
A Comparative Analysis of Sensor Fusion
Algorithms for Miniature IMU Measurements

Kristel Çoçoli and Leonardo Badia
Dept. of Information Engineering (DEI), University of Padova, Italy

email: {kristel.cocoli@studenti. , leonardo.badia@} unipd.it

Abstract—Inertial measurement units, typically consisting of
tri-axis gyroscopes and accelerometers, are very important for a
plethora of applications in the upcoming Tactile Internet. Yet,
especially for miniature devices relying on cheap electronics,
their measurements are often inaccurate and subject to gyroscope
drift, which implies the necessity for sensor fusion algorithms.
These are critical for estimating the orientation of an object
by combining multiple measurements, and also require fast
computation to be useful in practice. This paper presents a
comparative analysis of a standard trigonometry computation,
shown to be ineffective, with popular candidate algorithms,
namely, Kalman, Mahony, and Madgwick, with a specific focus
on their suitability for small embedded systems. The algorithms
were evaluated on experimental data based on their accuracy
and computational efficiency.

Index Terms—Sensor fusion; Kalman filter; Madgwick filter;
Mahony filter; Embedded systems; Tactile Internet.

I. INTRODUCTION

Software representations designed to accurately reflect phys-
ical reality, better known as digital twins, are rapidly progress-
ing in many fields. The so-called Tactile Internet, pairing ultra
low latency with high reliability, can revolutionize many ap-
plications like industrial robotics, biomedical instrumentation,
virtual reality, autonomous cars and aerial vehicles [1]–[6].

In these contexts, it may be required to estimate the ori-
entation and position of objects in 3D space. To this end,
inertial measurement units (IMUs) are widely used, typically
consisting of accelerometers and gyroscopes, which provide
measurements of linear and angular motion, respectively. In
consumer electronics, these measurements are subject to errors
and noise, which can significantly affect the accuracy and reli-
ability of the orientation estimation. Low-cost sensors have in-
herent drawbacks, including temperature gradients, vibrations,
nonlinearity, shocks [7]. To obtain reliable results, miniature
IMU sensor measurements can be combined together [8], [9],
using sensor fusion algorithms based on techniques such as
Kalman, Madgwick, and Mahony filters.

The Kalman filter is a widely used approach for estimating
the state of a dynamic system based on noisy measurements.
It uses a probabilistic model to estimate the true state of the
system, based on previous measurements and knowledge of
the system dynamics. The Madgwick and Mahony filters are
other popular open-source algorithms for orientation estima-
tion using IMUs. They use quaternion-based representations
of orientation and utilize different techniques for fusing ac-

celerometer and gyroscope measurements, including gradient
descent and complementary filtering.

While these algorithms have been studied in the literature,
there is still ongoing research to improve their performance
and assess their suitability for different applications. Sensor
fusion can become a challenging problem due to limited com-
putational power of miniature devices, which rely on cheap
electronics, and make it difficult to perform complex sensor
fusion algorithms in real time. Also, inexpensive sensors used
in miniature devices may have lower accuracy and higher
noise. Thus, accurate measurements are often unavailable, and
error propagation is possible [10]–[12].

In this paper, we present a comprehensive comparison of
the Kalman, Madgwick, and Mahony filters for orientation
estimation using miniature IMUs. We have used the no-filter
method as baseline, to emphasize the importance of sensor
fusion algorithms. We evaluate the performance of these filters
using a dataset of 3-axis accelerometer and gyroscope mea-
surements, collected in both static and dynamic conditions. We
analyze the accuracy, stability, and computational complexity
of each filter and compare their performance in different
scenarios. We seek to compare possible solutions to this task,
with specific focus on low quality sensors, implemented in
embedded systems, and requiring little control data, so as to
allow for an efficient connectivity and a fresh information ex-
change. Specifically, we consider an MPU6050 sensor, which
combines a MEMS gyroscope and accelerometer, where a 6-
DOF IMU for the pitch and roll angles is implemented.

