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Abstract—We investigate a scenario where a transmitter (Alice)
sends information to a legitimate receiver (Bob) through a
quantum channel in the presence of an eavesdropper (Eve). The
information leaked to Eve is made unavailable to Bob, which
causes the system to behave like a partially degraded wiretap
channel. We consider Alice and Eve to be strategic players
interested in minimizing the resulting age of information at
Bob’s and Eve’s, respectively. We frame the resulting system
as two M/M/1 queues, fed by the remaining information and the
eavesdropped data, respectively, for which we can exploit well-
known results. The strategic interaction among the players is
captured by a game-theoretic formulation, where Alice chooses
her data generation rate and Eve controls the interception
probability, both subject to a cost for their action. We obtain
a characterization of the resulting Nash equilibria, exploring the
conditions for their existence depending on the cost parameters.
The most important finding of our analysis lies in the evaluation
of the price of anarchy, which is found to be extremely high in
the presence of multiple Nash equilibria. Thus, the application
of distributed management ought to be carefully controlled to
avoid inefficient outcomes.

Index Terms—Age of Information; Data acquisition; Quantum
communications; Communication system security; Game theory.

I. INTRODUCTION

Age of Information (AoI) is a popular metric to charac-
terize the freshness of information in real-time applications,
where the timeliness of data updates directly impacts decision-
making and system performance [1]–[3]. Its evaluation has
gained significant attention and seen numerous studies in
the context of queueing systems, thanks to the analytical
characterizations made in seminal studies that have led to
revitalizing this classic topic [4].

Queueing systems can model sensor networks and Internet
of Things (IoT) scenarios, where the freshness of information
is critical. In this case, the analysis of AoI is preferable
to that of traditional performance metrics, such as delay,
throughput, and queue length, which may not fully capture
the timeliness aspect of information [5]. Also, due to their
mathematical nature, queueing systems provide a versatile
framework for studying the dynamics of information flows
almost independent of the application or the technology used.
For this reason, they are suited for studying heterogeneous
domains such as healthcare systems, autonomous transporta-
tion, smart grids, and supply chain management, which are the
target of upcoming 6G systems, as well as different emerging

technological supports such as quantum, terahertz, or massive
MIMO communications [6].

In this paper, we consider a quantum communication sce-
nario, where we leverage theoretical results from queueing
theory pertaining to AoI evaluations. We focus on a quantum
wiretap channel [7] where an eavesdropper (Eve) can cap-
ture part of the information sent by a transmitter (Alice) to
her legitimate receiver (Bob). We assume that information
pieces that have been captured by Eve are not available
to Bob. In quantum communications, this happens because
Eve’s interception would perturb the quantum superposition
state of the transmission, which would allow Bob to recog-
nize, and ultimately discard, the content that was tampered
with [8]. More in general, our analysis can be applied to
all those scenarios where the eavesdropping operation either
materially takes the information carrier away and the physical
support of the information is non-reproducible, or causes the
information content to become inherently degraded for the
intended receiver. The former case also happens, for example,
in molecular communications [9], whenever the chemical
compounds intercepted by the eavesdropper are withdrawn
from the molecular channel.

Whatever the reason, the fact that Bob gets information
through a partially degraded wiretap channel requires Alice
to send updates more frequently to compensate for the loss of
information caused by Eve [10]. We assume that Alice and Eve
pay some costs for their actions, so they are prevented from
indefinitely increasing their activities [11]. Note that Eve is just
interested in acquiring fresh information so she does not need
to capture the information sent by Alice in its entirety, since an
AoI-minimal information flow is found at intermediate values
that neither are too sporadic nor too frequent, as the former
causes information to become stale but the latter would clog
the queueing process [4]. As a result, Alice is similarly not
required to indefinitely increase her transmission rate.

To better characterize the convergence of these objectives,
we introduce a game theoretic approach where Alice and Eve
are taken as strategic players, each interested in minimizing
an AoI value – Eve wants to obtain fresh information for
herself, whereas Alice wants to minimize the AoI of the
remaining information that Bob gets after discarding what he
recognizes was eavesdropped by Eve – also subject to a cost.
We formalize the utilities of the players in such a case, and
we compute the resulting Nash equlibria (NE).



