
Local or Edge/Cloud Processing for Data Freshness
Andrea Munari, Tomaso De Cola

Institute of Communications and Navigation
German Aerospace Center (DLR), Weßling, Germany

email: {andrea.munari, tomaso.decola} @dlr.de

Leonardo Badia
Dept. of Information Engineering (DEI)

University of Padova, Italy
email: leonardo.badia@unipd.it

Abstract—Several actuation choices in the Internet of things
(IoT) require state information to be up-to-date. In this context,
the choice between local processing and offloading to a more
powerful remote server can have a significant impact on data
freshness. Local processing is indeed typically less reliable due
to limited computing power and may require multiple attempts,
which can result in data becoming stale. Conversely, remote
(i.e., edge/cloud) processing can be more reliable, yet entail
longer response times due to data transmission to an external
server, possibly performing processor sharing with other tasks.
The optimal balance depends on the specific system conditions,
especially on the congestion at the remote server, and is in general
non-trivial. We explore this tradeoff through a mathematical
model, and argue about the derivation of a freshness-efficient
local vs. remote split of requests, providing insights on the role
played by reliability and latency in selecting the optimal strategy.

Index Terms—Age of information; Edge computing; Signal-
flow graphs; Mathematical modeling.

I. INTRODUCTION

A pervasive integration of multiple devices in the Internet
of Things (IoT) is expected for a number of applications,
including autonomous vehicles, industry 4.0, augmented real-
ity, smart healthcare, and the Metaverse [1], [2]. This leads
to the generation of vast amounts of data at the network
border, which poses difficult challenges for traditional com-
puting architectures to deal with the requirements in terms of
computational efficiency and real-time promptness [3].

To address these issues, two approaches are generally con-
sidered: offloading to more resource-abundant remote servers,
or local processing within less powerful peripheral units with
the advantage of a closer proximity to the end user [4]. In this
paper, we refer to this dichotomy as “remote” versus “local”
processing, which may be declined in different instances.

Local processing is typically operated inside a single IoT
end device, but in a broader sense can also be meant to include
scenarios of coordination mechanisms in a cluster of neighbor
nodes [5]. The emphasis here is on the relevant computational
power being available in the proximity of where data are
generated. Local computation and processing incur low latency
and bandwidth usage, at the price of a worse accuracy [6].

In contrast, remote offloading involves transferring infor-
mation bundles from IoT end devices to further data centers,

A. Munari acknowledges the financial support by the Federal Ministry of
Education and Research of Germany in the programme of ”Souverän. Digital.
Vernetzt.” Joint project 6G-RIC, project identification number: 16KISK022.

possibly in the cloud, for processing and analysis. It is also
common to envision edge computing architectures, where
computational power and storage capabilities are brought at
the network’s edge [7]. In this context, processing tasks can be
offloaded to closer, but still external, edge servers. We consider
both cases as instances of remote processing, since the IoT
end nodes just act as relays for data to some external agents,
regardless of their location in the cloud or at the network’s
edge. The advantage of remote offloading is to leverage a
more powerful infrastructure, providing abundant resources
and advanced analytics, but it can suffer from communication
round-trip delays, as well as network congestion, whenever
multiple end nodes offload their tasks [8].

The choice between local computing and offloading to
remote edge/cloud servers involves tradeoffs, e.g., between
latency and reliability [9], [10], which are crucial for designing
efficient IoT systems. These factors must also be seen through
the lens of a proper key performance indicator. In the literature,
the objective is often seen as the maximization of the amount
of raw data processed, the minimization of the latency, or the
limitation of the outage probability for service requests.

Conversely, in this paper we focus on data freshness, a
performance indicator that is gaining research momentum, es-
pecially for IoT applications requiring a timely interaction with
the surrounding environment, e.g. to enable real-time decision-
making for dynamic contexts where circumstances can change
rapidly [11], [12]. In this context, age of information (AoI) is
often used, capturing the time elapsed since the generation
of the last successfully processed data, and describing how
“fresh” is the result of the computational task [13], [14].
Alternatively, various generalizations can be used, considering
a broader “penalty” based on the difference between the data
generation instant and its ultimately availability for usage after
being processed [15], [16].