Existing papers [13], [14] perform partial comparisons of
these filtering techniques. We analyze and compare all of
them together, with the same data. Also, we consider an
easily, affordable, and reproducible setup, i.e., a combination
of MPU6050 sensor and Arduino Nano. In addition, we
discuss computational complexity and suitability for real-time
operation of the proposed techniques, which is key for a
realistic implementation in the Tactile Internet [15].

The rest of the paper is organized as follows. In Section II,
we introduce the mathematical preliminaries. In Section III,
we describe the setup and the different kinds of filters tested.
Section IV details the comparative experiments performed and
the numerical results. Finally, we conclude in Section V.

II. MATHEMATICAL MODEL

Roll, pitch, and yaw are the three Euler angles that describe
the orientation of an object in three-dimensional space. In

fusion algorithms, measurements of these angles from multiple
sensors are combined to estimate the orientation in real-time.

Roll φ is the angle of rotation around the longitudinal (or
x) axis, which is also perpendicular to the horizontal plane. A
positive roll angle indicates that the object is tilted to the right,
with the right side of the object pointing downwards and the
left side pointing upwards. A negative roll angle indicates the
opposite, with the left side of the object pointing downwards
and the right side pointing upwards.

Pitch θ is the angle of rotation around the lateral (or y)
axis, perpendicular to the horizontal plane. A positive pitch
angle indicates that the object is tilted upwards, with the
front pointing upwards and the back pointing downwards. A
negative pitch angle indicates the opposite.

Yaw ψ refers to the rotational motion of an object around its
vertical axis. Specifically, yaw is the angular displacement of
an object with respect to a fixed reference frame or coordinate
system, measured in degrees or radians.

In this paper, we measure roll and pitch angles only, because
of the limitations presented by the lack of a magnetometer
or GPS. Accelerometers can measure the tilt of an object
relative to gravity, which can be used to estimate the pitch and
roll angles. However, accelerometers cannot directly measure
yaw [16]. Instead, yaw can be estimated by combining the
accelerometer readings with readings from other sensors, such
as magnetometers or GPS, using fusion algorithms.

The most straightforward way to compute the Euler angles
from the acceleration and angular rate readout is the traditional
trigonometric computation, detailed next.

A. Rotational matrix and accelerometer

From the accelerometer sensor, we read the linear accel-
eration of the object. If we use the North-East-Down (NED)
convention for the Euler angles, we expect that a perfectly
flat sensor reads an acceleration vector as (ax, ay, az) =
(0, 0,−g), where the negative sign accounts for the direction
of the positive z-axis in this convention. Thus, we expect to
measure the Earth acceleration for that component, while the
others are 0. Every possible rotation to this reference frame can
be described with a linear transformation of the basis vectors.
These linear transformations will produce distinct rotation
matrices, one per each Euler angle. The resulting expression
for an arbitrary rotation of the sensor is

axay
az

 = R

 0
0
−g

 (1)

Denoting cos(α) = cα and sin(α) = sα, the rotation matrix
R in terms of the Euler angles is

R =

 cψcθ sψcθ −sθ
cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ
cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

 (2)

Due to the inability to measure the yaw [16], we set ψ = 0
and it follows that sψ = 0 and cψ = 1, which implies

ax = g sin(θ)

ay = −g cos(θ) sin(φ)
az = −g cos(θ) cos(φ)

(3)

Assuming that (ax, ay, az) is read from the accelerometer,
pitch and roll angles are found through algebraic manipula-
tions as

θ = arcsin

(
ax
g

)
φ = arctan

(
ay
az

)
.

(4)

B. Gyroscope

The gyroscope measures the angular velocity for the rotation
of the rigid body along its three axes. This can be used to
assess new angular values, if its initial state is known [17]. We
can denote this measurement as ~ω = (p, q, r). These values
are measured in the sensor’s frame, after the rotation. We want
to translate this information into the initial frame of reference,
which would give us the Euler angles rate of change. By
omitting the rate of change of the yaw angle, we obtain the
angular speeds φ̇ and θ̇ for roll and pitch, respectively.

(
φ̇

θ̇

)
=

(
1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

)pq
r

 (5)

By calculating the rate of change of the Euler angles, and
through proper integration over the time step, which in our
case is the time difference between two samples acquired by
the sensor, and finally summing the change with the previous
value of the angle, we get the values for pitch and roll angles.

