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Abstract—We analyze a system where a transmitter (Alice)
sends status updates to a legitimate receiver (Bob), but a fraction
of them can be captured by an eavesdropper (Eve). Alice is
modeled as a strategic agent that follows a two-fold objective.
First of all, she wants to minimize the average age of information
at Bob’s side. Yet, she also simultaneously attempts to maximize
Eve’s average age of information, so as to avoid that the
eavesdropper captures valuable information. Both objectives are
combined in a bargaining framework, so as to obtain their
tradeoff that ultimately depends on the injection rate of Alice and
the probability that Eve intercepts data. At the same time, Eve is
also seen as a strategic agent that aims to minimize its own AoI,
coming from stolen data, by tuning the eavesdropping probability
but subject to a cost. We frame the interaction between Alice and
Eve as a static adversarial game of complete information, and
we derive and discuss the resulting equilibria. This extension of
security aspects to the age of information framework enables a
quantitative perspective with possible practical conclusions.

Index Terms—Age of Information; Data acquisition; Game
theory; Communication system security.

I. INTRODUCTION

The freshness of status updates about the surrounding
environment, quantified through age of information (AoI), is
becoming extremely relevant for most applications envisioned
for the upcoming 6th generation (6G) of wireless communica-
tions [1]–[3]. Among the key enablers of 6G, the technological
convergence and the ability for the communication systems of
making autonomous decisions thanks to artificial intelligence
[4] rely on the exchange of up-to-date information.

To understand the definition of AoI, consider a system,
where a transmitter sends status updates to a receiver, which
processes them for a random time before using them. The
propagation time from the transmitter to the receiver is taken
as instantaneous, since it can be conglomerated in the pro-
cessing time [5]. We also assume that all updates deliver fresh
information to the receiver [6], [7].

Then, we define the AoI at the receiver’s side at time t as [8]

δ(t) = t− σ(t) (1)

where σ(t) is the last instant prior to t when an update was
finished being processed.

If updates arriving at the receiver’s side while a previous
one is still being processed are enqueued, we obtain an
interesting line of research related to queueing systems. In
this spirit, classic results from queueing theory, typically
expressing throughput or delay, are revisited to focus on AoI,
to obtain interesting conclusions through elegant closed-form
evaluations. Most investigations in the literature expand basic
systems, such as the M/M/1 queue studied in [8], to different
arrival/service processes, buffer size, or queue policy [9]–[14].

We leverage these results for a different setup, where,
beyond the communication between a transmitter (Alice) and
a legitimate receiver (Bob), an eavesdropper (Eve) is added
to the system. Alice generates memoryless status updates
intended to reach Bob, which processes them for an expo-
nentially distributed random time and with FCFS order. That
is, the Alice–Bob system is a standard M/M/1 queue [8].

Eve intercepts the updates according to a binomial process
with independent and identically distributed (i.i.d.) probability
β ∈ [0, 1]. The eavesdropped updates are still received by Bob
but also processed by Eve. Analogous to Bob, she has an AoI
value based on the stolen information only.

Under this setup, we consider a game theoretic approach
where Alice is a strategic agent. She is aware that Eve is
stealing information and can control the generation rate of
updates. She can tune it down to prevent Eve’s from gaining
too fresh information, but at the price of also increasing Bob’s
AoI value. Thus, Alice’s objective is found as the barganing
between two contrasting objectives, i.e., minimizing Bob’s and
maximizing Eve’s expected AoI values [1].

Eve is also strategic, and tries to to maximize the freshness
of her eavesdropped data, also including an activity cost in her
objective. We use a game theory setup to study the competition
between Alice and Eve, as selfish players, who strive for
maximizing their own payoffs [15]. The analysis is interesting
as the final outcome jointly depends on two parameters, the
generation rate and the eavesdropping probability, which are
each in exclusive control of either player. Thus, the interaction
between Alice and Eve can be a static adversarial game of
complete information [16].