This leads to investigate some interesting properties of the
problem, such as the existence and number of the NEs, as well
as their properties. We ultimately identify that the problem
may possess multiple NEs, and a discussion of the resulting
price of anarchy (PoA) is derived [12].

These results can be utilized to analyze the strategic in-
teraction aimed at securing the communication, from both
perspectives of attackers and defenders. Also, they can be
exploited to understand the efficiency of distributed actions
by agents acting without any preliminary cooperation, which
is the purpose of quantifying the system efficiency through
the lens of the PoA. Finally, we can also envision extensions
to broader strategic scenarios possibly combining multiple
objectives. This would be the case where the eavesdropping
by Eve is not just undesirable since it causes the AoI of the
legitimate transmission to grow, but also exposes some security
concerns of the system, in which case the strategic choice
would also be related to prevent the eavesdropping [13].

The rest of this paper is organized as follows. In Section II,
we present the background of our work and discuss the related
literature. Section III describes the resulting formulation of the
game. Section IV shows numerical results. Finally, Section V
concludes the paper.

II. BACKGROUND

Consider Alice sending status updates to a legitimate
receiver named Bob. AoI is a performance indicator that
quantifies the freshness of information received, and can be
computed as [1], [2]

δ(t) = t− u(t) (1)

where u(t) is the instant when the receiver processed the last
update before time t. In the following, we will distinguish
between AoI values at different receivers (legitimate or not)
by means of subscripts. For example, we denote with δB(t)
and δE(t) the AoI values received by Bob and Eve, respec-
tively. Other quantities will receive analogous subscripts when
appropriate.

We assume that Alice generates updates according to a
memoryless process with rate λ updates/second and Bob
handles them with exponentially distributed times and FCFS
policy. The resulting system is therefore an M/M/1 queue and
we can exploit the seminal reference [4], where the average
AoI ∆ = E[δ(t)] for this kind of system was found as

∆ = λ
(
E[XT ] + E[X2]/2

)
, (2)

with X and T being the random interarrival time and system
time of each generated update, respectively. For simplicity, in
the following we consider a unitary service rate, i.e., µ = 1 in
the standard queueing system notations. Also according to [4],
we then obtain

∆ = 1 +
1

λ
+

λ2

1− λ
. (3)

Notice that, as already argued by [4], an AoI-optimal update
generation rate is neither too strong nor too weak. More
precisely, the minimum of (3) is found in λ∗ ≈ 0.531.

Fig. 1. Partially degraded wiretap channel with a transmitter (A), a legitimate
receiver (B), and an eavesdropper (E).

In this paper, we apply this mathematical framework to a
quantum wiretap channel [7]. Thus, we consider the additional
presence of an eavesdropper (Eve). We assume that each
update sent by Alice can be eavesdropped by Eve. For sim-
plicity, this takes place according to an independent identically
distributed (i.i.d.) Bernoulli process with parameter β ∈ [0, 1].
This means that each piece of information sent by Alice is
eavesdropped by Eve with probability β, independent of what
happened to the other transmissions.

Moreover, we assume that updates captured by Eve do
not reach Bob. In quantum communications, Bob can detect
what updates were eavesdropped by Eve and decides to
ignore them. Thus, each update is either received by Bob
or eavesdropped by Eve, with respective probabilities 1−β
and β. Note the important difference with [10], due to the
communication taking place over a quantum channel – in
that study a classic channel was considered, therefore the
probabilities of the packet being available at Bob’s and Eve’s
were 1 and β, respectively. More complex models can also
be adopted to evaluate the eavesdropping capacity obtained
by Eve [14] as well as the reduced (secrecy) capacity of the
legitimate quantum channel [8], but the essence of the strategic
interaction will be the same.

Once again, for the purposes of our analysis it makes sense
to assume that Bob’s detection procedure of eavesdropped
packets is near-perfect [15]. Also, the same model can be ap-
plied to, for example, cases where the physical communication
medium is hijacked by Eve so that the update itself does not
even reach Bob.

The eavesdropped packets are enqueued separately by Eve
and processed with FCFS policy and exponentially distributed
service with rate µ = 1.