C. Quaternions

A quaternion q̂ can be used to rotate a three dimensional
vector v0 into v1 using the relationship

v1 = q̂ × v0 × q̂∗ (6)

The orientation described by q̂ can be represented as the
rotation matrix Q.

Q =

 2q21−1+2q22 2(q2q3−q1q4) 2(q2q4−q1q3)
2(q2q3−q1q4) 2q21−1+2q23 2(q3q4+q1q2)
2(q2q4+q1q3) 2(q3q4−q2q2) 2q21−1+2q24

 (7)

The Euler angle representation of q̂ [18] is defined by the
following equations, where ψ, θ, φ indicate the orientation of
the frame. We use atan2 [19] because the calculated angle
can be between −π and π.

ψ = atan2(2q2q3 − 2q1q4, 2q
2
1 + 2q22 − 1) (8)

θ = − sin−1(2q2q4 + 2q1q3)

φ = atan2(2q3q4 − 2q1q2, 2q
2
1 + 2q24 − 1)

D. Problems

The above mentioned methods to compute the Euler angles
work only in an ideal setup, but in a real system and especially
with low quality electronics, we suffer from high frequency
noise and time varying biases in the measurements. The bias
is even more destructive in the gyroscope readout, since to
retrieve the angle values we must integrate for each sampling
time. Thus, the bias error accumulates and may grow in value
over time [12], causing the so-called gyroscope drift. Ideally,
we want to have a low pass filtering action to remove the
high frequency components from the read signal and also a
high pass filtering action with cutoff at very low frequencies
to remove any low frequency bias without losing useful
information from the signal itself. This prompts us to use the
filtering schemes described in the next section.

III. EXPERIMENTS AND METHODS

We used a MPU6050 microprocessor unit [20] for data
acquisition, which combines a MEMS gyroscope and ac-
celerometer. The MPU6050 is a popular sensor for orientation
estimation and motion tracking applications due to its low
cost, small size, and acceptable accuracy. The filtering is
implemented using an Arduino Nano [21] board with an
ATmega328P microcontroller, which is a widely used platform
for prototyping and developing embedded systems.

To ensure a fair comparison between the filters, the same
input data and integration periods are provided to each filter.
The integration period includes the duration of the dead time
between sensor readouts, during which a timer starts at the
initial data readout and stops at the next readout operation.
This time interval is utilized for processing, and is taken
into account in the filter calculations. Despite the sequential
execution of the filters, the same sensor readout data is held
and sampled until all the filters have processed the input to
ensure an equitable comparison of their outputs.

Two thousand data entries have been gathered for each
filter, regarding the pitch, roll, and time. We considered
two scenarios: (i) when the sensor is stationary and (ii) in
movement, displacing the sensor. By comparing the outputs
of the filters in the same input data and integration period,
the performance of each filter can be evaluated and compared.
We provide insights into the behavior and performance of the
Mahony filter, Kalman filter, and Madgwick filter when used
for orientation estimation with the MPU6050 sensor, so as
to identify guidelines to choose the most appropriate filter,
depending on the specific application.

We compared four different sensor fusion techniques to
determine the most effective approach for our specific ap-
plication. The first technique we experimented with is the
traditional trigonometry method discussed in the previous
section, which involves combining the sensor data without
any additional filtering. This method provides a baseline for
comparison with the other methods. We are interested in
understanding the impact of using a filter on sensor fusion
accuracy and comparing the effectiveness of the different
filters we have implemented. By incorporating a filter, we aim

to reduce the noise and errors in the sensor data, resulting in
more accurate and reliable information.

A. Kalman filter

The Kalman filter can be used to estimate the status of
linear systems [22]. This filter algorithm consists of two stages:
prediction and update, sometimes [23] also referred to as
“propagation” and “correction.” A synthetic version of Kalman
Filter Algorithm is reported in Table I.

