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Abstract—We present a game theoretic analysis of a personal
e-health system, where a user reports self-measured data to a
collection center. Our focus lies on addressing the challenge of
potential mistakes in the reported data, a common issue for
untrained users in e-health scenarios. The system alternates
between the states of correct or erroneous data about the user
being available at the collection center. Our goal function is
related to age of incorrect information, a measure of the staleness
of the information content. It linearly increases as time spent
in the erroneous state elapses further. In this scenario, we
introduce an additional malicious agent that injects erroneous
measurements with the objective of exacerbating the staleness of
information. This leads to an adversarial game between the user
of interest and the malicious agent, the equilibrium of which we
discuss. We derive closed-form expressions based on the system
parameters, providing insights into the parametric ranges where
the impact of the adversary is most menacing.

Index Terms—Personalized medicine; Medical self-reporting;
False data injection; Age of incorrect information; Game theory

I. INTRODUCTION

Among the applications of cyber-physical systems, a cor-
nerstone is represented by personalized medicine, where in-
dividual well-being is supported by customized technological
solutions leveraging portable devices, ubiquitous communica-
tions, and advanced data interpretation, possibly powered by
machine learning (ML) [1]–[4]. This technological paradigm
often requires a change in approach for data collection, from
concentrated medical examinations and observations, where
intense data sampling is performed by trained personnel, to
patient-generated data obtained through self-reporting [5].

This certainly offers multiple advantages, for example, in
terms of richness and coverage of the patient conditions, as
well as a general feeling of the data collection being less
invasive and also more satisfactory for the patients themselves
[6]. Thus, self-reporting medical data can be seen as an
empowerment of individuals to contribute information and
make them more active in the therapeutic process. However,
such a patient-centric approach also introduces a complex set
of challenges, prominently featuring concerns related to data
accuracy, integrity, and security [7], [8].
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One of the main issues revolves around the correctness of
self-reported data, as patients become active participants in
documenting their health journey. This raises critical questions
about the reliability of the information provided and, subse-
quently, the efficacy of medical decisions based on such data
[9]. Moreover, as the healthcare landscape embraces digital
platforms and interconnected systems, the vulnerability to
security breaches becomes a pressing concern [10], [11]. In
particular, the threat of false data injection looms large, posing
significant risks to the integrity of personalized medicine
initiatives. Indeed, the presence of a malicious agent injecting
false data can wreak havoc on the network management as it
further aggravates the problems of erroneous data reporting by
the individual users, changing it from a random nuisance into
an intentional service disruption [12].

Within this context, we employ the methodology of game
theory to shed light on the potential pitfalls associated with
inaccurate data reporting and the associated security challenge
posed by malicious agents, with a precise focus on false
data injection. Specifically, we consider a two-state system,
where the state changes depend on the actions of the involved
participants, from an individualistic perspective [13], [14].

Correct data reporting puts the system in the “right” state to
reflect that the data collection center has accurate information
about the patient. An erroneous reporting puts instead the
system in the “wrong” state. Reported values are correct or
erroneous with independent and identically distributed (i.i.d)
probabilities [15]. We consider that the system can transition
to an erroneous state due to a natural drift, reflecting the
underlying dynamics of the patient’s condition. This implies
that patients must continue to report their own data over time
to maintain the accuracy of the system [16], which is similar
to channel-dependent scheduling in wireless communications
[17]. Finally, we consider the possible presence of an adver-
sary that can inject inaccurate data, thus increasing the rate of
transitions to the “wrong” state.

Such a system incurs an operating penalty that can be
quantified through the average value of the age of incorrect in-
formation (AoII) [18]. The latter refers to a recently proposed
metric that combines the inaccuracy in the system’s knowledge
with how this inaccuracy worsens over time due to staleness.
In medical applications, this metric is particularly problematic
as it represents the timeliness (or lack thereof) of intervention
in a medical emergency whenever it is needed.979-8-3503-8481-9/24/$31.00 c©2024 IEEE



This results in a game played by strategic agents, namely the
legitimate user and the adversary [19]. Our analysis discusses
the role of different system parameters and the implications
on the resulting system performance. The evaluation of the
parameter ranges where the adversary can be effectively
counteracted can eventually serve to obtain practical results
to improve security in cyber-physical systems [20], [21].

The rest of this paper is organized as follows. In Section
II, we analyze similar models taken from the literature, giv-
ing game theoretic investigations of information freshness in
competing and possibly adversarial systems. Section III gives
a system description and presents the analysis with numerical
and closed-form derivations of the Nash equilibria. We present
numerical evaluations in Section IV, and we finally conclude
in Section V.