As a result, we are in the presence of not just one, but
two M/M/1 queues, one at Bob’s and another at Eve’s end,
respectively. The flow of updates generated by Alice with rate
λ splits into two memoryless flows with rate (1−β)λ and βλ,
respectively. The resulting scenario is represented in Fig. 1.

The above problem represents an original extension of
the theory. While the application of queueing theory to AoI
investigations has been a fertile ground of investigations in
the recent literature, most of the departures from the classic
scenario relate to the extensions to different queueing systems,
basically covering the entire variety of Kendall’s notation for



what concerns the arrival or service processes, the buffer
size, or the queueing policy, such as adding priorities or
preemptions [1]–[3], [16]–[18]. Our evaluation is actually
orthogonal to these variations. Thus, while we just analyze the
M/M/1 queue for the sake of simplicity, any other different
system can be considered as well, which is left for future
studies.

The presence of an eavesdropping in the scenario can
also be addressed as a security concern. Indeed, for those
applications where AoI is relevant (mission-critical, real-time
scenarios), security is likely to be another major concern. In
this sense our contribution also relates to [10] and [13]. These
papers study the problem of eavesdropping attacks, where the
intended transmitter Alice has multiple objectives, namely, to
keep the AoI value at Bob’s side to be low, while at the
same time maximizing the age of information for the updates
captured by Eve. In general, this is achieved by reducing the
transmission rate so as to leak the lowest possible information
to the adversary.

In the scenario investigated in the present paper, Alice
and Eve, while being later formalized as players in a non-
cooperative game, are not directly adversaries but just com-
petitors. Especially, neither of them wants to maximize the AoI
of the other. As a result, the problem is inherently different,
with the particular conclusion that Alice ought to increase the
data injection rate instead, to compensate the updates lost due
to Eve’s action. Incidentally, this also marks a difference with
a relatively restricted group of other papers, where a third party
acts an adversary of Alice and Bob’s, but is not interested in
acquiring information. For example, in [19] a generic adver-
sary is considered with the only goal to disrupt the legitimate
communication exchange. Conversely, [20] considers that the
communication exchange between Alice and Bob is closely
monitored by a warden (Willie) that must be avoided.

III. SYSTEM MODEL

Following [4], and according to the previous assumptions
about the rate of update feeding each queue, we can denote the
average age of information values at Bob’s and Eve’s sides,
respectively, as ∆B and ∆E, and compute them as

∆B(λ, β) = 1 +
1

(1−β)λ
+

(1−β)2λ2

1− (1−β)λ
, (4)

∆E(λ, β) = 1 +
1

βλ
+

β2λ2

1− βλ
. (5)

Now, we frame a scenario of interaction between Alice (A)
and Eve (E) in a game theoretic fashion [21]. Alice is taken as
the only strategic agent in the party of the intended transmitter-
receiver pair (Alice–Bob), as we treat Bob as passive, implying
he has no control over the outcome. Conversely, A and E can
modify both AoI values in (4)–(5) through their actions and are
then taken as players in a static game of complete information,
with continuous-space action sets. More precisely, the game
is formalized as G = (N ,A,U), where the set of players
N consists of just A and E. We assume that A can tune the
injection rate of generated data, so A’s action is to choose

λ ∈ [0,+∞). At the same time, E can instead choose the
probability of eavesdropping β ∈ [0, 1].

The objectives of the players relate to lower the AoI values
on their side, i.e., ∆B and ∆E for A and E, respectively. How-
ever, it may be unrealistic to assume that they can both increase
their activity without any consequence, so we also impose a
cost to both players. The cost term is directly proportional to
their action value, through a unit price coefficient, respectively
denoted as c for Alice, and k for Eve. The precise choice of
a proportional cost is related to framing the limitations of the
players through shadow prices, i.e., Lagrange multipliers [11].
Moreover, we note that the AoI terms follow an opposite trend
with respect to what usually considered in game theory as a
utility, that is, a quantity that the players would like to increase.
For this reason, we take the utilities as

uA(λ, β) = [∆B(λ, β)]
−1 − cλ (6)

uE(λ, β) = [∆E(λ, β)]
−1 − kβ .