Starting from these remarks, we analyze a layered comput-
ing architecture where data can be either processed locally or
offloaded to a remote server [17]. As argued above, neither
choice is inherently better, as the balance depends on the sys-
tem conditions and the network congestion. Remote processing
is accurate, yet incurs a round-trip communication delay,
which can be worsened by the network workload of devices
querying the server. Conversely, local processing is faster and
not affected by congestion, but may have to be repeated to
achieve satisfactory results, worsening data freshness. We also
explore how the staleness of the available knowledge can be

represented through different penalty metrics related to AoI.
Through an analysis based on the signal-flow graph (SFG)

methodology [18], we derive closed form expressions that
quantify this tradeoff, and discuss the most appropriate choice
between local and remote processing of data. We show how the
best network setup lies in a careful balance of the two options,
to properly exploit the remote server without congesting it.
Thus, the development of tailored offloading strategies is key
for timely information processing [19].

II. RELATED WORK

The investigation of choices surrounding computation of-
floading is a well-studied problem in the literature, often seen
as the routing of requests through different paths [8], [20].
The objective of this choice may be related to minimizing
the task execution times [7], latency [21], limiting the energy
consumption [22] or addressing the quality of experience in
multimedia flows [11]. Additionally, information protection
can be taken into account, through security techniques such
as distributed ledgers [3], [23].

Regardless of the objective, a common issue is that cen-
tralized offloading can be derived only after collecting infor-
mation from every agent, which not only is computationally
prohibitive, but also increases the network congestion. Thus,
distributed policies are often considered [9] that, while subop-
timal, can be made efficient through proper incentives.

Insofar, the issue of local processing versus remote compu-
tational offloading has been addressed for latency optimization
or task completion maximization. Information freshness is
rarely considered, despite being a critical factor in many
IoT environments, where the timeliness of data used for
decision-making is essential. One of such use cases is the
control of autonomous unmanned aerial vehicles, as seen in
[24], which explores AoI minimization within an air-ground
integrated multi-access edge computing system. This is solved
as a stochastic game, further transformed into a single-agent
Markov decision process. Another scenario, the Internet of
medical things, is considered in [2], with a similar focus on
remote vs. local processing, declined as offloading to a central
server or processing data inside a wireless body area network
to avoid congestion. A decentralized solution is found through
a non-cooperative game played by rational agents.

A more general perspective is adopted in [16], where an
edge computing architecture is mathematically framed as a
queueing system, keeping into account the peak AoI as the
performance indicator, so that violation of an age threshold
implies staleness of data. Conversely, [25] still considers a
queueing approach and focuses on the tradeoff between trans-
mission and processing, but with a slightly different approach
than ours. In that paper, edge nodes can choose how much
computation to perform, and leave the residual unprocessed
data to the remote server. Through a stationary distribution
analysis, closed form expressions for AoI and peak AoI are
obtained, showing how they can be optimized.

Finally, [17] shares many similarities with our approach,
considering local and remote processing, as well as a mixture

thereof. However, the approach is again based on queueing
theory and a zero-waiting policy is adopted, without consid-
ering different reliabilities of the local processing as opposed
to the remote offloading.

III. SYSTEM MODEL AND PRELIMINARIES

A. Notation

We denote a discrete random variable (r.v.) and its realiza-
tion by upper- and lower-case letters, respectively, e.g. X and
x. The probability mass function (PMF) of a r.v. X is p(x),
whereas GX(u) is its probability generating function

GX(u) = E
[
uX

]
=

∑
x
uxp(x).

