, also taking
place between a SV and a RSU, and model it through GT.
However, they consider an auction mechanism, and also
pricing and utility shaping considerations are involved [21].

Finally, most of the investigations that employ GT to dis-
cuss injection in VANET involve malicious users, for example
causing DoS attacks [6], [13], [19], [22]. While intentionally
more general, our analysis can be certainly framed into this
context. However, the critical point is about the detection of
the malicious behavior beforehand, which would be required
even for a simple static game of complete information, which
assumes that the RSU is informed of the intent of the SV
before an attack even takes place. We think that a proper way
to frame these investigations is to explore possible strategies
that can be chosen by the SVs, which in turn may be used
for classification and prevention of misbehaviors [23].

III. SYSTEM MODEL

We focus on the atomic interaction between an SV and an
RSU. The former is interested in injecting data to a rate . The
latter is able to receive data to communicate with a server,
and, if necessary, redirect the data flow to a neighboring RSU.
To limit heavy data injection, the RSU sets up a target 7'. An
exaggerated data injection beyond target 1" can be interpreted
as an attempt to monopolize the available bandwidth, or
jeopardize the network operation through a DoS attack. We
denote with C the total bandwidth capacity of the RSU.

We can further assume that the RSU takes some special
action if » > T'. E.g., the data from the SV can be classified
as a DoS attack, and therefore an alarm is raised or the flow
is blocked. The purpose of the RSU is to choose 7' such
that P(r < T) is low. On the other hand, the SV aims at
transmitting with an high rate, but without being blocked by
the RSU. In this sense, the objective of the players converge
(as long as the intent of the SV is non-malicious).

Moreover, for compliancy with the GT setup and the
numerical analysis described later, the RSU is assumed to
have complete knowledge of the capabilities of the network.
The SV can further infer the probability of its flow to pass,
drop or get redirected to another RSU based on a probabilistic
framework [19]. Moreover, the capacity C' available at the
RSU is fixed and it is known to all the actors involved.

The development of the framework and its assumptions
lead to a two player game between an SV and an RSU, which
have different strategic choices as well as objectives and
constraints that influence their strategies. The RSU’s objective
is to minimize the overall congestion and improve the traffic
flow in the network. Conversely, the SV tries to maximize
the amount of data that can be injected in the network. At
first, we consider a static game where each player chooses to
perform an action in order to maximize its payoff. This choice
is done once and for all, and without consultation with the
other player, i.e., the choice of r for the SV and of T for the
RSU occurs without knowing the opponent’s choice.

As evolution over time is important for our scenario,
a further analysis investigates the repeated game version,
discussing the role of the discount factor. For the numerical
computations, the support enumeration algorithm [24] has
been used to find the NE, as it enables finding all the
equilibria of a game, even at the expense of an increased
computational effort.

We need to define proper payoff functions of the players
involved that are functions of both of their actions, i.e., r
and T for the SV and the RSU, respectively. The choices
that makes the problem worth of analysis are those where
the payoff of an individual player jointly depends on both
values [21].

The goal of the SV is to inject as much data as possible.
Notably, this hold true regardless of the nature of this data,
i.e., whether they are just regular data exchanged or even
contain malicious attacks. A possible extension, left for future
work, involves the study of this feature through a Bayesian
type of the player [14]. Thus, the payoff of the SV is directly
proportional to the rate, and we insert a direct proportionality
also with term 7', since a higher target allows to inject more
data. Finally, we normalize the utility to the bandwidth C.
So, the utility uy (r, T) of the SV is computed as

uv(r,T) = ()

For the RSU, the payoff is inversely proportional to the rate
injected, since the main goal is to avoid bandwidth saturation.
At the same time, the RSU should also choose not too low
a target, to ease the communications in the VANET. All of
this is modeled via a quadratic function whose minimum is
located at half of the capacity C'. This results in [19]

Tr (T 1\
c-(c2) o
A static game of complete information corresponds to both
players looking for a local maximum of their utilities with
full knowledge of the utilities of both players, and also being
aware that the other player is seeking a maximization as well.
This can be extended to a further variation of the inter-
action between the SV and the RSU, namely, a repeated
game played over multiple rounds, with the RSU and the SV
interacting with each other every time, dynamically choosing
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T and r, respectively, using strategies that are contingent on
past actions and outcomes. For example, the RSU can adjust
the target based on the SV’s response to its previous choices.

In this context, the setup of the discount factor § € (0, 1)
becomes key. In repeated games, the discount factor rep-
resents the importance of future payoffs relative to current
payoffs, since players make decisions based not only on the
current round but also on the potential future interactions.
Thus, the discount factor is an exponential multiplicative
weight of future payoffs against current payoffs [25].

A high discount factor places greater emphasis on future
payoffs, whereas a low discount factor implies that players
will be more focused on maximizing their immediate gains.
For our problem at hand, since we involve a highly variable
network dynamics, the discount factor can be put in rela-
tionship with the time that the SV is expected to stay in the
network, after which the interaction ceases to exist. Thus, the
desire for the SV to collaborate over present interaction may
be a sign that it expects to stay connected for a long time.
Conversely, a fast moving SV, or a malicious node injecting
false data, may exhibit a very low discount factor [26], [27].