While other choices are possible (e.g., even just changing
the sign of ∆ in the utility definition would work), the
definitions above have the advantage that the AoI values are
positive and going to infinity in the worst case, so the first part
of each player’s utility definition is at least 0 [22]. The negative
term representing the cost implies that the player is active only
whenever her activity improves her AoI value, otherwise she
just choose being inactive that results in zero utility.

The typical game theoretic approach [21] requires at this
point to look for the NEs of the system, typically seen as the
stable operation points from the perspective of strategic users.
To this end, we observe that the choices of λ and β by A and
E, respectively, are intertwined, and each player can compute
her best response (BR) to the belief about the choice of the
other. In particular, we can denote as λ⋆(β) Alice’s BR to the
choice of Eve, whereas β⋆(λ) is clearly the opposite (Eve’s
BR to Alice’s choice). Formally:

λ⋆(β) = argmax
λ∈[0,∞)

uA(λ, β) , (7)

β⋆(λ) = argmax
β∈[0,1]

uE(λ, β) .

It is immediate to verify [10] that the utilities are concave
functions and therefore they admit a unique maximum in the
definitions above. Moreover, the NEs are the strategy profiles
for which these BR conditions are mutually satisfied, which
can instead correspond to one or multiple points, depending
on the unit prices c and k.

While the overall problem of finding such solutions is of
limited numerical complexity, and therefore can be computed
precisely, it is unfortunately difficult to find a precise analytical
expressions for them, due to the inherent complications of
solving (7) through an exact computations of the gradients
and equating the curves. Thus, in the following we will resort
to numerical evaluations.

As visible from the following sample results, the number of
intersections can change depending on the values of c and k.
For the case where c = k = 0, displayed in Fig. 2, the best
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Fig. 2. Best responses of Alice and Eve’s for c=0.0, k=0.0.
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Fig. 3. Best responses of Alice and Eve’s for c=0.1, k=0.1.

response of the players follow a monotonic behavior and have
a single intersection. In this case, the solution is found for λ =
1.062, twice as much as the classic result from [4], and β =
0.5. That is, it is convenient for Alice to yield to the presence
of Eve and just provide information for both receivers.

When the unit prices increase, the behavior at first just
translates to lower and higher values for Alice and Eve,
respectively. As the prices keep increasing, the curves bend
and the number of intersections may increase. Fig. 3 shows
that for c = 0.1, k = 0.1, there are two intersections. Thus,
multiple intersections may be present, or none if the costs are
increased further, in which case the BR of either player may
degenerate to a border condition, e.g., λ = 0 or β = 0, which
implies that the costs are too high for that player to be active
– this condition is not very interesting for practical purposes.

If we limit the analysis to cases where the curve do intersect
and the NEs do not degenerate, we find out that there is always
one NE as the left-most of the intersection points in the graphs
shown. In the following, we will refer to this as the primary

Fig. 4. Number of intersections for different unit prices of Alice and Eve

NE of the system. Additional NEs are called secondary NE
and are generally less efficient, as will be shown next via
numerical computations.

It becomes therefore interesting to investigate the PoA for
our game, especially in the presence of multiple NE. While
the literature contains slightly different definitions to translate
the concept of PoA in practice, it always relates to computing
the ratio between costs for inefficient equilibria vs. the best
that can be achieved [12].

For the problem at hand, we precisely define the PoA
following a similar rationale, as

PoA =
uA(λ0, β0) + uE(λ0, β0)

uA(λw, βw) + uE(λw, βw)
(8)

where the sum of the utilities of the players is chosen as an
indicator of social welfare and also: λw, βw represents the
worst possible NE, whereas λ0, β0 is the social optimum, i.e.,
the strategic choices that maximizes the welfare. As we will
show in the next, the primary NE is also achieving the social
optimum. Thus, the PoA is 1 in the presence of only one NE,
but it might soar when the game admits multiple NEs, due to
the very low welfare of secondary NEs.

IV. NUMERICAL RESULTS

In the following, we compute relevant quantities for differ-
ent values of c and k, which are taken as system parameters.
In particular, we sketch the numerical evaluations that lead to
conclude that the primary NE is always the social optimum,
and we compute the PoA in the presence of multiple equilibria.

