Online Domain Adaptive Classification for Mobile-to-Edge Computing

Forough Shirin Abkenar*, Leonardo Badiaf, and Marco Levorato*
*Donald Bren School of Information and Computer Sciences, University of California at Irvine, United States
TDept. of Information Engineering (DEI), University of Padova, Italy
Email: fshirina@uci.edu, leonardo.badia@unipd.it, levorato@uci.edu

Abstract—A Kkey challenge of today’s systems is the mismatch
between the high computational demands of modern neural
network models for data analysis and the severely limited
resources of mobile devices. Existing solutions focus on model
simplification and task offloading to compute-capable edge
servers. The former often leads to performance degradation,
whereas the latter requires the transfer of information-rich
signals and is subject to the impairments of wireless channels.
To address these issues, a framework that establishes a novel
form of collaboration between mobile devices and edge servers
is proposed herein. The core idea is to deploy lightweight models
on mobile devices that are intelligently updated to match the
current, and local, distribution of the samples being observed.
The framework develops the temporal patterns of the samples
to determine the optimal model update policy, as well as channel
resources allocated to the mobile users. The performance of
the proposed framework is evaluated via extensive experiments
with both synthetic and real-world datasets.

Index Terms—Online classification, Local domain adaptation,
Optimal resource usage, Edge Computing.

1. Introduction

The most challenging emerging applications, such as ve-
hicular autonomy, mobile healthcare, and augmented reality,
necessitate the real-time analysis of information-rich signals
[1]. The analysis algorithms typically take the form of deep
neural networks (DNNs) trained on general datasets. As a
result, state-of-the-art models often have a large number of
parameters and thus, high demands in terms of computing
power, memory, and energy reservoir [2, 3]. These needs
clash with the severely limited resources of mobile devices
(MDs) [4]. To address these issues, the research community
primarily focused on two approaches: (i) model simplification
[5-7]; and (ii) edge offloading [8—10]. The former approach
reduces the size of the neural models by using techniques
such as pruning, quantization, and knowledge distillation,
and often leads to a non-negligible performance degradation
[11]. The latter approach leads to a considerable increase in
channel resources, while also exposing computing tasks to
delay uncertainty due to channel impairments [12, 13].

In contrast with this approach, we propose an innovative
solution that stems from the assumption that in some

Local classification using
simple classifiers (e.g.,
linear classifiers)

Samples (offloading share) @

MD E
4 Updated (re-trained) classification models |

External classification
using complex classifiers

Figure 1: General architecture of the proposed framework.

application scenarios, MDs may be observing a series of
samples spanning only a local subset of the entire dataset,
that is, a “local” domain. In principle, if the input sample
distribution is known a priori, this may enable the deployment
of simpler classifiers focused on the specific feature region,
whose complexity could be maintained within the capacity
of an MD. However, as the distribution is often not known
beforehand and may shift over time, a focused domain-
specific classifier needs to be continuously adapted, and this
part of the solution goes beyond the capabilities of the MDs.

At the same time, the edge server (ES) has sufficient
resources to execute more refined classifiers and perform
domain-specific retraining. However, the continuous transmis-
sion of data from all the MDs would consume a prohibitively
large amount of resources, while also being unnecessarily
redundant since it would not exploit model simplifications
provided by domain adaptation [14].

This mismatch of resources implies that we are simulta-
neously facing two challenges: (i) offloading data to the ES
is inconvenient as it may clog a constrained communication
channel and misuse a powerful computational resource,
whereas a simpler classifier (albeit tailored to the specific
domain) would suffice for most of the samples [15]; (ii) the
limitations of a local classifier available at an MD prevent it
from reaching high accuracy as well as performing a proper
domain adaptation [16] in the first place.

To solve these two issues at once, we propose a
framework to provide adaptive online retraining capabilities
to the MDs through a collaborative two-tier mobile-edge
architecture. This results in a novel approach to online
domain adaptive classification where the two existing separate

challenges are reworked to use each one of them to solve the
other. Fig. 1 shows the general architecture of the proposed
framework. The key idea is that instead of exploiting the ES
just for data offloading, we take advantage of its superior
computational capabilities to train the low-complexity local
classifiers at the MDs. This allows the MDs to receive a
proper setting for their very simple classifiers based on the
exchange of distribution parameters periodically estimated,
rather than offloading the data in its entirety.

We remark that offloading of raw data cannot be totally
avoided, as it is still required for critical samples whose
accuracy is beyond the capabilities of the local classification.
Still, the exchanges with the ES (i.e., the offloading ratio)
should be kept to a minimum, which avoids congestion on
the limited capacity channel between the ES and the MDs.
Moreover, this solves the problem of the MD seeing only a
specific domain and not the entirety of the data and thereby
requiring a tailored parametrization of the classifier.