As a result, we are able to highlight interesting conclusions,
such as the optimal data generation rate chosen by Alice
being, under proper conditions, a decreasing function of the
probability β of data capture by Eve. Then, we derive the
Nash Equilibriums (NEs) of the resulting system and we
compare the obtained performance of both legitimate (Alice–
Bob) and malicious (Eve) users at the NE with the case without
a strategic adversary that only chooses a fixed β. In this
sense, our study serves as a foundation to expand the age of
information investigations to security considerations [17], [18].

The rest of this paper is organized as follows. In Section II,
we review related work on queuing systems, age of informa-
tion, security, and game theory, noting how all these aspects
are sometimes considered together, but rarely all of them at
once. In Section III, we outline the system model, formalized
as an adversarial setup for which we introduce strategy and
payoff of each player. This is studied in Section IV through
game theory, deriving analytical results on the NEs. We present
numerical results in Section V, and we conclude in Section VI.



II. RELATED WORK

This paper extends the studies framing AoI in the context of
queuing systems [9]–[14]. The AoI computation for an FCFS
M/M/1 queue with arrival rate λ and service rate µ, whose
load factor is then ρ = λ/µ, is found in [8] and already
interesting in itself, as a closed-form expression is obtained
for the average AoI ∆ = E[δ(t)] as

∆ =
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
. (2)

This implies that the optimal average AoI is achieved for
the load factor ρ⋆ ≈ 0.531. It follows that an AoI-optimal
data generation must be sufficiently frequent, yet without
congesting the server. For different queue disciplines, this may
change and, in particular, preemption allows to circumvent
the congestion at the receiver’s buffer; thus, the AoI-optimal
load factor is on the brink of instability [2]. Nevertheless, our
analysis refers to a plain M/M/1 queue, and these numerical
values are retrieved later; e.g., Alice’s optimal generation rate
in the absence of Eve is ρ = ρ∗. Hence, for other disciplines,
the values change but a similar reasoning applies.

Quite surprisingly, opposed to the plethora of results avail-
able from standard queueing theory, there are relatively few
investigations pertaining to security or confidentiality of AoI,
which we believe to be of key importance for many 6G sce-
narios, especially for mission critical or tactical applications.
Among these, in [19], a generic Internet of vehicles network
is investigated and a vehicle-assisted verification is adopted.
Here, AoI is used as a quantitative indicator of security, but
the scenario focuses on sybil attacks and not eavesdropping.

In [20], the problem of keeping fresh information under
passive eavesdropping attacks is considered. The authors study
a source reporting the latest status of the system to an intended
receiver, while thwarting a potential eavesdropper. To this
end, two AoI-based metrics are introduced to characterize the
secrecy performance of the considered system. Similar to our
paper, they aim at computing the optimal generation rate of
the transmitter, but under a stateful information, which allows
for an optimization of the transmission schedule [7], [13]. In
our approach, the choice of ρ is aimed instead at minimizing
the average AoI from closed-form expressions.

Also, they consider a very specific objective, taken as the
difference between the AoI values of the legitimate receiver
and the eavesdropper, respectively. Such a choice may not be
ideal, especially in the case very high values are considered
– if the information at the legitimate receiver is stale, it may
not be very useful that the AoI at the eavesdropper is just
higher by a certain amount. For this reason, our application
of Bergson’s theory of social welfare may be preferable. This
approach, which can be framed in the general context of Nash
bargaining theory, was actually introduced for AoI problems
in our previous paper [1]. Yet, notice that neither [20] nor [1]
consider a game theoretic framework as we do here.

Finally, there are a few related references for what concerns
applications of game theory to AoI. However, the literature is
relatively limited at least in the context of security aspects.
Most of the game theoretic approaches to AoI concern the
datalink layer [21]–[23]. In these cases, multiple users are just

BA

E

eavesdropper

transmitter receiver
β

λ

Fig. 1. Queuing system with a transmitter (A), a legitimate receiver (B), and
an eavesdropper (E).

competing but not adversarial. That is, they strive for accessing
the channel, which is a scarce resource due to collisions or
mutual interference, so as to keep their information fresh,
but they do not benefit from the other players having high
AoI. Therefore, aspects like security or confidentiality are
not explored. However, our extension where data-capturing
attackers are included in the systems would be an important
aspect, especially for sensitive contexts in 6G networks.