In turn, the probability generating function allows to derive
the k-th order moment of the r.v. X as [26]

E
[
Xk

]
=

k∑
j=1

{
k

j

}
djGX

duj

∣∣∣∣
u=1

(1)

where
{
k
j

}
is the Stirling number of the second kind, i.e.{

k

j

}
=

1

j!

j∑
ℓ=0

(−1)j−ℓ

(
j

ℓ

)
ℓk.

Finally, for discrete time Markov chains, we write the tran-
sition probability between states i and j as qi,j , and the
stationary probability of being in state i as πi.

B. System model

We consider a set of n independent agents (or nodes). Each
agent is interested in performing a series of computational
tasks, aiming to minimize a cost or penalty function. Tasks
can either be performed locally or offloaded, leaning on the
support of a remote server. Moreover, each task may or may
not be successful, which reflects on the computed penalty.

To model this setup, we consider time to be divided in slots
of equal duration, and all agents to be slot-synchronized. In
each slot, a node, when idle, chooses among three options: i)
it performs a task locally (with probability pℓ); ii) it requests
remote completion of a task (with probability pr); or, iii) it
does not perform any action (with probability 1− pℓ − pr).

A local task is completed immediately, i.e., within the slot it
is initiated by the agent, yet is only successful with probability
α < 1. Conversely, a remote task is always successful, but
may require longer to be processed. This does not necessarily
mean that edge/cloud servers do not fail (e.g., because of
congestion), but whenever they do, the request is forwarded
to another available server until it is eventually successful,
so individual failures are just represented with the tail of the
delay distribution.

Thus, when a remote task is initiated, the agent enters a
waiting state until the outcome is delivered from the server.
The time-to-response of a remote request is modeled as a
geometric random variable W of parameter δ, with average

E [W] = 1/δ. (2)

C

R

I

αpℓ

pr

1− αpℓ − pr

1− δ

δ

1− αpℓ − pr

pr

αpℓ

Fig. 1. Markov chain describing the behavior of an agent.

As soon as the response from the server is obtained, the agent
reverts to idle mode, potentially initiating other tasks.

Accordingly, the behavior of an agent can be described by
means of the Markov chain reported in Fig. 1. Here, I denotes
the idle state, whereas the node remains in R while waiting for
the completion of a remote request. Finally, state C is entered
whenever a task is successfully completed. Following this
notation, a transition to R can take place from both C and I
with probability pr. On the other hand, once a remote task has
been initiated, the agent remains in state R with probability
1 − δ or transitions to C with probability δ. When idle, the
node may also successfully perform a task (probability αpℓ)
and transition to C. Similarly, a transition from this state to I
is possible in case no remote request is triggered and no local
task is completed (probability 1 − αpℓ − pr). The long term
distribution for the irreducible, aperiodic chain can readily be
derived. In particular, the stationary probability for a node to
be in state R takes the form

πR =
pr

δ + pr
.

Leaning on this, the frequency of local tasks can be expressed
as (1 − πR) pℓ. To capture the behavior of most practical
systems, we consider this quantity to be constrained, due
to, e.g., energy, duty cycle, or processor sharing arguments
at the node [2], imposing (1 − πR) pℓ ≤ ε. After simple
manipulations, the limitation can be expressed as

pℓ ≤
ε(δ + pr)

δ
. (3)

Finally, consider the remote processing of tasks. If all agents
contend for the same remote server, which implements a
processor sharing policy and equally splits the available com-
putational resources [9], the average time needed to complete
a task is proportional to the overall intensity of amount of
requests. We model this by having

E[W] = T+ (n− 1)λ(n, pr) (4)

where T is the average time for an agent to get a response
from the server without any contention, whereas λ(n, pr) is
the average number of remote requests per slot generated by
each of the remaining n−1 nodes. Recalling that a poll to the
server is generated with probability pr only when the agent
is not waiting for a response, we get λ(n, pr) = πR pr. From
this standpoint, we remark the non-trivial relation between the

×

W

×

Y

. . .

t

Ω(t)