Notice that the proposed framework differs from existing
domain adaptation methods, which mostly focus on offline
training of domain-specific classifiers of equal complexity
[17], and instead, provides optimized lightweight online DA
capabilities to resource-constrained devices.

To sum up, this paper presents the following contributions.
First, we introduce the general architecture of the proposed
algorithm. Moreover, we address two different challenges: a
quantification of its effectiveness involving the dimensioning
of the tradeoff between accuracy and amount of allowed
data offloading, and subsequently a dynamic assessment of
the performance under domain drift. We are able to prove
that the proposed scheme is effective and versatile, as it can
achieve very high accuracy with limited use of the system
resources. At the same time, the critical point shifts to the
dynamic adaptation in the presence of a dataset drift. It is
shown that the proposed architecture is robust to rapidly
changing domains, which triggers an interesting tradeoff
between performance and resource consumption.

We perform numerical validation in different scenarios:
a synthetic dataset explained in the following and a real-
world stress detection usecase based on the UNITE dataset
[18]. Both evaluations prove the suitability of the proposed
approach under different conditions; for example, the syn-
thetic dataset is balanced, whereas the real-world dataset is
heavily unbalanced as it is of anomaly detection. However,
our proposal is found to be effective in both cases, thereby
establishing a general validity of the proposed technique
and hinting at its better implementability in the Internet of
Things (IoT) scenarios, which is considered to be a possible
next step for future investigations.

The rest of this paper is organized as follows. In Section 2
we review the preliminaries for our investigation, describing
the proposed architecture, the related work on domain
adaptation and how our original proposal inherently differs
from all of them, and the datasets used. Section 3 sets a first
analytical evaluation of the proposed architecture as an offline
optimization for a general (static) scenario split into local
domains, and the first set of results is shown. In Section 4,
we further extend it as an online dynamic investigation when

the domains drift, and we discuss the resulting performance.
Finally, Section 5 concludes the paper.

2. Background

2.1. Proposed Architecture

The severely limited resources of MDs prevent them
from using neural network models, if not through the ES.
Also, the MDs are not trained to take advantage of model
simplifications allowed by domain adaptation [12].

The situation can be represented by the following
metaphor. MDs are like local fishermen that are short-sighted
and cannot catch fish in front of them, yet all they can do is
ask a nearby battleship (the ES) for assistance. However, not
knowing the specifics of the domain, the battleship is just
able to launch a torpedo, which is surely able to kill the fish
but with an unnecessary waste of resources. It would be much
more convenient to adopt the old approach of “teaching the
MD how to fish” and let them do the work by themselves.

Inspired by this reasoning, in [19] we proposed a novel
way to exploit the two-tier edge computing-enabled IoT
architecture, where the MD uses the ES mainly to primarily
offload domain parameters instead of data. This allows for
significantly decreasing communication exchanges since a
compact domain representation (e.g., statistical parameters of
the distribution of the observed data) can be sent to the ES
instead of the actual data. Accordingly, the ES can generate
synthetic data very similar to the real one using Metropolis-
Hastings Algorithm [20]. At the same time, this solution
takes proper advantage of the local classification domains
(LCDs) [21] and can actually improve accuracy even with
simpler local classifiers used at the MD.

We remark that, although this approach might lead to
better accuracy, data offloading is actually not prohibited
and can be used, albeit to a limited extent. Indeed, some
samples may still be offloaded to the ES for more accurate
classification [14]. Therefore, the classification can be per-
formed either locally at the MD or externally at the ES. In
particular, we assume the ES owns a predefined predictor
that perfectly matches the ground-truth [21]. Also, the ES is
responsible for providing the best classification model for
the MD at every time-frame.

Accordingly, in [19] we found that, while LCDs accu-
rately classify most of the samples, they are still imprecise
to obtain perfect accuracy, and it is convenient to offload
a small share of the data. Clearly, this approach must
be controlled through a proper policy, since allowing for
unlimited offloading would still achieve perfect accuracy
but it contradicts the premise of having the MD which is
carrying most of the classification burden. Thus, in [19] we
investigated a policy, called MaxAcc Offloading, to maximize
the resulting accuracy under a given limitation assigned to
the share of data that can be offloaded to the ES, and with
different approaches to choosing them. We found that an
effective policy is to first sort the data in descending order of
prediction loss and those with the highest loss are offloaded to

100.0 SO —
/’,
”
_ 99.5 N
X /
S 99.0 // —A— No Offloading
S /’ ~<»= Random Offloading
3 98.5 P4 —»- MaxAcc Offloading
< /
98.0 /7
/

0.00 0.01 0.02 0.03 0.04 0.05

Offloading Ratio

Figure 2: An example of the superiority of proposed MaxAcc
Offloading policy in [19] on a synthetic dataset.

the ES, which achieves near-perfect accuracy under extremely
limited data offloading ratios.