Few studies in the literature use game theory to analyze
security problems combined with information freshness, and
even when all these elements are considered (game theory,
AoI, security), the focus is on adversarial service denial
(e.g., jamming) [17], [24] rather than data confidentiality. In
[18], an adversarial setup is considered with a jammer trying
to increase AoI at the receiver’s side; a dynamic game is
established between two players, i.e., the attacker and the
system controller. Other cases are analyzed in [25], comparing
Nash and Stackelberg equilibria, and [26], with a focus on
aerial channel and attacks related to both physical and medium
access layers.

Studies that evaluate confidentiality and eavesdropping via
game theory only quantify the secrecy rate [27], an aggregate
measure that does not describe freshness, and is more related
to throughput. Thus, our analysis goes through unexplored
avenues, and can lead to original conclusions of practical
interests in the field of information security.

III. SYSTEM MODEL

With reference to Fig. 1, consider Alice (A) sending status
updates to Bob (B) as data packets that can be intercepted
and eavesdropped by Eve (E). Alice’s primary objective is to
minimize Bob’s expected AoI, but due to Eve’s presence, she
may want to adjust the generation of status updates to Bob
so as to cause the data captured by Eve to be stale. In other
words, Alice seeks for combining two objectives: minimizing
Bob’s and maximizing Eve’s expected AoI values.

The Alice–Bob system is taken as an M/M/1 queue with
FCFS discipline; Alice generates packets according to a mem-
oryless process of rate λ, which are processed by Bob with
exponentially distributed times. For notational simplicity, we
take a normalized rate µ = 1 of service at Bob’s, which implies
that the offered load is ρ = λ. All the results can be expanded
to different values of µ by re-introducing it as a multiplicative
factor. The channel between Alice and Bob is error-free, i.e.,
every update sent by Alice is correctly received by Bob. This
is not restrictive, and can be relaxed by rescaling ρ [7].



Each update packet generated by Alice at a random time tj
might be eavesdropped by Eve, according to a binary random
variable ξj ∈ {0, 1} that follows an i.i.d. statistics, i.e., ξj
can be either 1, implying that the packet is eavesdropped
with probability β ∈ [0, 1], or 0 with probability 1−β.
Consequently, we refer to β as the eavesdropping probability,
and it follows that the packet arrivals at Eve’s queue follow a
Poisson process with rate βλ.

Akin to Bob, Eve queues her packets in a FCFS M/M/1
queue, also with normalized service rate µ=1. Thus, we can
compute two AoI values, related to receivers Bob (legitimate)
and Eve (malicious). The first corresponds to the instantaneous
freshness of data legitimately exchanged. From (1), it is

δB(t) = t− σB(t) , σB(t) = max{tj : tj + yj < t} , (3)

where yj is the service time of the j-th packet at Bob, while
the latter is written as

δE(t) = t− σE(t) , σB(t) = max{tj : tj + υj < t, ξj = 1} ,
(4)

with σE(t) being the instant of reception of a packet that is
also captured by Eve, and υj the service time at Eve.

The fact that Eve may capture some update packets implies
that Alice realistically also desires, in addition to minimizing
Bob’s AoI, that the information reaching Eve is as old as
possible. Thus, Alice has two competing objectives as

f1(λ) =
1

∆B(λ)
, f2(λ) = ∆E(λ), (5)

where ∆B(λ) = E[δB(t)] and ∆E(λ) = E[δE(t)] are the
expected AoI values of Bob’s and Eve’s, respectively. These
expressions are set in agreement with the criterion that utilities
are generally taken as quantities to maximize [28]. However,
as will be clear later, this choice is entirely modular, as the
tradeoff between these objectives can be tuned by a specific
parameter, and it does not quantitatively affect the result.

