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Abstract—Status update freshness in slotted ALOHA networks
is an important issue for Internet of things scenarios with large
number of nodes and uncoordinated access. We compare the age
of information of three different implementations of a backoff to
counteract collisions due to uncoordinated medium access, where
the transmission probability is (i) gradually decreased, (ii) turned
to 0 after a collision, or (iii) turned to 0 proactively. We discuss
whether these strategies decrease the average AoI of the nodes,
and highlight how their efficiency changes with a distributed
application in a game theoretic fashion. As a result, the gradual
backoff scheme is not recommended, whereas the reactive scheme
has an optimal performance inferior to the proactive one, but
obtains analogous results at the Nash equilibrium, and can be a
candidate for practical implementations.

Index Terms—Age of Information; Medium access control;
Random Access Networks; Slotted ALOHA; Game Theory.

I. INTRODUCTION

The Internet of Things (IoT) comprises a copious number
of devices interacting to guarantee communication and envi-
ronment awareness [1], [2]. In remote monitoring, freshness
of exchanged data is of utmost importance. In this paper, we
take it into account by focusing on Age of Information (AoI),
a metric that is gaining momentum in recent investigations as
more appropriate than delay or throughput to characterize the
overall performance of network sensing operations [3]–[6].

Moreover, we put emphasis on systems with strongly dis-
tributed access, as scalability and dimensionality considera-
tions make it inconvenient to adopt coordination among local
IoT nodes. This translates into considering a random-based
access of low-complexity; indeed, the majority of the real
protocols for the IoT are essentially ALOHA-like [7], [8].
Also, while most of the investigations in the literature assume
that the individual nodes are aware and can control the AoI
of their data [9]–[11], we argue that this is difficult to achieve
for pervasive low-complexity sensing nodes, thus we consider
access protocols where a stateful optimization of the AoI is
too expensive and simpler procedures are adopted, based on
limited information available at local nodes [12]–[14].

At the same time, we investigate an individual uncoordi-
nated medium access by means of game theory (GT) [15]. An
idealized optimal performance of distributed random protocols
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can only be achieved through a centralized exchange of certain
parameters (such as the transmission probability) that may be
inapplicable in distributed scenarios. Thus, we explore whether
a selfish control by individual nodes, just aimed at maximizing
a local objective, is equally performing [16].

Our specific goal is to investigate AoI for random-based
(ALOHA-like) access protocols via game theory. Most of the
available studies consider a simplified perspective to represent
the medium access, in which the nodes only regulate their
access probability [2], [17], [18]. This can be appropriate to
gain a preliminary understanding of the involved interactions,
and show via GT that a distributed access obtains an efficient
Nash equilibrium (NE). Yet, the backoff part of the access
mechanism is important and should not be neglected as it
can be shown to improve the resulting AoI, due to limited
collisions and a better access coordination.

Obtaining a proper characterization of backoff is challeng-
ing and opens up to different implementations. We compare
three models, namely, a gradual, a reactive, and a proactive
backoff, all modeled through Markov chains inspired by the
classic reference [19]. All of them allow for an analyti-
cal representation, where two parameters are employed: the
transmission probability p of idle nodes and a parameter
a representing the strength of the backoff. We discuss the
optimal setup of these parameters toward a utility function
that trades the average AoI with the transmission cost. Such
a working point can be achieved only through a centralized
agreement, thus we discuss whether it can be reached through
a fully distributed approach [20], where the nodes act as selfish
players in a GT setup with bi-dimensional strategies.

Our main findings are as follows. First of all, we obtain
a closed-form expression of the AoI for all three variants of
slotted ALOHA with backoff (gradual, reactive, and proac-
tive). We find that the simpler implementation of the backoff
with proportionally scaled transmission probability fails to
achieve an efficient expected AoI compared to the case without
backoff, which is particularly evident in the distributed setup.
For the optimal setup, the gains are almost negligible, whereas
at the NE the nodes get the same expected transmission proba-
bility as without the backoff [21]. Conversely, the reactive and
proactive implementations perform better, offering a signifi-
cant AoI gain. Also, while the proactive backoff is better under
an optimum setup, the NEs of the two approaches are almost
coinciding; in practice, if the selfish nodes are aware that they



must perform a proactive backoff, then they transmit more
often, which results in lower AoI, but also higher expenditure
for transmission. Overall, the reactive and proactive versions
can be considered equivalent for a distributed implementation,
which is an interesting guideline for practical IoT protocols.