Fig. 2. Sample evolution of penalty Ω(t), for m = 1. Red crosses (×) and
green circles () denote slots of a local task failing or succeeding, respectively.
Blue rectangles () are slots in which a remote task is requested, and will be
completed after a delay W , resetting the penalty . The inter-reset time is Y .

frequency of requests and the remote service time. Indeed, the
longer a node has to wait for a server response (i.e., the larger
πR), the lower the rate with which it generates further polls to
the server. This is characterized by plugging (2) into (4) and
solving for δ, to obtain

δ(n, pr) =
1− prT+

√
1 + 2prT+ p2r(T

2 + 4n− 4)

2(T+ (n− 1)pr)
(5)

where the the dependency of the service time on the network
cardinality and the remote request probability is highlighted.

The performance of an agent is gauged over time through
the penalty function

Ωm(t) := (t− τ(t))m

where τ(t) is the instant of successful completion of the last
task (either locally or remotely) for the node as of time t. The
metric captures the timeliness of the processing, being reset to
zero as soon as the successful output of a computation task is
available to the agent, and growing as time elapses without
further updates. A sample of realization of the stochastic
process Ω(t) is reported in Fig. 2 for m = 1 (i.e., a linear
penalty).1 Incidentally, the metric is akin to AoI [15]. In the
following, we will focus on the steady-state of the process,
which is shown to be ergodic, and consider the average penalty

Ω̄m = E[Ωm(t)]. (6)

C. Signal Flow Graphs

To characterize Ω̄m, we resort to tools borrowed from
the study of SFGs. In the remainder, we provide a minimal
introduction to the concepts that will be used, referring the
interested reader to, e.g., [27], for further details.

An SFG is a directed, weighted graph, in which each
vertex is associated to a variable. Within the graph, the value
of the variable linked to vertex A is the weighted sum of
all variables associated to vertices with an outgoing edge
towards A, each multiplied by the weight of the corresponding
edge. Accordingly, an SFG provides a graphical representation
of a system of linear equations. One may be interested in
expressing one variable as a function of a single other one,

1We take slots as the basic time units. Depending on the application, the
time to complete a task may vary [21], [22]. Yet, what matters is the ratio of
the times to perform an action locally or remotely. Resorting to slots allows
us to abstract from specific values and extract general tradeoffs [2], [6].

C′

R

I

C′′
u qC,C

u qC,R

u qC,I

u qR,R

u qR,C

u qI,I

u qI,R

u qI,C

Fig. 3. Signal flow graph corresponding to the Markov chain of Fig. 1.

obtaining the so-called transfer function between the two.
Although the problem can be tackled with several techniques,
e.g., substitution within the corresponding linear system, a
method known as Mason’s gain formula allows to derive the
solution by graphical inspection of the SFG. Specifically, the
transfer function can be obtained by identifying direct paths
between the two variables as well as loops in the graph, and
combining the weights of the involved edges [27].

When dealing with finite state Markov chains, SFGs turn out
to be useful for deriving statistics of absorption times. More
precisely, given a Markov chain, a corresponding SFG can be
obtained by preserving the same set of vertices and edges,
and considering as weights the transition probabilities of the
original chain, multiplied by a dummy variable u. Following
this notation, the transfer function between states A and B
corresponds to the probability generating function of the time
of first visit to state B when starting from A [27].

IV. AVERAGE PENALTY

To capture the performance of different task allocation
policies, we start by providing the following result.

Lemma 1: For our system, the average penalty Ω̄m is

Ω̄m =
E
[
Y m+1

]
(m+ 1)E[Y]

(7)

where Y is the r.v. denoting inter-refresh time, i.e., the time
elapsed between two successive resets of the penalty.