II. RELATED WORK

Upcoming technologies like the 6th generation (6G) of
mobile communications promise to boost the current sensing,
transmission, and interaction capabilities of medical intercon-
nected devices [10], opening unprecedented possibilities to
smart health services. However, the increase in transmission
ranges and the availability of pervasive communications also
come together with the option for an adversary to maliciously
inject data in the system [4].

Most of the literature discussing false data injection actually
revolves around the classification of different use cases or
practical techniques to counteract the problem. For instance,
physical layer techniques such as watermarking or partial self-
jamming [22] can be employed to limit the ability of an
adversary to imitate legitimate content.

In [20], a mechanism for secure estimation is proposed
based on optimal filtering and learning to exclude malicious
injections. Reference [12] proposes a detection-oriented cod-
ing to reveal false data injection attacks through estimation
residues.

Instead of investigating ways to counteract false data injec-
tion through technical means, in this paper, we admit it as a
possibility and seek an evaluation of its impacts. This is moti-
vated by the remark that personal medical monitoring devices
are very often insecure and subject to external intrusions or
tampering, as argued in [23]. For this reason, we admit that
an adversary may inject false values in our systems, and we
evaluate the consequences of this hazard, as well as estimating
if this can be properly counteracted by an increased activity
by the user to obtain a more faithful monitoring.

To obtain a quantitative evaluation, we use an approach
based on AoII, a metric proposed for the first time in [18],
corresponding to a linear penalty increase during the time
intervals where the state information is incorrect. Such a metric
can be seen as a generalization of the age of information [24],
a performance metric that is enjoying popularity to quantify
the freshness of data exchanged over sensing networks.

However, in its original formalization, AoII was considered
as just due to system drifts or changes of state in the system.
The added element of our analysis is that we analyze the
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Fig. 1. System model.

incorrectness of information when intentionally caused by an
adversary. At the same time, the reporting user is also assumed
to be strategic and contrasting false data injection (e.g.,
increasing the activity rate). This leads to a game theoretic
approach similar to [21], which presents a strategic analysis of
false data injection. However, in that paper, the players act as
minimizer/maximizer of the false alarm probability, whereas
we consider an AoII-based reward, which also accounts for
how long the information is kept in the wrong state, and we
include the cost of activity in the game.

While game theoretic approaches exist for AoI [8], [25]–
[27], they mostly consider access in resource-constrained
scenarios and not adversarial setups. Moreover, [28] actually
involves a system where a third party acts to assist the com-
munication from the reporting user instead of harming it. The
present analysis considers instead an adversarial setup with
false data injection and is based on our previous contribution
made in [15]. However, it has the notable difference that the
system state changes to the wrong state also by the effect
of erroneous self-reporting by the individual user, which is a
key problem in personal e-health systems [7]. Because of this,
the building equations are different. In particular, while the
solution concept is analogously through the Nash equilibrium,
the proposed approach allows us to evaluate the impact of the
failure rate on the performance metrics.

We remark that similar game theoretic approaches to the one
used here can also be employed for different kinds of attack
other than false data injection, specifically jamming, where the
malicious agent destroys the user-generated content, thereby
increasing the failure rate [19], [29], or eavesdropping, where
the adversary is interested in capturing private information sent
by the user [30], [31], which can be both serious source of
concerns in medical self-reporting applications.

III. SYSTEM ANALYSIS

The system under investigation is displayed in Fig. 1. In our
model, we consider a remote user performing medical self-
measurements to monitor health conditions and sending the



resulting medical data to a collection data center, which can be
a hospital or a physician. However, the data sent are not always
correct due to the following undesired effects: (i) mistakes in
the measurements by the remote user, so that they do not really
reflect real medical conditions; (ii) a system drift reflecting
the system dynamics, so that the values change and, while the
measurements were previously correct, are no longer so; and
finally, (iii) possible false data injection by an adversary.

Effects (i) and (ii) are described through stochastic pro-
cesses that can be regarded as unintentional and, therefore,
independent of each other. Conversely, (iii) can be present if
an adversary intentionally attacks the system.

As a result, whenever a correct update is delivered to the
data center, the system state transits to the “right” state since
the monitoring platform now has correct medical information
on the user. Conversely, all the events of erroneously reported
update, data drift, or malicious injection cause the opposite
transition towards the “wrong” state. If we assume all of these
transitions to occur with memoryless dynamics (e.g., drifts
or data reporting happen at random instants whose intervals
are exponentially distributed), this reasoning can lead to a
representation as a two-state continuous-time Markov chain.
However, it is important to note that even in the case of more
complex scenarios, similar reasoning can lead to a slightly
more intricate Markov chain representation. Nevertheless, this
representation still maintains the same fundamental features
as discussed above.

We assume that the user transmits updates at a rate t, with
a failure rate f . Therefore, the generation rates of correct and
erroneous updates are (1−f)t and ft, respectively. Addition-
ally, we consider a drift rate d and a malicious injection rate of
q by the adversary, as described in [15]. Note that the analysis
in [15] assumed, unlike our approach here, that the updates
were always successful.