The rest of this paper is arranged as follows. In Sec. II,
we discuss the literature concerning AoI, ALOHA-like access
with backoff, and game theory. Sec. III presents the analytical
framework, detailing three implementations of the backoff
procedure and solving all of them. In Sec. IV, we present
the numerical results. Finally, Sec. V concludes the paper.

II. RELATED WORK

The representation of random access protocols via (approx-
imately) Markov states is indebted to the influential model in
[19], although we consider a model with fewer states to enable
a closed-form derivation of the NE, and different twists on the
implementation of the backoff.

An important reference to our contribution is also [22]
that studies ALOHA implementations for delay-constrained
communications. However, our study diverges significantly
from that analysis, which does not consider AoI nor GT ap-
proaches, and whose ALOHA schemes vary in the information
available to the nodes. For example, they consider dynamic
values of the transmission probability p, and machine learning
capabilities to train its setup. Similarly, sophisticated deep
reinforcement learning approaches are used by ALOHA nodes
in [23]. Conversely, we aim at simple IoT nodes, for which
the setup of parameters such as p and also the backoff is
static and based on considerations not involving any artificial
intelligence. Yet, we take a game theoretic stance in that the
nodes are strategic, so they are not deprived of any rational
decision-making capability, but they approach a lightweight
challenge that is more appropriate for elementary IoT devices.

More related to AoI for random access networks, [9]
investigates the information freshness of slotted ALOHA or
carrier sense multiple access, performing an AoI minimization.
Their queueing-like approach uses the offered traffic λ as
a parameter, whereas we consider a backlogged traffic with
variable transmission probability. Also, they do not consider a
backoff nor they investigate the NE.

Many references consider a more powerful AoI optimization
where an ALOHA-like protocol is explicitly designed with the
purpose of achieving information freshness. For example, [10],
[11], [17] consider a variant of a slotted ALOHA subject to an
age threshold that must be exceeded for the node to attempt
transmission. With different analytical results, these papers
show that efficient AoI values can be obtained without deteri-
orating the rest of the network performance and also present
efficient methods to compute the age threshold. Our approach
is different as we do not seek for theoretical modifications of
the protocol, but rather we investigate possible off-the-shelf
implementations, where the slack of the optimization is in the
parameter setup of an already established protocol, which is
likely to be more viable in pervasive IoT implementations.

Our approach does not require to know the instantaneous
AoI that, while certainly theoretically possible, may open up
additional challenges related to a cross-layer optimization.
Indeed, even a not-so-smart node is in principle able to track
the AoI at the destination while checking for collisions, but in
a realistic network this would require an interaction between
the application and the data link layers. In the end, a precise
tracking of the AoI likely requires a feedback from the receiver
that causes additional power consumption and may increase
the collision probability if performed in-band. For example,
[12] discusses why it can be convenient to perform a less
invasive stateless optimization, as we do here.

Our analysis is also similar to [24] in that we attempt a bi-
dimensional optimization of slotted ALOHA parameters, one
of which (the transmission probability) is the same, and the
other somehow represents the persistence of the distributed
nodes. That reference considers the number of transmission
attempts, whereas we use a general parameter representing the
backoff intensity. Other differences are that they investigate
peak AoI, a trait shared with [25], whereas we consider the
average AoI; also, there is no game theoretic investigation
from the perspective of a distributed implementation, as the
one we present here.

A game theoretic analysis of a slotted ALOHA network is
relevant as it is the quintessential setup in which nodes act
without any coordination, as argued in [26], [27] for through-
put considerations. Thus, it is also interesting to characterize
the AoI under this lens. In this sense, our analysis also mirrors
the approach of [20] that investigates whether such an opti-
mization can be achieved by means of decentralized actions
by individual nodes, as we do. However, our perspective is
different, as we specifically consider definite implementations
that are achievable in practical IoT setups, instead of a general
scenario where multiple nodes share a common channel, which
is a much wider space to explore (indeed, they use a multi-
armed bandit, whereas our optimizations are in closed-form).

Although the use of GT for evaluating AoI is already present
in the seminal reference [5] for multiple queueing sources,
further developments are actually circumscribed to relatively
few contributions. For example, [28] considers a game played
by multiple nodes with the objective of AoI minimization, but
the medium access is not specifically on slotted ALOHA. In
[29], GT is used to study the AoI of competing sources over
an interference channel. Also [30] studies the minimization
of AoI in a slotted random medium access via GT but the
game is played by virtual network agents focusing on either
throughput or AoI, so it is more of a comparison of objectives
rather than a way to achieve distributed control.