Proof: We exploit geometric arguments, akin to, e.g.,
[14]. Leaning on the ergodicity of the stochastic process
Ωm(t), proved at the end of the section, (6) is expressed as
the long term time average of a realization. Accordingly,

Ω̄m = lim
t→∞

1

T

∫ T

0

Ωm(t) dt
(a)
= lim

ℓ→∞
1∑∞

ℓ=1 Yℓ

∞∑
ℓ=1

Aℓ

(b)
= lim

ℓ→∞
ℓ∑∞

ℓ=1 Yℓ
· 1
ℓ

∞∑
ℓ=1

Y m+1

m+ 1

(c)
=

E
[
Y m+1

]
(m+ 1)E[Y]

.

Here, (a) follows by expressing the integral of the penalty
function as the sum of the areas Aℓ below the curve within
the ℓ-th inter-refresh period (see Fig. 2), and by computing
the normalization factor 1/T as the sum of the durations of
the corresponding periods Yℓ. In turn, (b) expresses the area
Aℓ =

∫ Yℓ

0
t dt = Y m+1/(m + 1), whereas (c) follows from

the ergodicity of the process Yℓ.

The result in (7) clarifies how the statistical moments of
the inter-refresh time suffice to compute the average penalty.
To this aim, one can conveniently consider the Markov chain
in Fig. 1, and observe how Y corresponds to the time of
first visit to state C (metric reset) when starting from the
same. Recalling the discussion of Sec. III-C, the probability
generating function of the sought quantity, GY (u), can then
be promptly computed. Specifically, we introduce in Fig. 3
the SFG corresponding to the Markov chain in Fig. 1. For
convenience, the state C has been split into C′ (with only
outgoing edges) and C′′ (with only incoming edges), and we
recall that u is a dummy variable. In this setting, the transfer
function between C′ and C′′ can be derived by applying
Mason’s gain formula [27] to obtain

GY (u) =
uα pr + u2(δpr − αpℓ(1− δ))

[1− (1− δ)u] [1− (1− pr − αpℓ)u]
. (8)

By properly combining the derivatives of GY (u), as per
(1), the statistical moments of any order for the inter-refresh
time can be computed, obtaining Ω̄m for any value of the
penalty order m. As an example, focus on a linear penalty
(m = 1). In this case, Ω̄1 = E[Y 2]/(2E[Y]), where the first
and second order moments follow from (1) as E[Y] = G′

Y (1),
E[Y 2] = G′′

Y (1) + G′
Y (1). Computing the derivatives of (8)

leads, after simple manipulations, to the closed form

Ω̄1 = −1

2
+

1

δ
− 1

δ + pr
+

1

pr + αpℓ
. (9)

The derivation neatly pinpoints the role played by the system
parameters α and δ, as well as of the degrees of freedom of
the agent in the choice of pr and pℓ.

We also note that (8) proves the ergodicity of Ωm(t). To
this aim, consider the embedded Markov chain Xℓ, tracking
the penalty metric at the end of a slot. The (infinite-state)
chain can immediately be seen to be aperiodic and irreducible.
Moreover, the mean recurrence time of state 0 is, by definition,
the mean inter-refresh time of the penalty metric, i.e., E[Y].
Observing from (8) that G′

Y (1) > 0, the chain is positive
recurrent, admits stationary distribution, and is thus ergodic.

V. NUMERICAL RESULTS

A problem of particular interest consists in finding the
optimal probabilities for an agent to perform a task locally
or request for remote support, aiming to minimize the average
penalty. To get some preliminary insights on these aspects, we
start by considering a setup with a single node, i.e. n = 1,
and focus on a linear penalty (m = 1). In this case, the
average response time of the remote server does not depend
on the frequency with which the agent issues requests, so that,
according to (4), δ = 1/T irrespectively of pr. Furthermore, as
confirmed by (9), the agent shall set pℓ to the highest possible
value that does not violate the activity constraint in (3). We
remark that, as the frequency of remote requests increases, the
time spent waiting for a response from the server increases.
Accordingly, higher values of pℓ can be employed whenever