These two objectives are contrasting, since Alice cannot
prevent Eve’s eavesdropping, therefore a packet that is meant
to refresh the status at Bob’s may also lower Eve’s AoI if
captured. We follow Bergson approach, as done in [1] in
setting a utility function uA for Alice as a weighted product
between objectives f1 and f2, which reformulates the tradeoff
into a single function and sets a precise value on Pareto frontier
of f1 vs. f2. Our choice is

uA(λ) = [u1(λ)]
a+1u2(λ) =

∆E(λ)

[∆B(λ)]a+1
, (6)

with a ∈ (0,+∞) tuning the trade-off between f1 and f2. We
must assume that f1 is slightly more important than f2, since
it would be easier for Alice to just maximize the latter by
never updating, which is illogical: it would have ∆E(λ) but
also ∆B(λ) to grow indefinitely. Thus, we set the exponent of
f1 in the trade-off as greater than or equal to 1, and we write
it as a+ 1. The larger a, the more important f1 versus f2 in
the trade-off. Setting a → +∞ corresponds to ignoring the
presence of Eve, whereas a → 0+ means that the threat of the
eavesdropping receives the highest importance. The specific
choice of a governs the selection in the Pareto frontier.

IV. GAME THEORETIC ANALYSIS

Game theory can frame multi-agent systems into a multi-
objective optimization where each agent is driven by its own
selfish objectives. For the context of AoI and security, two
different stances are possible. In an adversarial context, one
of the nodes is an attacker with the objective of maximizing
the legitimate node’s AoI. This approach would be good for
jamming problems [18], [25]. Other papers [22], [23], [29]
consider each source as uninterested in the other’s perfor-
mance, having the sole objective of minimizing its own AoI.

For our problem, both these approaches are taken for
different players. The eavesdropper has no reason to alter the
system’s AoI, but rather, just wants to gain illegitimate access
to fresh data. Thus, Eve’s selfish goal is to minimize her own
AoI. Conversely, Alice takes a mixed objective of sending
fresh updates to Bob while leaving only stale information to
Eve. Then, in spite of Eve being the attacker, the adversarial
role is played by Alice, in a swap similar to that of friendly
jamming problems [16].

We frame the interaction between Alice and Eve as a static
adversarial game of complete information, assuming that Alice
and Eve are the two players of the game. The former tunes
the offered load λ ∈ [0, 1], while the latter chooses the
eavesdropping probability β ∈ [0, 1].

Alice’s utility function is taken from (6), but written as
uA(λ, β), with an explicit dependence on β, and results in

uA(λ, β) =
(β3 λ3 − β2 λ2 + 1)λa (λ− 1)a+1

β (β λ− 1) (λ3 − λ2 + 1)
a+1 , (7)

where a is a positive real value tuning the tradeoff between
∆B(λ) and ∆E(λ, β). We remark that ∆E(λ, β) also includes
an explicit strategic dependence on β, chosen by Eve, and
also the choice of uA(λ, β) includes an implicit cost for Alice,
since λ cannot be indefinitely increased, as argued in Section
III, or else Eve would always eavesdrop fresh information.

Eve wants to lower her average AoI of stolen data, but at
the same time she is limited in the persistency of her eaves-
dropping by a cost associated to it, as directly proportional to
β through a coefficient c > 0. Thus, Eve’s ultimate objective
is the minimization of the linear combination of her AoI and
the eavesdropping cost. Her utility function is

uE(λ, β) = −∆E(λ, β)− cβ = −1− 1

βλ
− β2λ2

1−βλ
− cβ , (8)

where the negative signs are due to that both the expected AoI
and the cost are metrics to be minimized, while the utility is
once again taken as a quantity to maximize [28].

To find the NEs (λNE, βNE), for given values of a and c,
we compute the best responses (BRs) as

λ⋆(β) = argmax
λ∈[0,1]

uA(λ, β) , (9)

β⋆(λ) = argmax
β∈[0,1]

uE(λ, β) , (10)

for Alice and Eve, respectively. Now, we must find a strategy
profile for which the BR conditions are mutually satisfied. For
given a and c, λ⋆(β) is the only solution in [0, 1] of

∂

∂λ
uA(λ, β) = 0 , (11)
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Fig. 2. Eve’s BR function β⋆(λ) (dashed lines) for different values of c,
Alice’s BR function λ⋆(β) (solid lines) for different values of a. The NE
points are denoted by the markers.

that depends on β, while β⋆(λ) is the solution of

∂

∂β
uE(λ, β) = 0 , (12)

which depends on λ. According to [1], uA(λ, β) is a concave
function of λ; thus, (11) has only one solution λ⋆(β). To prove
the concavity of uE(λ, β) with respect to β, for every value
of λ, we compute its second order derivative in β as