Fig. 4 shows the number of intersection points of λ and β
curves. In case c=0, there is a single intersection, even if k
increases. Multiple NEs are present when c is larger than 0 but
not too high and also k is contained. For too high costs, the
problem degenerates into a trivial solution, as follows. If k is
too high for the BRs to intersect, then Eve does not intercept
any information and the equilibrium is at β=0. If c is too high
instead, then Alice does not even transmit, so the equilibrium
is at λ=0, β=0.
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Fig. 5. AoI vs Eve’s unit price for different unit prices of Alice, primary NE
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Fig. 6. AoI vs Eve’s unit price for different unit prices of Alice, secondary NE

Fig. 5 plots AoI values at the primary NE vs k, for different
values of c. AoI at Eve’s increases in k, whereas AoI at
Bob’s decreases, but the latter trend is much more limited.
Conversely, a higher c implies that both AoI values increase,
which is a consequence of the parasitic behavior of Eve that
must rely on Alice being able to transmit at low cost.

Fig. 6 shows instead the same plot but for the secondary NE,
whenever present. It is interesting to observe the increasing
behavior in Bob’s AoI for an increasing k (the same holds
for Eve but to a limited extent). This happens because the
secondary NEs take place in the decreasing part of Alice’s
BR, but it is a sign that these NEs are inefficient. Comparing
Figs. 5 and 6 makes it clear that the range of AoI values for the
secondary NE(s) is much higher than that for the primary NE.
This is further confirmed by Fig. 7 where the total welfare is
shown. As a result, the total welfare at the primary NE point
is always higher than the secondary, which implies that the
primary NE is Pareto dominant and the social optimum [23].
Thus, when a single NE is present, the PoA is one. In case of
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Fig. 7. Social welfare vs unit price of Eve for different unit prices of Alice.
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Fig. 8. Eavesdropping probability β for different prices

multiple NEs, the PoA can be computed as the ratio between
the total utility at the primary NE (also the social optimum)
and the secondary NE. Fig. 7 also shows that the total welfare
decreases with higher costs, with the only exception of the
secondary NE, whose welfare increases in c, but this is a
consequence of its aforementioned inefficiency.

Figs. 8 and 9 show the activity patterns of the players. For
the primary NE, Fig. 8 shows that β decreases in k, at first
slowly, then it drops down. Also, k increases in c, which is
explained by Alice decreasing her rate of updates, which Eve
counteracts by capturing them more often. In Fig. 9 a similar
trend is shown for λ vs k, but the reason is different. Due to
the presence of Eve, Alice starts with an enlarged transmission
rate with respect to the optimal λ without eavesdropping, equal
to 0.531 as per [4]. As parameter k increases, Eve is less active
and Alice can relax her rate increase. Moreover, it can be seen,
confirming the previous results, that the optimal λ decreases in
c, and the secondary NEs generally correspond to inefficient
allocations where β is much higher and λ is lower.
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Fig. 9. Alice’s transmission rate λ for different prices
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Fig. 10. PoA versus unit price of Eve for different unit prices of Alice

Finally, Fig. 10 evaluates the PoA, which exhibits a complex
behavior. When only one NE is present, the PoA is 1.
This signifies that the problem admits an efficient distributed
solution, and in reality even achieves the social optimum.
Conversely, when multiple NE are present, the PoA can be
very high. In particular, this happens for relatively low values
of c and k, albeit not zero.

V. CONCLUSIONS

We presented an analysis of a quantum wiretap channel
seen as a queueing system, for which we introduced a game
theoretic analysis of the interaction between the legitimate
transmitter and an eavesdropper, of which the former is aware.
The latter not only captures information, which is not a
concern for this specific setup, but also reduces the amount
of information transmitted to the intended receiver.

The strategic choices of the players depend on both AoI
and a cost term to prevent perennial transmission and eaves-
dropping. For this scenario, we numerically quantified the

number of NEs and the resulting PoA, as functions of the
cost parameters in the transmission of the users.

Our results contribute to a better understanding of security
in quantum communications, and can be extended to more
complex cases with multiple objectives, such as simultane-
ously minimizing AoI and thwarting potential eavesdroppers.
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