Finally, [18], [21], [31] have a similar approach to what
presented here but with many important differences, most
notably, they do not consider a backoff component in the
medium access, which is our key contribution, and they all
perform a single variable optimization in the access probability
as opposed to the multi-dimensional search of the present
paper, to obtain the optimal working point as well as the NE.



III. SYSTEM MODEL

We consider a discrete time axis divided into slots. Our
representation of slotted ALOHA examines competing access
by N backlogged nodes that always have a packet to transmit;
also, in the age computations, they all have separate AoI values
and always have fresh information available (generate-at-will
model), and we neglect the transmission delay. All of these
are common assumptions for this kind of analysis [3], [4].

In each slot, the nodes independently access the channel.
Collisions ensue when the number of accessing nodes is
greater than 1. To limit their impact, a backoff phase is kept
into consideration, differently from most existing contribu-
tions where medium access is abstracted by considering an
independent and identically distributed (i.i.d) probability p
of transmission in each slot [17], [21], [27]. In our analysis
instead, nodes alternate between an idle phase and a backoff
phase, which can be seen as states of a Markov chain [19].

We consider the following schemes for the transition be-
tween these two phases. In all cases, we set that during the
idle phase, nodes transmit with i.i.d probability whose value is
set to p, but the scheme differ on what happens in the backoff.
Gradual backoff (GR-backoff): inspired by [25], this scheme
assumes that colliding nodes transit to the backoff phase,
where they transmit with probability ap, with a ≤ 1 being
a re-scaling factor. A node exits the backoff state and goes
back to idle after performing a successful transmission.
Reactively silent backoff (RS-backoff): in this case, the node
still enters the backoff state after a collision, but instead of
reducing the transmission probability, it remains silent for a
random number of slots. This is obtained by setting a ≤ 1 as
the probability of exiting backoff and going back to idle.
Proactively silent backoff (PS-backoff): the previous scheme
is modified as nodes go to the backoff state after each
transmission, not just after collision. Similar to the reactive
scheme, we set a parameter a ≤ 1 with analogous meaning.

All the proposed backoff schemes can approximate the state
of a node with a discrete time Markov chain whose states are
0 and 1 corresponding to idle and backoff, respectively. Note
that in reality the state transitions are not exactly memoryless,
as they depend on the joint choices of all nodes to determine
collisions. Yet, this results in an acceptable approximation
under large N (e.g., N ≥ 10) as discussed in [19].

The individual choices of the values of p and a for node i
are denoted as pi and ai, respectively. This is just meant to
emphasize that the nodes are choosing their own parameters
independently of each other. However, symmetry considera-
tions will lead to an optimal global choice, as well as a NE
condition, where these two parameters have the same value
for all the nodes in the network [21].

If π0i and π1i are the steady state probabilities that node
i is in state 0 or 1, respectively, we have that the expected
transmission probability of node i in the RS-backoff and PS-
backoff schemes is ti = π0ipi, while in the GR-backoff
scheme can be computed as ti = π0ipi + π1iaipi.

We intend to use these expressions of ti from the perspective
of different nodes, to compute the collision probability. That
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Fig. 1. Difference of the transmission probability under the approximation
of the two-state Markov chain and the exact formula, N = 10 nodes.

is, the success probability of node i when transmitting in
a given slot depends on the probability that all other nodes
j ̸= i do not transmit as well. Due to the dependent behavior
of nodes related to collisions, using tj in that case is not
entirely accurate, yet in practice this can be shown to be a
generally robust approximation. We verified this assertion by
comparing the exact transmission probability computed on a
larger Markov chain where the number of nodes in backoff is
precisely kept into account, which can be solved for the steady
state probabilities that an individual node is in state 0. Fig. 1
plots the difference between the transmission probability of
the GR-backoff case calculated with the approximation and
the one with the exact formula, for N=10 nodes. The approx-
imation slightly underestimates the transmission probability,
but the difference is negligible when the values of interest of
p and a are considered, as will be clear from the results of
Sec. IV. Analogous results hold for the RS-backoff and PS-
backoff schemes; actually, for the PS-backoff, the expression
of ti is exact as all nodes behave independently.