∂2

∂β2
uE(λ, β) =

2
(
−3β2λ2 + 3βλ− 1

)
β3λ(1− βλ)3

, (13)

where the denominator is always positive, and the numerator,
for each value of β, describes a negative concave parabola
which as maximum for β = 1/(2λ), and

max
β

−3β2λ2 + 3βλ− 1 = −13

4
, ∀λ. (14)

We conclude that the second order derivative of uE(β, λ) in β
is negative for every λ, which implies that uE(β, λ) is concave
for every λ and, therefore, (12) has only one solution β⋆(λ).

The NEs can be found through solving a system of two
equations, one for each player’s best response, in two un-
knowns, which can be done with numerical means.

V. NUMERICAL RESULTS

We present quantitative evaluations for the game played by
Alice and Eve; the former tunes the transmission rate λ, while
the latter chooses the eavesdropping probability β in a strategic
fashion following a cost-minimizing strategy.

We discuss the impact that a fixed or strategically chosen
eavesdropping probability β has on the average AoI at Bob’s
and Eve’s, i.e., ∆B and ∆E, respectively. When Eve is not
present, since µ = 1, the optimum transmission rate λ⋆ is
equal to ρ⋆ = 0.531 [8]. Thus, in the following results, the
areas corresponding to λ > ρ⋆ are shaded, since a rational
Alice will never choose a transmission rate larger than the
optimal value in the absence of Eve.
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Fig. 3. Transmission rate at NE λNE versus the cost c, for different values
of the trade-off parameter a. The black dashed line represents the limit for
a → 0.

Fig. 2 shows the best responses of Alice and Eve. The
dashed lines represent Eve’s best response β⋆(λ) for different
values of c, while the solid lines represent λ⋆(β) for different
values of a. The intersection points between solid and dashed
lines are the solutions of both (11) and (12), thus they represent
the NE (λNE, βNE) of the game, for different values of the
system parameters a and c. From the figure, we first see
that when there is no cost in eavesdropping, i.e., c = 0,
for all values of a the NE is always λNE = 0.531 and
βNE = 1. In this case, the problem degenerates to Eve
persistently eavesdropping. Alice’s goal becomes exclusively
to minimize ∆B, which is achieved by choosing λ = 0.531
[8]. Furthermore, we note that, when a → 0, βNE → 1 for
every c, while, when a → +∞, λNE → 0.531 for every c. In
the intermediate cases, with 0 < a < 1 and 0 < c < 1, the
equilibria are obtained for λNE ∈ (0, 0.531) and βNE ∈ (0, 1),
which are further depicted in Figs. 3 and 4.

Fig. 3 shows the transmission rate at NE λNE versus the
cost c, for different values of the trade-off parameter a. As can
be seen, λNE is decreasing for an increasing cost parameter
c, and approaches an asymptotic value. The latter is zero for
a → 0+, see the dashed line, whereas it increases, so that
when a is very high the curve also tends to 0.531 for high
cost; in other words, λNE exhibits a flat trend. This occurs
because, when a → 0+, it becomes a priority for Alice to
maximize ∆E over minimizing ∆B and, for this reason, her
optimal strategy is to choose a lower transmission rate λ. In
the opposite case a → +∞, the minimization of ∆B becomes
most relevant for Alice, who then chooses an transmission rate
that approaches 0.531, i.e., the optimal value in the absence
of Eve. Moreover, the value of λNE is also related to Eve’s
strategy β, as discussed below.

Fig. 4 shows the eavesdropping probability at NE βNE

versus the cost c, for different values of the trade-off parameter
a. The value of βNE decreases as c increases: this behavior is
intuitive and implies that the higher the eavesdropping cost,
the lower the fraction of intercepted packets by Eve. Thus,
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Fig. 4. Eavesdropping probability at NE βNE versus the cost c, for different
values of the trade-off parameter a. The black dashed line represents the limit
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combining the results of Figs. 3 and 4, the growth of the
cost c causes a decrease in the value of β at the NE which,
in turn, implies that Alice chooses a lower transmission rate
λ. As a result, Alice and Eve shy away from transmitting
and eavesdropping data, respectively. Moreover, Fig. 4 shows
that, as a increases, the value of βNE decreases more rapidly
with increasing cost when a is high, and, as a increases, the
curves moves quickly toward the dashed black line, which
is the limit for a → +∞. In particular, when a > 0.3 and
c = 5 a strategic Eve will choose to eavesdrop with probability
βNE ∈ [0.6, 0.7], while, when c = 20, the eavesdropping
probability at NE is approximately βNE ∈ [0.3, 0.4].