To show the superiority of the proposed MaxAcc Of-
floading over the existing policies, we have compared its
performance with two benchmark policies, namely: (i) No
Offloading, where the model is updated every LCD, yet no
sample is offloaded to the ES; and (ii) Random Offloading,
where the samples are randomly chosen to be offloaded to the
ES. Simulations have been performed over a synthetic dataset,
including N = 10° samples each with two features, and the
real dataset UNITE [18]. Notably, the number of samples
labeled 1 and O is balanced for the synthetic dataset. Hence,
we use accuracy to measure the performance of the policies.
However, these labels are not balanced for the real dataset
(that is, the number of samples with label 0 is significantly
higher than the number of samples with label 1). Therefore,
we use recall [22] instead of accuracy for the real dataset that
is given by the number of true positives over the sum of true
positives and false negatives. The results obtained for the
synthetic dataset (Fig. 2) and the real dataset (Fig. 3) w.r.t
different offloading ratio indicate that the MaxAcc Offloading
outperforms No Offloading and Random Offloading in terms
of both accuracy and recall.

It is worth mentioning that [19] is a preliminary for the
current paper. In [19], we formed LCDs and defined novel
policies for offloading purposes. In the current paper, we use a
similar approach but comprehensively investigate the impact
of domain drift and accordingly, perform domain adaptations
for the datasets so that the accuracy of classifications is
high. Thus, the following points are still open for the present
investigation. First of all, instead of arbitrarily setting a given
share for offloading, we investigate the tradeoff between
this value and the resulting accuracy, which offers a more
general perspective. Also, even though the proposed scheme
works extremely well under static conditions, we still need
to investigate what happens in case of domain drift and
whether the proposed methodology still works. For example,
it is important to quantify how often one should re-train

96 ”a)'(——_é'(
94 S
f,
X / —A— No Offloading
= 92 ,," —<>- Random Offloading
3 ?(== MaxAcc Offloading
< 90 /
/ _Em =0
:’ -
881 -
F—t—ir = —

0.0 0.1 0.2 0.3
Offloading Ratio

Figure 3: An example of the superiority of proposed MaxAcc
Offloading policy in [19] on a real dataset.

the local classifiers, which would set the bottleneck on the
MD-ES channel since the offload of actual data is found
to be extremely contained. Finally, we also evaluate the
performance of synthetic theoretical datasets as well as real
data from a concrete case study, as will be explained next.

2.2. Domain Adaptation

The performance of traditional machine learning (ML)
methods is negatively affected by a phenomenon, called
dataset shift (drift). Concept shift and covariate shift are
two major types of dataset shift. Under the concept shift
[23], the input (independent variable) is mismatched with its
predicted label (target variable). Changing environment is
the main driver of such a drift [24]. In covariate shift [25],
the distribution of the inputs varies over time due to different
reasons such as rotation and scaling of an image [26],
environment change and physical condition/emotion [27],
verity of the population in data collection [28], etc. Domain
adaptation [2, 29, 30], a subcategory of transfer learning
[31], and active learning [32] are promising methodologies
to cope with such challenges arising from domain shift.
Both methods aim to learn a well-performing model for data
distribution.

Domain adaptation trains an ML model on the samples
from a source domain different from the target domain [33],
while active learning trains the model on the most informative
samples in the same domain [34]. For instance, the authors
in [26] proposed the importance weighting (IW) method
that aims to give larger weights to the training samples
with the highest similarity to the corresponding samples in
the test set. To this end, the Kullback-Leibler divergence is
employed to estimate the importance weights. In a similar
work [28], the authors proposed transductive training learning
where the optimal model is obtained by minimizing the
average product of error and the density ratio, which is
defined in terms of the ratio between the target set and

Figure 4: General online domain adaptation scenario

the training set. Self-supervised out-of-distribution (SOoD)
detection was introduced in [35] to alleviate both concepts
shift and covariate shift. The method improves the predictive
performance of the system by minimizing images’ predictive
entropy of unlabeled entries. This results in detaching in-
distribution examples from OoDs on the target data domain.
Active learning-based strategies was proposed in [36] to
detect concept drift, in which case the current classifier
is replaced with a new one. The proposed joint domain
adaptation based on adversarial dynamic parameter learning
(ADPL) in [37] employs two discriminators to keep a
balance between the marginal distribution and the conditional
distribution alignment (concept drift). It also considers the
effects of the distance between both distributions (covariate
shift).

Yet, all of these domain adaptation and active learning
methods require to deploy sophisticated analytical models
for the real-time processing of the information-rich input
data. This often results in extremely complex DNNs, whose
execution requires considerable memory and computing
resources, which is a bottleneck for the MDs in IoT systems.