A. Age of Information

For GR-backoff, the AoI δi of user i is on average [21]

E
[
δGR
i

]
=

1

ti
∏

j ̸=i (1− tj)
− 1 , (1)

a result derived by applying the renewal reward theorem [32].
Similar to [18], [26], we consider a cost paid by each

node every time it transmits, even if the transmission ends
up in a collision, through a coefficient c, whose value can be
connected to physical aspects such as energy consumption or
just be a shadow price meant to limit the aggressiveness of
nodes [27], [33]. Thus, we define the utility of node i as

ui (t) = −E [δi] (t)−cti = − 1

ti
∏

j ̸=i (1− tj)
+1−cti , (2)



meant as an objective that node i seeks to maximize, hence
the negative sign, since i would like to minimize both AoI
and transmission cost. Vector t = (t1, t2, . . . , tN ) collects the
N transmission probabilities; for symmetry reasons, its best
global choice is a symmetrical vector t∗ = (t∗, t∗, . . . , t∗).
The same symmetry will be found for the NEs in Sec. III-B.

In the PS-backoff scheme, the computation of the expected
AoI is less straightforward as nodes do not transmit in the
backoff state. We can exploit that the expected AoI can be
expressed as the ratio of second and first order moments of the
(discrete) inter-update time [34]. We notice that nodes transmit
in cycles longer than a single slot consisting of a backoff phase
and a period in the idle state before attempting transmission.
We approximate the duration of this cycle with its average
ki =

1
ai

+ 1
pi

, and we denote with ξ the number of times this
cycle is repeated. We also define z =

∏N
j ̸=i (1− tj) as the

probability that every node j ̸= i stays silent when i attempts
transmission. Then, the expected AoI takes the form

E
[
δPS
i

]
=

∞∑
ξ=1

ki (ξ − 1)
kiξ

2
z (1− z)

ξ−1

∞∑
ξ=0

ki (ξ + 1) z (1− z)
ξ

(3)

that after some algebra reduces to

E
[
δPS
i

]
=

ki
z

− ki
2

− 1

2
. (4)

Once again, this is an approximated expression due to ki being
an average value, but we ran simulations to verify its accuracy
and compared the difference in AoI between simulations and
(4) in Fig. 2. Even though some values have a noticeable gap,
the difference flattens around 0 for the optimal values, showing
that our approximation is acceptable. We will further argue that
this is not an issue for the NE either. It follows that we can set
a utility for the PS-backoff as well, akin to (2), as the opposite
of the sum of expected AoI and transmission cost.

The RS-backoff scheme can be analyzed with a similar
explicit AoI computation. In this case, the backoff phase
is counted only once per cycle, thus it is taken out of the
summation of (3). Some tedious algebra gets

E
[
δRS
i

]
=

1− pi
p2i

z

2
+

−k2i z
3 − k2i z + 2k2i − kiz

3 + kiz

2z2

1

pi
z +

ki
(
1− z2

)
z

(5)
which is again an approximate expression, since we replaced
the term inside summation with its expectation. However, simi-
lar evaluations through simulation confirm the appropriateness
of our approach, thus we can use a utility as per (2).

B. Game Theoretic Analysis

From a GT standpoint, the NE results from a one-sided
optimization of the utility, i.e., each player looks for a best
response to the unchanged moves of the others. Without loss
of generality, we focus on player 1. A NE must satisfy
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Fig. 2. AoI difference between analysis (with an approximation for the ki
term) and simulation. The analysis underestimates the AoI but the difference
in the metric values is almost negligible around the optimal points.

∇u1 (t) = 0 (6)

which is to say that the partial derivatives of the utility with
respect to p1 and a1 are equal to 0. For the gradual backoff
scheme, the partial derivative of the utility in a1 (the one in
p1 is structurally the same) can be written as

∂u1 (t)

∂a1
=

∂t1
∂a1

(
1

t21
∏N

j=2 (1− tj)
− c

)
= 0 (7)

and the derivatives can be obtained either numerically or in
closed form with the chain rule.

By replacing the index 1 with that of a generic player, the
expression can be evaluated for all the nodes. However, sym-
metry considerations and the fact that t must be a probability
value in [0, 1] lead to t1 = t2 = . . . = tN = t. Thus, we can
solve a system of differential equations in t to obtain the NE,
which can again be done by numerical means.

We remark that for small values of the cost parameter c
there is no efficient solution to the system, which means that
the only NE is in a catastrophic equilibrium where p = a = 1
(and thus t = 1) for all the nodes. For sufficiently high costs,
another more efficient NE appears, as is argued in [18]. For
the GR-backoff scheme, this happens when c is bigger than a
threshold γGR that can be written as

γGR =
(N + 1)

N+1

4 (N − 1)
N−1

(8)

which is the same value found in [21].
To obtain the NE in the reactively and proactively silent

backoff, we use the same procedure of GR-backoff, i.e., we
differentiate the utility through the chain rule and find the NE
numerically. Also these schemes have threshold cost values



0 100 200 300 400 500 600

cost (c)

−70

−60

−50

−40

−30

−20

−10
E

xp
ec

te
d

U
til

ity
optimum GR-backoff
optimum PS-backoff
optimum RS-backoff
NE GR-backoff
NE PS-backoff
NE RS-backoff

Fig. 3. Utility with the globally optimal choice of the parameters and at the
NE in the considered backoff schemes, N = 10 nodes.