0.01 0.1 1
10

15

25

50

pr

av
er
ag
e
p
en
al
ty
,
Ω̄

1
ε = 0.05

ε = 0.1

ε = 0.3

simulations

Fig. 4. Average penalty Ω̄1 vs probability of remote processing, pr , for a
single agent (n = 1), with T=20 and α=0.3, and different activity rates ε.
Lines and markers report analytical and simulation results, respectively.

the agent enters (less frequently) the idle state, as captured by
the proportionality between pr and pℓ for a fixed δ in (3).2

The average penalty attained by changing pr is reported in
Fig. 4 for different values of the activity constraint ε. Markers
report the outcome of Montecarlo simulations, verifying the
correctness of the reported analysis. In all cases, the average
remote service time is set to T = 20, and the success
probability of a local task is α = 0.3. Consider first the case
ε = 0.3 (orange line), in which the agent is allowed to attempt
a local task quite frequently. In this setting, the average penalty
undergone without resorting to the help of the remote server
is lower than what can be achieved by constantly asking for
it, discouraging the use of external resources. This can readily
be verified by computing Ω̄1 in (9) for pr = 0 and pr = 1, to
obtain −1/2+1/(αε) and 1/2+T 2/(T+1), respectively. The
situation is reversed when the agent can perform a local task
only sporadically (blue curve, ε = 0.05), as a constant poll
to the remote processor (pr = 1) becomes the most beneficial
approach. On the other hand, more interesting insights are
offered by the intermediate case under analysis (ε = 0.1, red
line). For this configuration, performing only local tasks is still
less convenient than resorting to remote support. However, a
balance point exists, and the minimum penalty is obtained
by selecting an intermediate value p∗r . Indeed, recalling what
discussed earlier, a reduction in pr allows the agent to operate
with higher values of pℓ. In the considered configuration,
trading off some time spent awaiting a remote answer to
attempt a (potentially successful) local task eventually pays
off. In the single-agent case, the optimal probability can be
explicitly derived in closed form by simply plugging (3) into
(9) and nulling the derivative with respect to pr, to obtain

p∗r =
1− (αεT)2 +

√
1 + αεT

αεT2 (1 + αεT)
.

From this standpoint, the presented closed form analysis
provides a useful and practical tool for proper tuning of the
agent behavior based on the system parameters.

This is further explored in Fig. 5, reporting the optimal
probability of requesting a remote task as a function of

2In particular, for any pair (ε,T) such that ε(1−T) < 1, we have pℓ = 1
without violating (3). This only holds for n = 1, as δ does not depend on pr .

20 40 60 80 100 120 140 160 180 200
0.001

0.01

0.1

1

average remote service time, T

op
ti
m
al

re
m
ot
e
re
q
u
es
t
p
ro
b
.,
p∗ r

α = 0.01

α = 0.1

α = 0.3

Fig. 5. Optimal remote request probability p∗r vs mean service time T. Single
agent (n = 1), with ε = 0.1, for different local success probabilities α.

0.001 0.01 0.1 1
15

20

25

30

35

40

45

pr
av
er
ag
e
p
en
al
ty
,
Ω̄

1

n = 1

n = 100

n = 400

n = 1000

Fig. 6. Average penalty Ω̄1 vs. probability of requesting a remote task, pr
when n agents contend. In all cases, T = 20, α = 0.3 and ε = 0.1.

the average service time T. Different curves denote results
for distinct success probabilities of a local task, α. In all
cases, the constraint on the local activity is ε = 0.1. The
plot clarifies how a quicker response renders the use of the
remote server more convenient, eventually leading to all tasks
being offloaded remotely. As the probability for a local task
to successfully reset the penalty reduces, this configuration
dominates for larger values of T. On the other hand, as the
average waiting time increases, an optimal balance between
local and remote operations shall be aimed for.