2.3. Online Domain Adaptation

The online domain adaptation proposed in this paper
requires some preliminaries in the offline mode. Under
the assumptions of the proposed online domain adaptation,
different local adaptation domains (LADs) are formed, which
include a group of samples following the same probability
distribution. These predefined LADs are pre-trained by the
ES. Notably, both the formation and the pre-training of the
LADs are fulfilled offline. In the next step, for the online
domain adaptation, a local classification domain (LCD) is
formed to encompass the samples in the dataset. The LCD
preferably starts its movement from one of the well-trained
LAD:s in the dataset and smoothly moves around samples
(shifts toward other LADs) following different movement
patterns with various shift speeds.

Fig. 4 shows an example of the samples, labeled for
classes 0 and 1, diffused in a dataset. Due to the high sporadic

Figure 5: Specific example of local circle domains for
synthetic data

of the samples in the dataset, the LADs are formed where the
density of the samples is high, i.e., where the samples follow
the same distribution, and the model is pre-trained for each
LAD. The green dotted circles in Fig. 4 illustrate the LCD
in the dataset with the movement direction shown by green
arrows. The movement is started from one particular LAD
(centered in (X1, X3) = (1,2) in this particular example,
and follows different movement patterns with various shift
speeds to reach other LADs for more precise classifications.
According to the efficiency of the models of two LADs that
the LCD is moving between, the LAD model that results in
the highest accuracy is chosen as the classification model
for the LCD. Besides, the best offloading ratio, 3, is set
to offload the samples to the ES so that the accuracy of
classification improves, while minimizing resource usage in
the system.

2.3.1. Circular Example. Fig. 5 shows a specific example
of the synthetic circular-based dataset, consisting of N =10*
samples of synthetic data, each with n=2 features following
a Gaussian distribution with zero mean and unit standard
deviation, using the make_gaussian_gquantiles func-
tion predefined in Python [38]. As seen in Fig. 5, the general
dataset, including balanced samples with labels 0 (blue
dots) and 1 (orange dots), is divided into n. number of
LADs each including balanced data as well. For each LCD,
the models are pre-trained. Notably, the number of LADs
plays an important role in improving classification accuracy.
Similar to Fig. 4, the green dotted circle in Fig. 5 shows the
moving LCD that starts from one LAD and follows an angular
movement with either constant or random angle by keeping
the same distance from the center (i.e., the average) of all data.
Depending on the distribution of the samples, the moving
LCD decides to use one of the adjacent LADs’ models. Apart
from the optimal number of LADs, the offloading ratio (53)
is another parameter that must be chosen optimally in a way
that the accuracy is maximized, while minimal resources are
used for the offloading purposes. In the following section,
we will discuss the corresponding optimization problem.

Send samples
according to

oApproximated l

Generate synthetic data
using Metropolis-Hastings

For;n an |LCD1 data distributio algorithm

erform oca

(F:Jlassification &, Determine 8 and n,; form

=T 1] LADs; train models for

Perform MaxAcc Q MD e LADs

Offloading policy ES Decide either to use the
Send the model current model or to
back to the MD update it

Figure 6: Specific architecture of the proposed framework
including one MD-ES pair.

3. Online Adaptive Classification Framework

We consider a two-tier edge computing-enabled IoT
system containing an edge layer that consists of an ES,
and an IoT layer comprising M MDs. A reliable wireless
medium interconnects the ES with the MDs, whereby the
ES submits the training data for the local classification at
the MDs, and also, the MDs offload samples to the ES. Due
to the limited capacity of the communication channel, it
must be used thriftily. Thus, the domain training data and
the offloaded samples should be kept to a minimum. Fig. 6
shows the specific architecture of the proposed framework for
one MD-ES pair. Without loss of generality, the architecture
can be expanded to M MD-ES pairs.

It is assumed that an MD acquires [NV samples represented
by {X1,X2,...,Xn}, each of them being a vector of n real
values, i.e., x; € X < R” for all j. The objective of this
architecture is to perform a binary classification, by which
each x; is assigned to either a positive or a negative class.
We let § : X — {0, 1} be the function at the ES that returns
the ground-truth label y = §(x), according to which the set
of all possible samples X" can be partitioned into two disjoint
subsets X; and X = X\X) corresponding to the positive
and negative classes, respectively, where §(x) = k if and
only if x € Xy, k € {0,1}.

A simple classifier 06, parameterized by ©, is deployed
at the MD to approximate J, where § = dg is the predicted
label by the MD. As the complexity of the classifier decreases,
the approximation of the overall dataset deteriorates in terms
of accuracy. Thus, the execution of the local classification dg
at the MD can achieve a poorer performance compared to 6.
On the other hand, the external classification, i.e., offloading
the data to the ES, boosts accuracy, yet uses infrastructure-
level resources such as bandwidth and server time. Hence, a
trade-off between local and external classifications needs to
be addressed, so that accuracy is maximized, while reducing
resource usage.