TABLE I
STEPS OF THE KALMAN FILTER

Description Equation
Kalman Gain Kk = P′kH

T (HP′kH
T + R)−1

Update Estimate x̂k = x̂′k +Kk(zk −Hx̂′k)
Update Covariance Pk = (I−KkH)P′k

Project into k+1
x̂′k+1 = Φx̂k
Pk+1 = ΦPkΦ

T + Q

The first equation represents the expression for the Kalman
gain in a Kalman filter, where Kk is the Kalman gain at
time step k, P′k is the predicted error covariance matrix, H
is the measurement matrix, and R is the measurement noise
covariance matrix [24]. The second equation represents the
update step in a Kalman filter, where xk is the updated state
estimate at time step k, x′k is the predicted state estimate, zk is
the measurement at time step k. The third equation represents
the update step for the error covariance matrix in a Kalman
filter, where Pk is the updated error covariance matrix at time
step k. The matrix subtraction (I−KkH) is often referred to
as the Kalman gain update.

For the projection, the first equation, x̂′k+1 = Φx̂k, predicts
the state of the system at the next time step based on the
current state. Here, x̂k is the estimated state of the system
at time step k, and Φ is the state transition matrix, which
describes how the state of the system evolves over time.
Multiplying x̂k by Φ gives the predicted state of the system
at time step k + 1, denoted by x̂′k+1.

The second equation, Pk+1 = ΦPkΦ
T + Q, predicts the

error covariance matrix at the next step. Matrix ΦPkΦ
T

represents the propagation of the uncertainty in the estimated
state to the next step. Matrix Q is the process noise covariance
matrix, which represents the uncertainty in the dynamics of
the system that is not accounted for by the state transition
matrix. The sum of ΦPkΦ

T and Q gives the predicted error
covariance matrix at time step k+1, denoted by Pk+1.

Together, these two equations allow us to predict the state of
the system at the next time step, and estimate the uncertainty
in the state prediction. The prediction step is followed by
the correction step, which updates the state estimate based
on new measurements. The combination of the prediction and
correction steps allows the Kalman filter to estimate the state
of a system with high accuracy, even in the presence of noise
and uncertainty.

B. Mahony filter

The Mahony filter [25] tries to improve the estimates
from low-quality measurements through a quaternion-based
approach, to represent the orientation of the device in 3D
space. It uses a proportional-integral-derivative (PID) control
algorithm to adjust the estimated orientation based on the dif-
ference between the measured and estimated sensor readings.
The algorithm is designed to minimize errors over time by
adjusting the gain parameters of the filter.

This filter is known for its ability to provide accurate and
stable estimates of orientation even in the presence of external
disturbances such as vibration or magnetic interference. It is
widely used in a variety of applications, including robotics,
aerospace, and virtual reality [2], [13]. However, it requires
careful tuning of its gain parameters to achieve the best
performance. A pseudocode of the Mahony filter, as was
implemented in the sensor is reported in Algorithm 1.

Algorithm 1 Mahony Filter Algorithm for IMU (Accelerom-
eter and Gyroscope Only)
1. Set algorithm coefficients Ki,Kp and initialize quaternion
q1 = 1, q2 = q3 = q4 = 0
while: sensor data is available

2. Read accelerometer measurements ax, ay, az and gyro-
scope measurements gx, gy, gz

3. Compute orientation error from accelerometer data, where
ei,t represents the integral error of the measurements at
time t.

et+1 =

ax,tay,t
az,t

×
 2 (q2q4 − q1q3)

2 (q1q2 + q3q4)(
q21 − q22 − q23 + q24

)
 (9)

ei,t+1 = ei,t + et+1∆t (10)

4. Update angular velocity computed from gyroscope with the
Ki and Kp terms using feedback (fusion)

ωt+1 = ωt +Kpet+1 +Kiei,t+1 (11)

5. Compute orientation increment from gyroscope measure-
ments

q̇ω,t+1 =
1

2
q̂t ⊗

[
0, ωt+1

]T
(12)

6. Numerical integration
qt+1 = q̂t +∆tq̇ω,t+1 (13)

endwhile

C. Madgwick filter

The Madgwick filter also uses quaternions [26] and eval-
uates the orientation, represented as a quaternion, by fus-
ing/combining estimates, i.e., integrating gyroscope move-
ments with the direction obtained by the accelerometer.