Consider now the setting where multiple agents may poll
the same remote server. In this case, the average response time
increases proportionally to the average number of performed
requests per slot, as captured by (4). This triggers some non-
trivial effects. On the one hand, the presence of more nodes
may lead to more requests, resulting in longer waiting times.
On the other hand, it reduces the fraction of idle time, and thus
the possibility for an agent to trigger both a local and a remote
task. To shed light on the interplay of such factors, we report
in Fig. 6 the behavior of the average penalty as a function of
pr when the number of agents n varies. In all cases, α = 0.3,
ε = 0.1 and T = 20, so that the red curve corresponds to
the one already discussed in Fig. 4 for comparison. The plot
highlights several interesting take-aways. First, while for low
values of n solely resorting to the remote server (pr = 1) is
more convenient than performing tasks fully locally (pr = 0),
the opposite trend emerges for larger network populations, due
to resource sharing. In all reported configurations, the optimal
solution then lies in a proper balance between the two options.

Secondly, the value of pr that minimizes the penalty func-

0 100 200 300 400 500 600 700 800 900 1,000
0.01

0.1

1

10

100

1,000

number of agents, n

Ω̄
m
/n

m = 1, α = 0.3

m = 1, α = 0.1

m = 2, α = 0.3

m = 2, α = 0.1

Fig. 7. Average penalty Ω̄m/n vs agent population n, for T=20, ε=0.1.
Lines with markers denote penalty order m=2, whereas lines without markers
refer to m=2. Dashes differentiate local success probabilities α={0.3, 0.1}.

tion reduces as n increases, pinpointing how local operation
becomes more important as the contention level grows. From
this standpoint, we remark how a closed form for p∗r becomes
cumbersome for n > 1, since δ in (9) is driven by pr as per (5).
Nonetheless, our analysis allows to exactly capture the optimal
configurations via straightforward numerical optimizations.
Finally, as expected, the minimum attainable penalty increases
as the number of considered agents grows.

To conclude, we investigate the impact of the penalty order
m. To this aim, Fig. 7 reports the minimum achievable value
of Ω̄m, obtained by optimizing over pr, vs the number of
contending agents n. Lines without and with markers denote
the linear penalty considered so far, and a quadratic penalty
(m = 2), respectively. Similar trends arise, with an expected
increase in the undergone penalty for m = 2, as longer times
spent without refreshing the metric induce a higher cost. Along
the same line, lower success rates for local tasks (dashed line)
lead to a more severe loss for a quadratic penalty.

VI. CONCLUSIONS AND FUTURE WORK

We presented an analysis of information freshness for data
that can be processed either locally (e.g., in the generating
devices itself, or an edge server) or globally, i.e., offloaded to
the cloud. The outcome is that the optimal choice is non-trivial,
and depends on multiple system parameters. Even a single
source optimization has different working regimes, according
to which the preferable choice results in local processing,
remote processing, or even a mixture [17]. Future extensions
may include optimization or game theoretic approaches [2],
[10], [24], to compare the optimal choice and generalize it to
a selfish initiative of distributed nodes.

REFERENCES

[1] Y. Han, D. Niyato, C. Leung, D. I. Kim, K. Zhu, S. Feng, X. Shen, and
C. Miao, “A dynamic hierarchical framework for IoT-assisted digital
twin synchronization in the metaverse,” IEEE Internet Things J., vol. 10,
no. 1, pp. 268–284, Jan. 2023.

[2] Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, and
R. Y. Kwok, “Mobile edge computing enabled 5G health monitoring for
internet of medical things: A decentralized game theoretic approach,”
IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 463–478, Feb. 2020.

[3] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and
challenges,” IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1508–
1532, Apr–Jun 2019.

[4] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Comp. Surv., vol. 52, no. 1, pp. 1–23, Feb. 2019.

[5] A. Shahraki, A. Taherkordi, Ø. Haugen, and F. Eliassen, “A survey
and future directions on clustering: From WSNs to IoT and modern
networking paradigms,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 2, pp. 2242–2274, 2020.

[6] M. S. Elbamby, C. Perfecto, C.-F. Liu, J. Park, S. Samarakoon, X. Chen,
and M. Bennis, “Wireless edge computing with latency and reliability
guarantees,” Proc. IEEE, vol. 107, no. 8, pp. 1717–1737, Aug. 2019.