0 100 200 300 400 500 600

cost (c)

20

25

30

35

40

E
xp

ec
te

d
A

oI

optimum GR-backoff
optimum PS-backoff
optimum RS-backoff
NE GR-backoff
NE PS-backoff
NE RS-backoff

Fig. 4. AoI with the globally optimal choice of the parameters and at the NE
in the considered backoff schemes, N = 10 nodes.

γPS and γRS, for PS-backoff and RS-backoff, respectively, so
that another NE emerges if c > γ. It holds experimentally that
γGR > γPS > γRS. To sum up, for sufficiently high values of
c there exists a non-catastrophic NE for all backoff schemes
where the transmission probability is non-unitary, which can
be regarded as the convergence point of a distributed choice
of strategic nodes following a local utility maximization.

IV. RESULTS

We evaluate the formulas of Sec. III to gain visual insight of
their implications. All plots consider N = 10 nodes. Also, for
the sake of visual clarity, we omit the comparison with a basic
slotted ALOHA protocol without backoff, as we found out that
GR-backoff achieves very similar results, with improvements
of the AoI that are never beyond 1%.

Fig. 3 shows the utility values obtained by the different
methods. For all the backoff implementations it is evident that
the NE is significantly worse than optimal at low costs, but it
converges toward an optimal assignment as the cost increases.
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It is notable that RS-backoff has a worse optimum than PS-
backoff, but the NE of the latter is slightly worse, meaning
that there is a local strategic advantage in choosing not to
proactively backing off after every transmission.

Fig. 4 shows the expected AoI obtained by the different
methods. The implications are similar, even in light of the ap-
proximations about the AoI, as the general trend of the curves
suggests that the proactively and reactively silent schemes are
always better than GR-backoff. As already noted in Fig. 3, the
NEs tend to approach the global optimum when parameter c is
sufficiently large. The NE of RS-backoff obtains better values
for the metric with respect to the optimum of PS-backoff for
almost all the considered transmission cost values reinforcing
the previous assertion that it is beneficial for selfish nodes to
take a more competitive stance and choose the RS-backoff
scheme when the cost is high enough.

Fig. 5 shows the mean transmission probabilities obtained
by the various implementations of the backoff profiles with



respect to the transmission cost. As can be noted, the NEs
start from large values but quickly fall down towards the
global optimum probabilities. It is interesting that the PS-
backoff and RS-backoff solutions tend to have lower values for
the transmission probability when compared with GR-backoff,
but at the same time they achieve better values for the AoI.
This suggests that going silent is ultimately better for the AoI
than gradually decreasing the transmission probability, a result
which is in line with the findings for more complex schemes
such as the threshold-ALOHA of [10], [11].

Fig. 6 displays the value of a for PS-backoff and RS-
backoff, which is the reciprocal of the average duration of
the backoff. Interestingly, in RS-backoff the optimal value is
always 1 independently of the cost, which is an indication that,
for what concerns AoI minimization, it is important to return
to transmission as soon as possible, while at the same time
performing a short backoff to locally decrease collisions (in
our discrete time setup, the minimal value for such a backoff
is indeed one slot). This aggressive behaviour results in worse
values for the AoI and a slightly lower transmission probabil-
ity. Conversely, in PS-backoff where each transmission attempt
causes to enter the backoff state, the optimal choice for a is
slightly below 0.5. For what concerns the NEs, PS-backoff and
RS-backoff exhibit opposite trends and both of them eventually
converge to a = 0.5 for large enough costs.

V. CONCLUSIONS

We presented a game theoretic analysis of AoI for a slotted
ALOHA system with explicit inclusion of three different ways
of implementing the backoff phase. We gave a closed-form
derivation of the optimal working points and the NEs. We
discussed the resulting impact on the system performance,
showing that a gradual decrease of the transmission probability
is unable to improve the AoI-related performance compared to
the scheme without backoff. Conversely, reactive and proactive
backoffs are effective; while the proactive scheme is slightly
better for a centralized control, they are equivalent from a
distributed perspective.
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