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Abstract—Sensor communications in real-time systems may
be required to report status updates to minimize the so-called
age of information metric, which quantifies the freshness of
exchanged data. This situation can be heavily impacted by
the delays in data transmission, as some updates may reach
the destination when their information content is already stale.
In this paper, we consider the problem of scheduling sensing
updates over a finite time horizon, and discuss the impact of
their transmission delay on the resulting data freshness. We
tackle the adjustments required for an offline schedule aimed
at minimizing the average age of information which, as long as
they do not cause the updates to go off the boundaries of the
finite horizon, are only dependent on the average transmission
delay. We derive a closed form expression for the average age of
information, also verified through simulations, and the resulting
performance is evaluated under different system conditions.
This can be used to further explore the task of delivering timely
system updates under general scenarios, e.g., when the statistics
of the delay is not known a priori, or under other non idealities.

Index Terms—Age of Information; Sensor networks; Internet
of Things; Data acquisition; Transmission delay; Machine to
machine communication.

I. INTRODUCTION

Age of Information (AoI) is a measure of data freshness
in a communication system representing the time difference
between the latest generated content at the source and the
instant it is received or observed [1]–[3]. The metric is
particularly relevant for applications involving sporadic sens-
ing of the environment, real-time decision-making processes
and machine to machine (M2M) communication, to quantify
how timely are the system reactions to variations in the
system conditions. Relevant examples cover a wide array
of applications of next generation communication scenarios,
including smart Industry [4], eHealth [5], vehicular networks
[6], and more applications of the Internet of Things (IoT) [7].

While AoI offers a neat quantitative perspective on the
system performance, its analytical characterization is often
discussed under simplifying assumptions. For example, non-
idealities such as the system delay between the generation of
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the data and its delivery at the receiver’s side are very often
neglected [8], [9]. Such an assumption is certainly correct
whenever such delay is approximately constant, leading to
a fixed bias on the AoI evaluation. However, the impact
of a variable delay on the AoI may be more relevant, not
only because it skews the computation but also it affects the
control decision for example related to the scheduling of the
monitoring instants.

In practice, the exchange of status updates from a moni-
toring sensors can be delayed for various reasons, and every
realistic communication system suffers from transmission
delay caused by physical limitations, especially in terms of
propagation and processing. Propagation delays are consid-
erable whenever the system, or part of it, involves long-
delay channels, such as underwater [10], satellite [11], or
space communications [12]. It is worth noting that a long
delay does not necessarily imply high variability, but for
these specific cases this further inconvenience may arise,
e.g., due to meteorological conditions [13], [14]. The mere
signal propagation delay can be itself variable due to weather
and atmospheric conditions even in terrestrial radio links,
especially at high frequencies [15].

Similarly, offloading to more computationally powerful
servers in the cloud [16], [17] may lead to variable delays
that can be assimilated to the aforementioned propagation
term. Then, if data sent to the receiver require preliminary
processing, and the computation resources needed for the
task are found in the cloud, this will similarly result in
an additional delay affecting AoI at the receiver’s side.
Such latency components also include further processing
that may happen at the destination, e.g. queueing at the
buffer or delays due to congestion, which in turn depend
on the presence of multiple users converging on the same
node and their access discipline [18]–[20]. Finally, if status
updates consist of packets that may be retransmitted over
multiple attempts, following an automatic repeat request
(ARQ) approach, further delay terms can be introduced,
impacting AoI as argued in [21].

In this paper, we include all of these phenomena under a
general transmission delay T , modeled as a random variable



which is known only in its statistical characterization, i.e.,
through its pdf fT (x). We further consider the problem of a
finite-horizon offline scheduling of a fixed number of trans-
mission instants, driven by AoI minimization [22], which
is consistent with the standard challenge of a monitoring
system in the IoT. We tackle the quantitative evaluation of
the average AoI when each of the scheduled transmission
instants tj are subject to a transmission delay Tj , with
independent and identically distributed (i.i.d.) statistics, each
following fT (x). Such delays impact the AoI in that both
the reception of each update is postponed by a term Tj , and
also the AoI value starts, after the update, from Tj instead of
zero, to account for the increased staleness of the message.