The proposed online adaptive classification framework
aims to maximize accuracy by jointly employing local and
external classifications, both with limited usage. In light of
that, we first need to explore the values chosen for the system
parameters, i.e.: (i) the fraction 3 of data offloaded to the ES;
and (ii) the number n. of LADs in the local online domain-
constrained classification. Thereafter, online optimization is
performed to adaptively classify the samples in real-time

Maximum Objective Function

0.9986 | | | | L.
02 0.4 0.6 08 1.0
ay X10_4

Figure 7: Maximum value of the objective function (2) for
offline optimization.

using the predefined LADs derived from offline optimization
in a way that the classification accuracy is boosted while
minimizing resource usage. The rest of this section develops
offline optimization to achieve the optimal values of 3 and
n., followed by online optimization for the real-time domain
adaptation applied to both synthetic and real datasets.

3.1. Static Optimization

The objective of this section is to optimize the overall
accuracy of the synthetic dataset shown in Fig. 5 with
respect to n. and /3 so that the accuracy is maximized while
minimizing the resource usage in the forms of £ and n..
Defining T as the accuracy of predictions, i.e., Pr[j == y],
that is a function of both 8 and n., the corresponding
objective function (i.e., the reward) is given as

IélaX T €))]
st. B=0 (ChH
ne >0 (C2)

Since T is a function of both $ and n., we use the method
of Lagrange multipliers to solve (1). Therefore, we have

r=T—apf — aine, ()

where ag and «; are shadow prices (Lagrange multipliers)
of the optimization [39]. The idea is that we would like to
optimize the accuracy Y but without using extremely high
values for 5 and n.. So our specific choice is motivated
by the fact that, ideally, it would be extremely easy to get
high accuracy by simply letting /3 or n. to grow indefinitely,
and instead, we want to prioritize the choices that reach
near-optimal accuracy with reasonably low values of 5 and
n. (as we will see, this is indeed possible).

To optimize the reward of (2), we implemented a binary
classification for N = 10% samples, normally distributed.

0.01757

0.0150

0.01254

0.0100

Best B

0.0075

0.0050+

0.0025{ & 0000009

0.2 0.4 0.6 0.8 1.0
04} x10~%

Figure 8: The best offloading ratio, 3, for offline optimization.

11| & -0 G @@

10+

Best n.
o]

0.2 0.4 0.6 0.8 1
a1 x10~4

Figure 9: The best number of adaptation domains, n., for
offline optimization.

We simulated 3 € [0.25,5] x 1072 stepped by 0.0025, n. €
{k,k =3,4,..
k=1,2,..
Fig. 7 illustrates that all values for oy provide high accuracy
for the classification. However, increasing «g subsequently
increases the impact of resource usage in the system, and
thus, the reward defined in (2) decreases. Therefore, 0.1 is a
suitable value for cig. On the other hand, Fig. 7 shows that
a lower o1 improves the overall reward. Hence, o is set to
1075,

Relying on the coefficients obtained above, Figs. 8 and
9 show that 8 = 0.02 and n. = 10 are good parametric
choices that can achieve the highest value for (2).

4. Dynamic Evaluation of Domain Drift

We now want to track the impact of domain adaptation
in the system in real-time and decide how many samples
need to be offloaded to converge the maximum accuracy in

.12}, ap € {0.1,0.15,0.2}, a1 € {kx 1075 :
., 10}. Figs. 7 — 9 show the corresponding results.

0997 & bt F—de——p—h

0.9961

A

—&— Every Epoch
Every Other Epoch
—— Every 3 Epochs
—A— Every 6 Epochs
—<~ Every 11 Epochs

0.995

0.994

Max Objective Function
D

0.9931

00 02 04 06 08 1.0
w1 x10~3

Figure 10: The effect of domain adaptation’s delay on the
maximum value of the objective function (3).

§0.040 M
)

—

o

a

20.0351 W—e— Every Epoch

S Every Other Epoch

g —— Every 3 Epochs

&= —— Every 6 Epochs

o 0.030+

P —— Every 11 E.EOCh_S A/A——ﬂ
o Ae—pe—p a5

o

[i

z 0.025 B“—E-——B; 1

00 02 04 06 08 1.0
w1 x1073

Figure 11: The effect of domain adaptation’s delay on the
best offloading ratio, 5.

the system. The proposed method aims to minimize resource
usage in the system while maximizing classification accuracy.
Notably, in the dynamic approach, we set n. = 10 and
change only 3, since the latter can be dynamically adapted,
but n. cannot. Thus, following the same approach as (1) in
the previous section, the reward function is defined as

r="T-af 3

In the following, both synthetic and real-world datasets
are studied via simulation to display the effectiveness of the
proposed framework in improving system performance in
terms of both accuracy and resource usage.