[7] H. Gedawy, K. Habak, K. A. Harras, and M. Hamdi, “RAMOS: A
resource-aware multi-objective system for edge computing,” IEEE Trans.
Mobile Comput., vol. 20, no. 8, pp. 2654–2670, Aug. 2021.

[8] H. Wu, “Multi-objective decision-making for mobile cloud offloading:
A survey,” IEEE Access, vol. 6, pp. 3962–3976, 2018.

[9] V. Mancuso, P. Castagno, M. Sereno, and M. A. Marsan, “Stateful versus
stateless selection of edge or cloud servers under latency constraints,”
in Proc. IEEE WoWMoM, 2022.

[10] A. V. Guglielmi, M. Levorato, and L. Badia, “A Bayesian game theoretic
approach to task offloading in edge and cloud computing,” in Proc. IEEE
ICC Wkshps, 2018.

[11] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Commun. Mag.,
vol. 55, no. 3, pp. 38–43, Mar. 2017.

[12] L. Badia and A. Munari, “A game theoretic approach to age of infor-
mation in modern random access systems,” in Proc. IEEE Globecom
Wkshps, 2021.

[13] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age
of information in the Internet of things,” IEEE Commun. Mag., vol. 57,
no. 12, pp. 72–77, Dec. 2019.

[14] A. Munari and L. Badia, “The role of feedback in AoI optimization
under limited transmission opportunities,” in Proc. IEEE Globecom,
2022.

[15] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE J.
Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210, May 2021.

[16] F. Chiariotti, O. Vikhrova, B. Soret, and P. Popovski, “Peak age of
information distribution for edge computing with wireless links,” IEEE
Trans. Commun., vol. 69, no. 5, pp. 3176–3191, May 2021.

[17] Q. Kuang, J. Gong, X. Chen, and X. Ma, “Analysis on computation-
intensive status update in mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 69, no. 4, pp. 4353–4366, Apr. 2020.

[18] A. Munari and G. Liva, “Information freshness analysis of slotted
ALOHA in Gilbert-Elliot channels,” IEEE Commun. Lett., vol. 25, no. 9,
pp. 2869–2873, Sep. 2021.

[19] C. Li, “Information processing in Internet of things using big data
analytics,” Comp. Commun., vol. 160, pp. 718–729, Jul. 2020.

[20] L. Badia, M. Miozzo, M. Rossi, and M. Zorzi, “Routing schemes in
heterogeneous wireless networks based on access advertisement and
backward utilities for QoS support,” IEEE Commun. Mag., vol. 45, no. 2,
pp. 67–73, Feb. 2007.

[21] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol., vol. 68,
no. 5, pp. 5031–5044, May 2019.

[22] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. A. S. Monroy, “Multi-
objective computation sharing in energy and delay constrained mobile
edge computing environments,” IEEE Trans. Mobile Comput., vol. 20,
no. 10, pp. 2992–3005, Oct. 2020.

[23] P. Ranaweera, A. D. Jurcut, and M. Liyanage, “Survey on multi-access
edge computing security and privacy,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 2, pp. 1078–1124, Apr–Jun 2021.

[24] X. Chen, C. Wu, T. Chen, Z. Liu, H. Zhang, M. Bennis, H. Liu, and Y. Ji,
“Information freshness-aware task offloading in air-ground integrated
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 1,
pp. 243–258, Jan. 2021.

[25] P. Zou, O. Ozel, and S. Subramaniam, “Optimizing information fresh-
ness through computation–transmission tradeoff and queue management
in edge computing,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 949–
963, Feb. 2021.

[26] W. Feller, An Introduction to Probability Theory and its Applications.
New York: John Wiley & Sons, 1957, vol. 1.

[27] S. J. Mason, “Feedback theory–some properties of signal flow graphs,”
Proc. IRE, vol. 41, no. 9, pp. 1144–1156, 1953.