We show the impact of the transmission delay on the
choice of the scheduling instants, considering the increase
in AoI for a standard periodic update pattern, and discussing
how the instants can be optimized to achieve minimal AoI.
We derive closed-form analytical expressions that are further
evaluated under different system parameters and also verified
via simulation. Our analysis enables a better understanding of
the impact of transmission delays on AoI in general setups,
especially when it affects the system in association with
other non-idealities such as erasures [23] or collisions [24],
energy unavailability [9], or whenever the statistics of the
transmission delay is also unknown and must be preliminarly
estimated through learning techniques [25], [26].

The rest of the paper is arranged as follows. Section II dis-
cusses related works. Section III presents the theoretical
analysis and gives closed-form expressions for average AoI
in the presence of variable transmission delays. Section IV
exemplifies the analysis with quantitative evaluations and
simulations. Lastly, Section V concludes the paper.

II. RELATED WORK

The average value of AoI for a scheduling pattern of
system updates is often addressed through geometric con-
siderations, i.e., from the integral of the saw-tooth profile
of AoI over time [22], [23], which is also the approach
adopted in the present paper. In these analyses, it is often
argued that a constant delay in transmitting the updates
would lead to a fixed bias of the areas and does not change
considerations such as the optimality of a given scheduling
pattern. In reality, this is also applicable to more complex
optimization approaches for stateful scheduling involving
dynamic programming or multi-armed bandits [17], [27].

In [18], the authors consider the impact of request latency
on AoI, focusing on a queueing policy with preemption, and
latency is related to the service in a buffer. Instead, [28]
adopts a similar approach for systems without preemption
but with multipath. Differently from those, we treat service
as instantaneous, but we superimpose delay as an externality.

The impact of non negligible propagation delay on AoI
is considered in [26], specifically focusing on the tradeoff
between retransmitting old content with higher accuracy in
an ARQ fashion, or dropping it to transmit fresher packets
that have never been transmitted before [29].

An optimal online scheduling in the presence of ran-
dom delays is developed in [30], whereas we study a pre-
defined (hence offline) scheduling pattern. The reference also

considers a simultaneous control of sensing and controlling
operations, whereas we assume persistent sensing and just
focus on the transmission of updates as the degree of freedom
of the scheduler.

The latter analysis can also be related to [31], which
does not consider AoI but rather the minimization of the
estimation error of a monitored process. Nevertheless, the
issue is similar as long as the two quantities can be seen
as penalties that grow larger when the scheduled updates
become sparser. The paper furthermore considers an infinite
time horizon and not a finite set of updates over a limited
observation window, as we do here.

Finally, our approach can be related to the extensive
analysis performed in the very recent reference [32], which
is the most comprehensive treatment of AoI under variable
delay. The work considers an online sampling policy, as
opposed to the offline scheduling tackled in this paper. In
other words, [32] proposes a strategy to decide, based on
the currently experienced delay, when to perform the next
update. Conversely, we assign multiple transmission instants
at once, based on the a priori statistics of delay, so as to
minimize AoI.

It is however possible to combine all of these approaches,
together with other non-idealities, for a more comprehen-
sive treatment of real systems in the IoT. Similar to ARQ
taxonomies [8], we can think of focusing on multiple statis-
tics for different delay terms (e.g., including propagation,
processing, retransmission), and also involve other aspects
related to the accuracy of the update [33], error correlation
and packet resequencing [21], as well as the costs implied
for tracking them through stateful policies [22].

III. THEORETICAL FRAMEWORK

We consider the problem of scheduling M status updates
sent by a sensor over a finite horizon of length L, where the
transmission instants are denoted as t1, t2, . . . , tM . In this
context, the instantaneous AoI δ(t) at time t is defined as
the difference between t and the instant of reception of the
last update u(t), i.e.,

δ(t) = t− u(t) . (1)

Each update can be subject to a random transmission
delay, which represents the time elapsed since the release of
the data packet from the sensor, before it eventually reaches
the destination. Due to this delay, an update originally
scheduled at time ti is received at ti+Ti, and the information
it carries is also stale, since it represents the system state Ti

seconds ago. As a result, the update resets the AoI value, but
not to 0 as commonly assumed in the literature where the
transmission delay is neglected [23], yet to Ti. The trend of
AoI can be observed in Fig. 1.