4.1. Results for Synthetic Dataset

Considering the synthetic dataset provided in Section
2.3.1, we initialize n. = 10, ag = 0.1, 8 = 0.02, and train
the model for all 10 LADs. Then, a moving LCD is formed

1ﬂ’(}__k__*}_f—4—+3~____ﬂ9,,,arA@
0.8 [
E 0.6 :
S
& S e
I H...
A, ‘ .
0.41 \-_ —©— Every Epoch
\\v Every Other Epoch
\\ ~[}- Every 3 Epochs
'\Aﬁ,d-- —/v Every 5 Epochs
0.2 0.4 0.6 0.8 1.0

Shift Speed

Figure 12: Recall without offloading the samples to the ES

—=~ Every Epoch ",,»A
0.25 1 Every Other Epoch = -
’ ~[} Every 3 Epochs ,/‘A
—+ Every 5 Epochs /_//
0.20 — D
2 0.15- '
i) -
om /‘A’
0.10- P
0.05 1
0.2 0.4 0.6 0.8 1.0
Shift Speed

Figure 13: The best offloading ratio, 3, for the UNITE dataset

starting from one predefined LAD and moves around samples
with a rotation by an angle w = wy + w;, where wy is a
constant angle set to 7r/300 in the following simulations, and
wy is a random angle following the Gaussian distribution
with a mean of zero and a variance of o2, N'(0,0?), where
o € {107%n,k = 0,1,2,...,20}. To show the impact
of real-time domain adaptation, we compare a persistent
update where the model is updated in every epoch with other
scenarios, where the model is updated less frequently, i.e.,
every 2, 3, 6, 11 epochs.

Fig. 10 shows the corresponding values for (3) with a
confidence interval of 95%, shown in highlights over the
diagrams. The results imply that by widening the range of
the randomness for wy, the LCD is more likely to move back
and forth and with a faster shift speed. This increases the
inefficiency of the current model for the classification of the
samples. Thus, the model might need to be updated. However,
the delay in updating the model decreases the probability of
choosing the most adaptive model. As such, more samples

Maximum Objective Function

—— Every Epoch '\‘\
Every Other Epoch ~.
0.9751 -3- Every 3 Epochs A\"‘.,\
—/+ Every 5 Epochs Tsa
0.2 0.4 0.6 0.8 1.0
Shift Speed

Figure 14: Maximum value of the objective function (4) for
UNITE dataset

must be offloaded to the ES for classification. Thus, as seen in
Fig. 11, resource usage increases, which subsequently results
in the degradation of the reward value in (3). Moreover, the
results indicate that any delay in domain adaptation (updating
the model) leads to decreasing the classification accuracy, so
that the persistent policy of updating at every epoch yields
the most accurate classification.

4.2. Results for Real-World Dataset

We apply the proposed method to the UNITE dataset,
including stressful and non-stressful samples, each with 13
features that are BPM (beats per minute, heart rate), IBI (inter-
beat interval, average time interval between two successive
heartbeats, called NN intervals), SDNN (standard deviation
of NN intervals), SDSD (standard deviation of successive
differences between adjacent NNs), RMSD (root mean square
of successive differences between the adjacent NNs), pNN20
(the proportion of successive NNs greater than 20ms), pNN50
(the proportion of successive NNs greater than 50ms), MAD
(median absolute deviation of NN intervals), SD1 and SD2
(standard deviations of the corresponding Poincaré plot),
S (area of ellipse described by SD1 and SD2), and BR
(Breathing Rate) [18].

Unlike the synthetic dataset where the data is mostly
balanced in terms of the number of samples assigned to
the considered labels in the dataset, the data in the real-
world dataset is usually unbalanced. Therefore, rather than
accuracy in (2), we use recall [22], denoted as =, and
defined as TP/(TP + FN), where TP and FN stand for
true positive and false negative, respectively. Therefore, the
reward function for the UNITE dataset is expressed as

r=2—af. (4)

We fulfill the simulations for the samples whose collection
time starts at 12:00 am. The LCD’s radius includes samples
within five minutes and it is shifted with speeds of 0.2, 0.4,

0.6, 0.8, and 1.0, corresponding to the lowest to the fastest
speeds. Also, we consider two different scenarios for the
speed of updating the model: (i) persistent updating of the
model, where the model is updated every epoch; and (ii)
sporadic updating of the model, where the model is updated
with different frequencies, i.e., every other epoch, every 3
epochs, and every 5 epochs.

Fig. 12 shows the recall value = for different scenarios
without offloading samples to the ES. As seen in the figure,
persistent updating of the model leads to high recall, which
decreases if less frequent updating is used. As illustrated by
Fig. 13, this also leads to an increase in resource usage for the
system. As a result, Fig. 14 shows that the reward provided
in (4) decreases by reducing the speed of adaptation.

Furthermore, the results obtained in Fig. 12 indicate that

by increasing the shift speed, the recall decreases as well.

Indeed, when the shift speed is low, the distribution of data
does not change significantly, and thus, the current model
provides good accuracy to the samples. On the other hand,
increasing the shift speed leads to a momentous change in
the distribution of the samples. As a result, the current model
is not able to classify the samples accurately and a higher
share is required to be offloaded to the ES. Hence, as seen
in Fig. 13, the offloading ratio increases. Subsequently, the
reward value defined in (4) decreases for faster shifts.