IV. NUMERICAL RESULTS

We considered the GT setup defined in the previous sec-
tions. Python package nashpy [28] is used for the numerical
computation of NEs, through the support enumeration algo-
rithm [24]. The capacity of the RSU C' is set at 6000 Mbps
[22]. Due to the computational power required to compute all
the NEs involved given the size of the strategic spaces, we
limited the numerical choices for the action parameters, still
retaining enough complexity for them to be representative.
The strategic space of the SV was discretized into an array
of 8 equally-spaced values ranging from % to 3 . Similarly,
for the RSU we set up an array of 8 equally spaced values
ranging from C/8 to C.

Fig. 2 shows the payoff obtained as functions of 7" and
r. For the SV, it increases linearly in either 7' or r, when
the other is kept constant. This happens, as the objective of
the SV is to exchange the highest possible amount of data
with the VANET, which becomes increasingly feasible as the
RSU adjusts the target for traffic at higher levels. The NE
yielded by the SE algorithm is unique, and it is (r* = 4000,
T* = 858).
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Fig. 3. Discount iy as (r, T') vary.

Because the target set by the RSU is lower than the
rate that the SV chooses, the connection may be blocked
to a point to which all the traffic generated by the SV is
dropped and connection is lost. Throughout the study, it
has been empirically proven that this consideration is not
influenced by changes in the intervals selected, provided that
the strategic space for the defender includes values lower
than C'/2. When this is not satisfied, the optimal strategy for
the RSU becomes merely choosing the lowest possible target
among those available.

Taking into account the results of the static game, where
the NE is unique, we can extend the analysis by taking it as a
stage of a repeated version over an infinite horizon. This new
game is subject to discounting for the utilities to converge,
so that a multiplicative discount factor § € (0,1) is defined
and the utilities over the jth repetition are weighted through
o7,

In a dynamic game where nodes join and leave a network,
as is the case for a VANET, the numerical setup of 4 can be
connected to the expected duration of their stay in the system.
Indeed, it is logical to assume that the SV is connected to
the RSU for a variable time that implies it to play for an
expected number of slots equal to (1 —4&)~! [25].

In this setting, the direction of analysis is assessing
whether, with this type of GT framework, there exists another
equilibrium that arises from players’ agreement that deviates
from the unique NE found for the static game. To do so, a
strategic space is defined for both players so that they are
both arrays of fifty even-spaced values (of » and T') between
0 and % = 3000. Furthermore, an array of twenty values for
the discount factor 0 < § < 1 is generated.

The development exploits the concept of the Carrot-and-
stick approach [29]. In the first stage the RSU selects T" > T™.
If the SV chooses any r < r*, then the agreement is kept
Otherwise, the SV is punished by selecting a new T' = 2
Next, it is required to check the condition that makes the
cooperation to be feasible. This needs to be done for the SV
only, as it is the one that can deviate, and translates into

00 T 9]
uy (r,T) + Y 6" > uy (r*,T) + uy (T*, 2) PN
=0 t=1

The results shown in Fig. 3 clarify that it is more likely
to find an agreement as both r and 7T increase, meaning that
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the discount factor has a smaller lower bound. Instead, for
the combinations of low values for both  and 1" (bottom left
corner in the plot), there is no § giving cooperation, and the
SV always deviates. The non-linear pattern of the minimum
discount factor yields that the lowest 6,,;, = 0.32 occurs for
r = 3000 Mbit/s (i.e. the maximum rate considered) and T" =
2020 Mbit/s, as shown for the SV in Fig. 4 and for the RSU in
Fig. 5. It is worth noting that this operating point, while still
skewed since the SV attempts an overly aggressive allocation
that may cause some of its data injections to be discarded, is
more balanced than the previous static allocation.

Overall, repeated games are a promising approach to ad-
dress data injection and additional security and authentication
challenges faced by vehicular networks [15], enabling AVs
to maintain safe and secure communication channels while
navigating complex and dynamic traffic environments.

V. CONCLUSIONS

The use of GT to analyze data injection in VANETS can
provide insights into the strategies and interactions of smart
vehicles and the network, and help design more robust and
secure VANET systems. Static games can be used to model
the interactions between agents choosing their strategies
simultaneously. This can provide insights into the NEs that
are likely to arise in a one-shot interaction and lead to identify
anomalies and attacks when the SV inject malicious data [14].

Dynamic games are an interesting extension, as they allow
to keep movement of the SVs into account. This aspect is
introduced through the discount factor [25], [26], modeling
the expectations about the persisting presence of an SV
in the VANET over future instants and can be combined
with a possible Bayesian [12] or evolutionary analysis [20]
about the malicious character that an SV may have, and the
countermeasures for the network.
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