We assume that all Ti terms are i.i.d. and therefore
characterized by the same pdf denoted as fT (x). The average
AoI can be defined as

∆ = E

[
1

L

∫ L

0

δ(t)dt

]
, (2)

with the expectation taken over the random variables Ti with
i ∈ 1, 2, . . .M . Also, since δ(t) is a function of the chosen
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Fig. 1. AoI evolution with M = 5 updates. The transmission instants are
t1 . . . t5. The transmission delays for each transmission are T1 . . . T5. The
inter-arrival times are y1 . . . y5. After each update the AoI is reset to Tj .

transmission instants t1, . . . , tM , the average AoI ∆ can in
turn be seen as a function of those same instants.

The problem we want to solve in this scenario is an
offline stateless optimization of the transmission instants
[22], i.e., the transmission schedule that the sensor will
follow is computed in advance without the possibility of
online modifications. Although at first glance the choice may
seem limiting, it can be of high practical relevance as the
offline scheduler requires limited computing power which
is often a fundamental constraint for battery-powered IoT
devices with little computing capabilities. Also, an online
scheduler should require constant feedback and this may not
be possible in some scenarios [2], [5], [25].

For a better representation of our results, and without loss
of generality, we set L = 1. This means that both delay
terms and AoI, which are fractions of L, will be expressed
as values in [0, 1].

A. Periodic updates

Assuming no delay is present, i.e., Ti = 0 ∀i, it is easy to
verify that the minimal AoI can obtained through a regular
transmission pattern. Given M updates, the various ti will
be separated by a time

Q =
1

M + 1
. (3)

If we consider the same pattern in case of non-zero random
delay, the average AoI ∆ can be evaluated through geometric
considerations from Fig. 1. More precisely, the expected AoI
is the sum of the area of the M trapezoids plus the initial
triangle. For simplicity, each trapezoid can be divided into an
isosceles triangle and a rectangle. If we set ∆Tj = Tj−Tj−1,
then the side of each triangle is

Q+ T1, for j = 1

Q+∆Tj , for 1 < j ≤ M

Q− TM , for j = M + 1

(4)

whereas, the base of each rectangle is{
Q+∆Tj , for 2 ≤ j ≤ M

Q− TM , for j = M + 1
(5)

and the height of each triangle is Tj−1, for j ≥ 2.
The final AoI can be written as

∆ = E[∆A +∆B +∆C ] (6)

with ∆A the area of the first triangle, ∆C the area of the
last trapezoid and ∆B the areas of all the other trapezoids.
The three terms can be written respectively as

∆A =
(Q+ T1)

2

2
(7)

∆B =

M∑
j=2

(
(Q+∆Tj)

2

2
+ Tj−1(Q+∆Tj)

)
(8)

∆C =
(Q− TM )2

2
+ TM−1(Q− TM ) . (9)

Due to linearity, it is possible to bring the expected value
inside the summation. Also note that E[Ti] = E[T ] ∀i due
to the fact that all Ti have the same distribution. These
two considerations allow us to simplify (6) and rewrite it
in compact form as

∆ =
Q(1 + 2M E[T ])

2
. (10)

B. Optimized update schedule

The previous analysis shows that scheduling updates at
regular intervals is optimal only in the case of delay equal
to zero, i.e., Ti = 0 ∀i. Otherwise, we face an increase of AoI
due to the choice of equally spaced update instants without
accounting for the extra delay terms. In this latter case, the
AoI can be optimized computing the transmission instants
that minimize the area under the curve considering also the
alteration introduced by the delay. If we define the transmis-
sion instants that minimize the AoI as zj = min(tj + Tj , L)
then it is possible to write the AoI as ∆ = ∆1 +∆2 with

∆1 =

(
1

2
E
[ M∑

j=0

zj+1 − zj

])
(11)

being the area of the j-th triangle and

∆2 =

(
E
[ M∑

j=0

Tj · zj
])

(12)

being the area of the corresponding rectangle.
Finding the optimal transmission instants zjs minimizing

∆ is difficult, given the non-linearity introduced by the
minimum. Nevertheless, the computation simplifies if we
consider the probability of Tj being larger than Q, i.e,.
P (Tj > Q) < ϵ with ϵ sufficiently small, in which case
we obtain zj = tj + Tj . Note that this consideration makes
sense, as a delay larger than Q would have a detrimental
impact on the system. The aspect is discussed more formally
in Section III-C.