The gyroscope’s estimates are relied upon for short time
intervals and rapid movements, as they provide accurate de-
pictions. On the other hand, the accelerometer estimates are
utilized to provide accurate directions for compensating long-
term drift of the gyroscope.

The Madgwick filter used in this paper is relatively simple
and can be implemented in most programming languages. It
involves calculating the error between the predicted and mea-
sured quaternion values and then using that error to update the
quaternion estimate. The filter performance can be improved
by fine-tuning the algorithm parameters and adjusting the
sensor fusion weights to suit specific application requirements.
Overall, the Madgwick filter is robust and efficient for attitude
estimation and can provide accurate orientation estimates in
real-time. The pseudocode of the Madgwick filter, as imple-
mented in the experiments, is shown in Algorithm 2.

Algorithm 2 Madgwick Filter Algorithm for IMU (Ac-
celerometer and Gyroscope Only)
1. Set algorithm gain β and initialize quaternion q1 = 1, q2 =
q3 = q4 = 0
while: sensor data is available

2. Read accelerometer measurements ax, ay, az and gyro-
scope measurements gx, gy, gz

3. Normalize the accelerometer measurements
4. Calculate the Jacobian matrix and compute the gradient of

the cost function
∇f = JT f (14)

f =

2 (q2q4 − q1q3)− ax2 (q1q2 + q3q4)− ay
2
(
1
2 − q

2
2 − q23

)
− az

 (15)

J =

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (16)

5. Update the quaternion using the gradient descent algorithm

q∇,t+1 = −β ∇f
||f ||

(17)

6. Compute orientation increment from gyroscope measure-
ments

q̇ω,t+1 =
1

2
q̂t ⊗

[
0, ωt+1

]T
(18)

7. Fuse measurements to obtain the estimated attitude

qt+1 = q̂t +∆t(q̇ω,t+1 + q∇,t+1) (19)

endwhile

IV. EXPERIMENTAL RESULTS

We performed data collection in two scenarios, referred to
as ’stationary’ and ’in movement,’ where the setup is static
and corresponding to being in a moving vehicle, respectively
[27]. In both setups, we compare the no-filter trigonometric
computation (referred to as the “Matrix” method in the plots)
and the three presented filtering methods. We evaluate pitch
and roll angles, and the computational complexity of the pro-
cedure. In our setup, for the Madgwick filter implementation,
we have chosen β = 0.05. A low value of β, such as 0.05,
results in a smoother output by allowing slower convergence.
This is advantageous in our scenario where the measured data

Fig. 1. Pitch angle comparison of the filters for a stationary IMU.

Fig. 2. Roll angle comparison of the filters with stationary IMU.

contains noise or rapid fluctuations, and a stable and less jittery
output is desired. Mahony filter parameters Kp and Ki are 10
and 0, respectively. We noticed during the experiment that in
our scenario, Ki did not significantly affect the quality of the
measurement, therefore, we set it to 0 for simplicity. This also
avoids issues associated with integration, such as overshoot,
instability, or slow convergence, especially in scenarios with
negligible steady-state errors and gyroscope bias [10].

A. Stationary results

Figs. 1 and 2 present the results for the four compared
methods in the static scenario, where the sensor is in a resting
state, showing the pitch and roll angles, respectively. They
show the ability of all techniques to converge to a stable and
consistent estimate of the system state over a period of time
when the inputs to the system are not changing, yet with
different overall performance.

Since the device is static without any tilt, we expect the
pitch and roll values to be near 0. In Fig. 1, Madgwick’s
behavior appears to have wider oscillations, possibly caused
by the acquisition of more noise. This depends on the coef-
ficient β, which tunes the memory from the previous state
of the quaternion, as described in (17). This implies that β is
implicitly related to the low-pass pole of the system, and there
exists a trade-off. If we want a high bandwidth of the filter,
to respond to fast-changing angles, the cost is the presence of
more noise, acquired by the filter itself. This value of β was
chosen because it allowed the Madgwick filter to respond as

Fig. 3. Pitch angle comparison of the filters with moving IMU.

Fig. 4. Roll angle comparison of the filters with moving IMU.

fast as the other filters, but as we can see, we do acquire more
noise compared to Kalman and Mahony filters.