5. Conclusions

In this paper, we proposed an online domain adaptive
classification framework to perform a classification task
leveraging the collaboration between an MD and the ES
in a setting in which the distribution of the observed samples
drifts over time. The proposed framework determines model
updates and fine-grained offloading decisions.

Simulation results implemented on both synthetic and
real datasets reveal that the proposed framework can improve
the accuracy of simple classifiers deployed at MDs while
reducing resource usage. According to the results obtained
from experiments, it is important to frequently update
the model, possibly at every epoch, to get a satisfactory
performance. However, this comes at a system cost, especially
in terms of latency to receive the updated model.

In future work, a novel deep reinforcement learning
(DRL) model can be developed to infer the speed of data
shift and evaluate the best update frequency of the model
[40], so as to avoid imposing further delays derived from
the updating procedure.

Acknowledgment

This work was supported by the Intel Corporation and
the NSF grant (MLWiNS-2003237 and CCF-2140154) and
Cisco.

References

[1] D. Stichling and B. Kleinjohann, “CV-SDF - a model
for real-time computer vision applications,” in Proc.
IEEE WACYV, 2002, pp. 325-329.

[2] S.Zhou, L. Wang, S. Zhang, Z. Wang, and W. Zhu, “Ac-
tive gradual domain adaptation: Dataset and approach,”
IEEE Trans. Multimedia, vol. 24, pp. 1210-1220, 2022.

[3] T. Haubner, A. Brendel, and W. Kellermann, “End-
to-end deep learning-based adaptation control for
frequency-domain adaptive system identification,” in
Proc. ICASSP, 2022, pp. 766-770.

[4] I. Burago and M. Levorato, “Randomized edge-
assisted on-sensor information selection for bandwidth-
constrained systems,” in Proc. Asilomar Conf. Sign.
Syst. Comput., 2018, pp. 1462—-1469.

[51 Y. Yan and Q. Pei, “A robust deep-neural-network-based
compressed model for mobile device assisted by edge
server,” IEEE Access, vol. 7, pp. 179 104-117, 2019.

[6] R. El Shawi, Y. Sherif, M. Al-Mallah, and S. Sakr,
“Interpretability in healthcare a comparative study of
local machine learning interpretability techniques,” in
Proc. IEEE CBMS, 2019, pp. 275-280.

[71 A. Messalas, C. Aridas, and Y. Kanellopoulos, “Eval-
uating MASHAP as a faster alternative to LIME for
model-agnostic machine learning interpretability,” in
Proc. IEEE BigData, 2020, pp. 5777-5779.

[8] J. A. Neto, J. C. B. Fonseca, and K. Gama, “Towards
online learning and concept drift for offloading complex
event processing in the edge,” in Proc. IEEE/ACM SEC,
2020, pp. 167-169.

[9]1 H. Flores, “Edge intelligence enabled by multi-device
systems,” in Proc. IEEE PerCom Wkshps, 2020.

[10] A. V. Guglielmi, M. Levorato, and L. Badia, “A
Bayesian game theoretic approach to task offloading in
edge and cloud computing,” in Proc. IEEE ICC Wkshps,
2018.

[11] Z. Ding, J. Zhao, and J. Sun, “Model channel pruning
method based on squeeze-and-excitation mechanism
and upper quartile truncation,” in Proc. ISCSIC, 2021,
pp- 114-118.

[12] I. Burago and M. Levorato, “Cloud-assisted on-sensor
observation classification in latency-impeded IoT sys-
tems,” in Proc. IEEE ISIT, 2019, pp. 1462-1466.

[13] E Shirin Abkenar, P. Ramezani, S. Iranmanesh, S. Mu-
rali, D. Chulerttiyawong, X. Wan, A. Jamalipour, and
R. Raad, “A survey on mobility of edge computing
networks in iot: State-of-the-art, architectures, and
challenges,” IEEE Commun. Surveys Tuts., vol. 24,
no. 4, pp. 2329-2365, 2022.

[14] J. Qiu, R. Wang, A. Chakrabarti, R. Guérin, and C. Lu,
“Adaptive edge offloading for image classification under
rate limit,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 41, no. 11, pp. 3886-3897, 2022.

[15] E. A. Tuli, J. M. Lee, and D.-S. Kim, “Feder-
ated learning-based computation offloading for low-
bandwidth edge internet of things,” in Proc. APCC,
2022, pp. 377-379.

[16] Z. Deng, K. Zhou, D. Li, J. He, Y.-Z. Song, and
T. Xiang, “Dynamic instance domain adaptation,” IEEE
Trans. Image Process., vol. 31, pp. 45854597, 2022.