Thus, it is possible to further simplify the analytic solution
of the problem considering the intervals between transmis-
sions, rather than the transmission instants themselves. Let
us denote the intervals yj = tj+1 − tj , with t0 = 0 and
tM = 1, satisfying the constraints

yj > 0 ∀j;
M∑
j=0

yj = 1 . (13)

Taking into account the interarrival times, the side of
the i-th triangle (and the base of the corresponding rect-



angle) has length yj + ∆Tj , with ∆Tj = Tj+1 − Tj , and
T0 = TM = 0. Then ∆1 and ∆2 can be written as

∆1 =
1

2
E

 M∑
j=0

(yj +∆Tj)
2

 (14)

∆2 = E

 M∑
j=0

(yj +∆Tj)Tj

 . (15)

Note that due to linearity one can bring the expectation
inside the summation. This allows us to expand the sums,
delete the common terms and obtain

∆ =
1

2

M∑
j=0

y2j + E[T ]
M−1∑
j=0

yj . (16)

From (13), the optimal schedule can be found by taking the
gradient of (16) and setting it to zero. After some algebraic
steps we arrive at the following system of M +1 equations:

y0 = 1−
∑M

j=1 yj , j = 0

yj = y0, j = 1 . . .M − 1

yM +
∑M−1

j=0 yj = 1− E[T ], j = M

(17)

whose solutions are

yj = Q(1− E[T ]) for j = 0, . . . ,M−1 (18)
yM = Q(1 +M E[T ]) (19)

Using these solutions, it is possible to rewrite (16) as:

∆ =
Q(1 + 2M E[T ]−M(E[T ])2)

2
. (20)

Note that, since the (20) depends only on the first moment
of E[T ] (and its square if we expand the second term) the
value of AoI remains the same for all the distributions with
the same mean, regardless of fT (x).

C. Probability of Overflow

As mentioned, (20) holds only if min(tj+Tj , L) = tj+Tj ,
i.e., P (Tj > Q) < ϵ with ϵ small. One way to check this
condition is to compute the probability of overflow, i.e., that
the system fails to carry out all scheduled transmissions. In
principle, given that the delays are random, all scheduled
instants can end up being delivered after the end of the
horizon L, but we concentrate on the last one since it is
the most likely. Thus, we check whether tM + TM > L,
which, switching to considering the inter-arrival times, can
be rewritten as TM > yM , i.e., the delay of the last
transmission TM being larger than the time yM before the
end of the horizon. This allows us to quantify the probability
of overflow as:

P (TM > yM ) = P

(
T >

1 +M E[T ]
M + 1

)
. (21)

Thus, the probability distribution of T affects the perfor-
mance. As an example, if T is uniformly distributed over
a period of 2E[T ], i.e., T ∼ U(0, 2E[T ]) then we can
rewrite (21) as:

P (TM > yM ) =
E[T ](M + 2)− 1

2E[T ](M + 1)
(22)
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Fig. 2. Average AoI against average delay. Different values of M , i.e., of
transmission opportunities, are considered.

On the other hand, if T is exponentially distributed with
average E[T ], i.e., T ∼ exp( 1

E[T ] ), then we can rewrite (21)
as:

P (TM > yM ) = exp

(
− 1 +M E[T ]
(M + 1)E[T ]

)
. (23)

In the next section, we will also present some numerical
evaluations of the overflow probability, to better quantify
when it can be negligible. We also notice that, beyond
causing overflows, very large values of T may also cause
the scheduled time instants to swap, which happens when a
similar condition of Tj > yj+Tj+1 holds for j < M . In this
case, the impact is just a slight change in the analysis, since
it just reverses the order of some indices in the saw-tooth
pattern of Fig. 1. This event is less likely than the overflow
(due to the condition being stricter). Yet, our numerical
evaluations in the following section will also serve to have
an estimate of its likelihood, both because we consider
simulation to validate the analysis, and because we quantify
the overflow probability.