In Fig. 2, we notice oscillations around −0.1 degrees.
Ideally, in a stationary state, the roll value would be 0. This
could be due to several factors. One possible reason is that the
sensor has a small bias or offset in its measurements, which
can cause it to read a non-zero value even at rest. Another
possibility is that the sensor is mounted on a surface that is
not perfectly level. In most cases, a small deviation such as
-0.1 degrees of roll angle when the sensor is not moving is
not a significant concern, as it falls within the expected range
of error for many IMUs [28].

B. Results in movement

It is also important to evaluate the ability of fusion filters to
provide accurate and reliable estimates of the system state as
it moves. We intend to utilize this IMU in self-driving vehicles
[5], [6], onboard of which the orientation of the device can
change. However, unless the car is flipping over, the values of
pitch and roll angles are expected to be less than 90 degrees,
so we moved the device within that extent.

Figs. 3 and 4 show that the recorded pitch and roll angles
in the no-filter scenario (Matrix) have more oscillations. It is
interesting to note that the expected behaviour of the traditional
method would be with the presence of drifts. In these graphs,
we do not have drifts. This is possibly because we have
graphed data from only 50 integration steps over 2000 acquired
integration steps. By applying no-filtering action, it is expected

Fig. 5. Comparing the processing time of the filters

TABLE II
AVERAGE PROCESSING TIME

Method Average processing time
Matrix 2477.4 µs
Kalman 1375.9 µs
Mahony 950.5 µs
Madgwick 1416.8 µs

that in the signal acquisition, the high frequency component
of the noise is present. The filters’ response is similar. We can
see a small difference in Kalman filter’s response. Kalman
filter exhibits a better behaviour, with less oscillations than
Madgwick filter and Mahony filter.

In Fig. 3, the pitch measurement is around the value −15
degrees, which indicates that the sensor is tilted downwards,
whereas in Fig. 4, the roll measurement is around the value
+15 degrees, implying that the sensor is tilted to the right.

C. Complexity

In the moving state, when real-time analysis of the input
data is valuable, we computed the processing speed of the
filters. Fig. 5 shows that the trigonometry method is the
slowest, while the time is significantly reduced with the
filter implementations. Kalman and Madgwick exhibit similar
behavior. Mahony is the fastest, with the lowest computation
time per integration step. Table II reports the average values.

V. CONCLUSIONS

We compared different filters for sensor fusion algorithms
and found that the matrix method is proven ineffective for our
task without any filtering. Therefore, it is strongly advised
to use a filter, the choice of which depends on the specific
requirements and constraints of the application, such as the
sensor type, noise level, computation power, and desired
accuracy and stability. According to our results, the Kalman
filter would be the suggested option if accuracy is the primary
concern and computational resources and memory are not
constraints. If computational efficiency is a critical factor, the
Mahony filter would be more suitable due to its computational
speed. Overall, the findings of this paper provide valuable
insights for selecting an appropriate filtering algorithm for
miniature embedded systems.

REFERENCES

[1] L. Ojeda and J. Borenstein, “FLEXnav: fuzzy logic expert rule-based
position estimation for mobile robots on rugged terrain,” in Proc. ICRA,
vol. 1, 2002, pp. 317–322.

[2] B. Barshan and H. Durrant-Whyte, “Inertial navigation systems for
mobile robots,” IEEE Trans. Robot. Autom., vol. 11, no. 3, pp. 328–
342, 1995.

[3] G. Cisotto, A. V. Guglielmi, L. Badia, and A. Zanella, “Classification
of grasping tasks based on EEG-EMG coherence,” in Proc. IEEE
Healthcom, 2018.

[4] M. Euston, P. W. Coote, R. E. Mahony, J. Kim, and T. Hamel, “A
complementary filter for attitude estimation of a fixed-wing UAV,” Proc.
IROS, pp. 340–345, 2008.

[5] U. Michieli and L. Badia, “Game theoretic analysis of road user safety
scenarios involving autonomous vehicles,” in Proc. IEEE PIMRC, 2018,
pp. 1377–1381.

[6] C. Raveena, R. Sravya, R. Kumar, and A. Chavan, “Sensor fusion
module using IMU and GPS sensors for autonomous car,” in Proc.
INOCON, 2020.