[17] J. Xu, D. Vazquez, K. Mikolajczyk, and A. M. Lépez,
“Hierarchical online domain adaptation of deformable

part-based models,” in Proc. IEEE ICRA, 2016, pp.
5536-5541.

[18] A. Tazarv, S. Labbaf, S. M. Reich, N. Dutt, A. M. Rah-
mani, and M. Levorato, “Personalized stress monitoring
using wearable sensors in everyday settings,” in Proc.
IEEE EMBC, 2021, pp. 7332-7335.

[19] F. Shirin Abkenar, .. Badia, and M. Levorato, “Se-
lective data offloading in edge computing for two-tier
classification with local domain partitions,” in Proc.
IEEE PerCom Wkshps, 2023.

[20] M. Kenyeres and J. Kenyeres, “Performance analysis of
generalized metropolis-hastings algorithm over mobile
wireless sensor networks,” in Proc. Cybernetics &
Informatics (K&I), 2020.

[21] I. Burago, M. Levorato, and S. Singh, “Semantic
compression for edge-assisted systems,” in Proc. ITA,
2017.

[22] Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser,
“Svms modeling for highly imbalanced classification,”
IEEFE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 39, no. 1, pp. 281-288, 2009.

[23] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang,
“Learning under concept drift: A review,” IEEE Trans.
Knowl. Data Eng., vol. 31, no. 12, pp. 2346-2363,
2019.

[24] N. L. A. Ghani, I. A. Aziz, and M. Mehat, “Concept
drift detection on unlabeled data streams: A systematic
literature review,” in Proc. IEEE ICBDA, 2020, pp.
61-65.

[25] G. Dharani, N. G. Nair, P. Satpathy, and J. Christopher,
“Covariate shift: A review and analysis on classifiers,”
in Proc. GCAT, 2019.

[26] A. Hassan and A. Shaukat, “Covariate shift approach for
invariant texture classification,” in Proc. IEEE MLSP,
2013.

[27] M. Yamada, M. Sugiyama, and T. Matsui, “Covariate
shift adaptation for semi-supervised speaker identifica-
tion,” in Proc. IEEE ICASSP, 2009, pp. 1661-1664.

[28] J. Pavez, C. Valle, and H. Allende, “A covariate shift
method using approximated density ratios,” in Proc.
ICPRS, 2016.

[29] L. Bruzzone and M. Marconcini, “Domain adaptation
problems: A dasvm classification technique and a
circular validation strategy,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 5, pp. 770-787, 2010.

[30] Z. Zhou, F. Wang, J. Yu, J. Ren, Z. Wang, and W. Gong,
“Target-oriented semi-supervised domain adaptation for
WiFi-based HAR,” in Proc. IEEE Infocom, 2022, pp.
420-429.

[31] H. Daumé and D. Marcu, “Domain adaptation for
statistical classifiers,” J. Artif. Intell. Res., vol. 26, no. 1,
p- 101-126, 2006.

[32] M. M. Crawford, D. Tuia, and H. L. Yang, “Active
learning: Any value for classification of remotely sensed
data?” Proc. IEEE, vol. 101, no. 3, pp. 593-608, 2013.

[33] N. Jiang, Y. Deng, O. Simeone, and A. Nallanathan,
“Online supervised learning for traffic load prediction
in framed-ALOHA networks,” IEEE Commun. Lett.,
vol. 23, no. 10, pp. 1778-1782, 2019.

[34] H. Zhang, W. Liu, and Q. Liu, “Reinforcement online
active learning ensemble for drifting imbalanced data
streams,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8§,
pp- 3971-3983, Aug. 2020.

[35] B. Bozorgtabar, G. Vray, D. Mahapatra, and J.-P. Thiran,
“Sood: Self-supervised out-of-distribution detection un-
der domain shift for multi-class colorectal cancer tissue
types,” in Proc. IEEE/CVF ICCVW, 2021, pp. 3317—
3326.

[36] B. Krawczyk, B. Pfahringer, and M. WozZniak, “Com-
bining active learning with concept drift detection for
data stream mining,” in Proc. IEEE BigData, 2018, pp.
2239-2244.

[37] Y. Yuan, Y. Li, Z. Zhu, R. Li, and X. Gu, “Joint domain
adaptation based on adversarial dynamic parameter
learning,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 5, no. 4, pp. 714-723, 2021.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” J.
Mach. Learning Res., vol. 12, pp. 2825-2830, 2011.

[39] L. Badia, S. Merlin, A. Zanella, and M. Zorzi, “Pricing
VoWLAN services through a micro-economic frame-
work,” IEEE Wireless Commun., vol. 13, no. 1, pp.
6-13, 2006.

[40] A. Chowdhury, S. A. Raut, and H. S. Narman, “DA-
DRLS: Drift adaptive deep reinforcement learning based
scheduling for IoT resource management,” J. Netw.
Comp. Appl., vol. 138, pp. 51-65, 2019.