IV. RESULTS

We now present some numerical evaluations of the afore-
mentioned computations.

In Fig. 2, we observe the average AoI versus the average
delay for some fixed values of the number of transmissions
M . As expected, whenever the average delay increases, the
value of AoI also increases. Furthermore, this growth is
less significant when M becomes larger. Similarly, as the
number of transmissions M increases, the time between up-
dates decreases and consequently the average AoI decreases.
The AoI growth is less pronounced for a larger number
of transmissions. This is sensible, as a higher number of
transmissions reduces the time between the various updates
and consequently lowers the metric.

In Fig. 3, we display the average AoI vs. M for several
values of the average delay. As expected, and in agreement
with previous results, the average AoI decreases as the
number of transmissions increases. The decrease is steeper
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Fig. 3. Average AoI vs the number of transmissions M . Different curves
are obtained for different values of the average transmission delay.
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Fig. 4. Comparison between average AoI obtained from theoretical closed
form expressions and numerical simulation.

for a lower average delay, while it is smoother when the
average delay assumes higher values. This is consistent with
the fact that, for a fixed number of transmissions, a higher
delay implies that each update arrives later, on average, and
consequently the AoI is often reset to higher values. This
leads to an increase in the average AoI.

To further validate our results, we wrote a simulator in
Python and compared the results with the theoretical ones
obtained from (20). The results are reported in Fig. 4. For
each combination of delay E[T ] and number of transmissions
M , we display the average of 100 simulations. As observed
from Fig. 4, both results obtained through the theoretical
formula and simulation match up to numerical noise.

Figs. 5 and 6 show the overflow probability for the two
different distributions. As can be observed, in both cases the
probability grows for increased values of M , which lead to
a shorter time between updates (i.e., a smaller yj). Thus,
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Fig. 5. Overflow probability vs average delay for a uniform delay distribu-
tion, for various numbers of transmission opportunities.
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Fig. 6. Overflow probability vs average delay for an exponential delay
distribution, for various numbers of transmission opportunities.

increasing the number of transmissions leads to lower AoI,
but also leaves the system more exposed to overflows, i.e.,
failure to complete all the assigned transmissions.

Lastly, Fig. 7 shows the comparison between the schedul-
ing with the fixed update as per (10) and the optimal
scheduling of (20). It is possible to observe the increase in
AoI due to the use of suboptimal periodic scheduling. The
plot shows indeed that the difference is limited, for small
delays, and therefore one may argue that even a periodic
scheduling would be sufficient to obtain a limited AoI.
However, implementing optimal planning is simple, and does
not require many computational resources as it corresponds
to a simple shift for each update. It should also be noted that
this study assumes the ideality of every other component of
the system, no transmission errors, and consequently no need
for retransmissions [29]. In real conditions, any cost-effective
improvement in system performance is worthwhile.
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Fig. 7. AoI ratio of periodic vs. optimized schedules, i.e., (10) vs. (20).

V. CONCLUSIONS

We discussed the performance in terms of AoI of a finite-
horizon scheduling for status updates whose exchange is
subject to a random transmission delay. Through geometric
considerations, we evaluated the increase in AoI of a periodic
schedule in closed-form and also investigated the optimal
choice of transmission instants.

The analytic formulation presented in this paper can also
be extended and used as a building block for more complex
communication scenarios, e.g., with multiple delay com-
ponents as well as other non-idealities, possibly including
parameters estimation and multiple sources.

In particular, the most interesting future extension can be
the investigation of scenarios where the transmission delay is
not a pure externality, but may be, for example, connected to
congestion [24], retransmissions [21] or multiple access from
different sensors [4], thus leading to a joint optimization of
the transmission schedule also accounting for a closed-loop
interaction with the activity of the nodes.
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