[7] J. Leclerc, “MEMs for aerospace navigation,” IEEE Aerosp. Electron.
Syst. Mag., vol. 22, no. 10, pp. 31–36, 2007.

[8] A. Makni, H. Fourati, and A. Y. Kibangou, “Energy-aware adaptive
attitude estimation under external acceleration for pedestrian navigation,”
IEEE/ASME Trans. Mechatronics, vol. 21, no. 3, pp. 1366–1375, 2016.

[9] A. Zancanaro, G. Cisotto, and L. Badia, “Modeling value of information
in remote sensing from correlated sources,” Proc. MedComNet, 2022.

[10] S. A. Ludwig, “Optimization of control parameter for filter algorithms
for attitude and heading reference systems,” in Proc. IEEE CEC, 2018.

[11] L. Badia, “On the effect of feedback errors in Markov models for SR
ARQ packet delays,” in Proc. IEEE Globecom, 2009.

[12] M. H. Afzal, V. Renaudin, and G. Lachapelle, “Use of Earth’s magnetic
field for mitigating gyroscope errors regardless of magnetic perturba-
tion,” Sensors, vol. 11, no. 12, pp. 11 390–11 414, 2011.

[13] S. A. Ludwig and K. D. Burnham, “Comparison of Euler estimate using
extended Kalman filter, Madgwick and Mahony on quadcopter flight
data,” in Proc. ICUAS, 2018, pp. 1236–1241.

[14] S. Yean, B. Lee, C. Yeo, C. Vun, and H. L. Oh, “Smartphone orientation
estimation algorithm combining Kalman filter with gradient descent,”
IEEE J. Biomed. Health Inform., vol. 22, no. 5, pp. 1421–1433, 2018.

[15] N. Caporusso, L. Mkrtchyan, and L. Badia, “A multimodal interface
device for online board games designed for sight-impaired people,” IEEE
Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 248–254, 2009.

[16] M. Long Hoang and A. Pietrosanto, “Yaw/heading optimization by
machine learning model based on mems magnetometer under harsh
conditions,” Measurement, vol. 193, 2022.

[17] J. E. Bortz, “A new mathematical formulation for strapdown inertial
navigation,” IEEE Trans. Aerosp. Electron. Syst., vol. 7, no. 1, pp. 61–
66, 1971.

[18] S. Madgwick, “An efficient orientation filter for inertial and inertial /
magnetic sensor arrays,” University of Bristol, Tech. Rep., 2010.

[19] V. Torres, J. Valls, and R. Lyons, “Fast- and low-complexity atan2(a,b)
approximation [tips and tricks],” IEEE Signal Process. Mag., vol. 34,
no. 6, pp. 164–169, 2017.

[20] InvenSense, Inc., “MPU-6000 and MPU-6050 register map and descrip-
tions revision 4.2,” 2015, accessed on March 24, 2023.

[21] Arduino, Arduino Nano 2.3 (ATmega328P) User Manual, 2012.
[22] Q. Li, R. Li, K. Ji, and W. Dai, “Kalman filter and its application,” in

Proc. ICINIS, 2015, pp. 74–77.
[23] F. Govaers, Introduction and Implementations of the Kalman Filter.

IntechOpen, May 2019.
[24] S. Y. Song, Y. Pei, and E. T. Hsiao-Wecksler, “Estimating relative angles

using two inertial measurement units without magnetometers,” IEEE
Sensors J., vol. 22, no. 20, pp. 19 688–19 699, 2022.

[25] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary
filters on the special orthogonal group,” IEEE Trans. Autom. Control,
vol. 53, no. 5, pp. 1203–1218, 2008.

[26] S. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of
IMU and MARG orientation using a gradient descent algorithm,” Proc.
ICRR, 2011.

[27] L. Badia and N. Bui, “A group mobility model based on nodes’ attraction
for next generation wireless networks,” in Proc. ACM Mobility, 2006.

[28] L. Ricci, “On the orientation error of imu: Investigating static and
dynamic accuracy targeting human motion.” PLoS One, vol. 11, 2016.