We use this result to compare the performance achieved by
pair Alice-Bob versus that of Eve in the next Figs. 5–7. We
consider a static behavior with fixed β by Eve, so that the
optimum transmission rate λ⋆ is as derived in [1], compared
with the strategic behavior at the NE. To allow for a direct
comparison, and according to the numerical results of Fig.
4, the case of strategic Eve with c = 5 is compared with a
fixed choice of β = 0.6, and similarly the case of c = 20 is
compared with a static choice of β = 0.3.

Fig. 5 shows Eve’s average AoI plus cost ∆E+cβ at NE for
a strategic Eve (solid lines), and with optimum transmission
rate λ⋆ for a fixed β (dashed lines), versus the trade-off
parameter a. Given a cost c, the dashed line is above the solid
one, i.e., if Eve chooses a fixed β for each value of a instead
of optimizing it, she gets worse performance. For a given c,
the difference between the curves for fixed and strategic β
becomes negligible as a grows, as βNE tends to the fixed β.

Fig. 6 shows Bob’s average AoI ∆B at NE for a strategic
Eve (solid lines), and with optimum transmission rate λ⋆ for
a fixed β (dashed lines), versus the trade-off parameter a. The
black curve represents the minimum value of ∆B, achieved
when Eve is not present and Alice chooses λ⋆ = 0.531 [8].
Fig. 6 shows that, when a grows, all the curves tend to the
case without eavesdropping (black line). This happens since,
as a grows, the optimal value λ (in both cases of static and
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strategic eavesdropping) tends to 0.531, as can be seen from
Fig. 3.

Moreover, for a given c, either c = 5 or c = 20, we can
see that the dashed curve is above the solid one. Thus, the
fixed β value chosen by Eve causes a greater deterioration
in Bob’s AoI than the case where β is chosen strategically.
However, as it was previously mentioned while discussing
Fig. 5, by selecting a fixed β, Eve does not optimize its
own performance. As a result, a fixed β may worsen the
communication between Alice and Bob, but without Eve
benefiting from it. On the other hand, a strategic Eve induces
a deterioration on Alice’s payoff function with respect to a
static Eve, as Fig. 7 shows.

VI. CONCLUSIONS

We analyzed an AoI-aware exchange, between a transmitter
(Alice) and a legitimate receiver (Bob), of status updates that
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can be intercepted by an eavesdropper (Eve). We leveraged
closed-form results for queuing systems, computing the AoI as
functions of system parameters such as the update generation
rate and the eavesdropping probability.

We formalized a game theoretic setup where Alice and Eve
are two strategic players. The former wants to set an update
generation rate to simultaneously lower the average AoI at
Bob’s and leave only stale information to Eve. These two
objectives are combined according to Bergson’s bargaining
approach. At the same time, Eve’s objective is chosen as the
minimization of a penalty consisting of her own average AoI
plus an activity cost. In general, the presence of Eve results
in lowering the data generation/transmission rate by Alice.
However, an eavesdropper with a strategic character may be
less harmful to the legitimate transmission than a brute-force
one, since its ultimate objective is just to capture information
and not to hurt the transmission.

Our analysis can be extended by looking not only at the
average values of AoI but also at the instantaneous values
and the probability of Peak-AoI violation [30]. To this end,
Alice may schedule the updates with full information on the
AoI according to a stateful approach [7], and similarly Eve can
follow different patterns for its eavesdropping according to her
AoI value. Possible extensions include Bayesian approaches
for when the presence of the eavesdropper is not known for
sure, but Alice moves based on cost estimates for tracking the
eavesdropper and detecting whether data was captured [15].
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