We assume that all transitions from injected false data,
erroneous updates, or data drifts are substantially equivalent, as
they all have the effect of leading the system to an “wrong”
state. Consequently, the receiving station cannot distinguish
false data from erroneous legitimate updates. However, it is
straightforward to include this consideration by treating q as
the “net injection rate” that escapes detection from the data
center.

Further, we assume that transmissions from the user and
false data injection by an adversary incur a cost proportional
to their rate through a constant parameter that can be seen as
a price (i.e., cost per unit rate) [26]. The meaning of such a
cost can be connected to the energy expenditure, which would
be proportional to the activity rate, or just seen as a shadow
price, i.e., the Lagrange multiplier of the constraint limiting the
activity to indefinitely increase [14]. We denote these prices as
C and K for the legitimate user and the adversary, respectively,
in accordance with [15]. A summary of the notation for these
parameters is reported in Table I.

Since our proposed model involves a recurring Markov
chain, where the system alternates between two states, one
can focus on the cycles between the hits of the “right” state.

TABLE I
NOTATION FOR THE ANALYSIS

Quantity Symbol
transmission rate from the user (R) t
failure probability of a user update f

injection rate from the adversary (M) q
system drift rate d

transition rate → Wrong b = ft + q + d
transition rate → Right p = (1−f)t

transmission price for the user C
transmission price for the adversary K

average age of incorrect information (AoII) ∆

Thus, it is immediate to derive the average AoII, denoted as
∆, as the average reward obtained over a cycle divided by the
duration of the cycle itself [28], which leads to [15]

∆ =
1/(2p2)

1/p+ 1/b
=

b

2p(b+ p)
(1)

where b = ft+q+d is the rate of transitions towards the wrong
state, whereas p = (1−f)t is the rate of transitions towards
the correct state. This means that (1) can be rewritten as

∆ = ∆(t, q) =
ft+ d+ q

2(1− f)t(t+ d+ q)
. (2)

In light of this, we can take the actions of the reporting
user R, as well as the malicious agent M, as guided by utility
functions, respectively defined as follows

uR(t, q) = −∆(t, q)−C ·t, uM(t, q) = ∆(t, q)−K ·q . (3)

In these definitions, we take inspiration from adversarial
setups that are commonly modeled in game theory as zero-
sum games [19]. Yet, our model here is not zero-sum in that
we also include a cost term proportional to the player’s activity
through the respective prices.

These definitions mean that if the adversary is not present
and therefore q = 0, the optimal transmission rate of the
reporting user, which we denote as t0, can be determined
through a single variable maximization of uR(t, 0). Since
in our model this is a rational function that is continuously
differentiable, we can compute t0 by imposing

∂uR(t, 0)

∂t
= 0 ⇒ ∂∆(t, 0)

∂t
= −C . (4)

In general, this leads to an equation that can be solved
numerically. However, if d→ 0, which is the case for a slowly
drifting process, then the optimal transmission rate is only
limited by failures. This can be seen as a lower bound, and
we can write

t0 ≥ lim
d→0

t0 =

√
f

2(1− f)C
(5)

Instead, to evaluate the outcome when false data injection
is present (q 6= 0), since this is controlled by a different agent
than the reporting user and whose objective is also clearly
different, we need to resort to a game theoretic setup.

Specifically, we frame the problem as a static game of
complete information [26], which means that two players



choose an action independently and unbeknownst to each
other, and the outcome of the game is determined by their joint
choices. In making their choice, the players have complete
information about the possible results, but they do not know
each other’s choice. Still, the usual approach of game theory
is that a desirable outcome for the players can be obtained
as the Nash equilibrium, seen as a point where no unilateral
deviation by either player is convenient. In our formalization,
the set of players is {R,M}, their respective actions are their
activity rates t and q, both chosen as non-negative real values,
and their utility functions are uR and uM as per (3).

Thus, the NE equations can be derived as [28]

∂uM(t, q)

∂q
= 0 ,

∂uR(t, q)

∂t
= 0 , (6)

resulting in

∂∆(t, q)

∂q
= K ,

∂∆(t, q)

∂t
= −C. (7)

The first condition leads to the convenient result

t+ d+ q =
1√
2K

(8)

whereas the second obtains

C =
1

2(1− f)

(
1

t2
− 1− f

(t+ d+ q)2

)
. (9)

It must be remarked that (8) is valid only if the resulting
value for q is non-negative, thus this equation imposes K <
(t+d+q)−2/2, otherwise the optimal choice of the adversary
is to be inactive (q = 0), and we fall back in the single-
agent optimization as per (5). The practical interpretation of
this condition is that there is an upper limit Kmax for the
false data injection price, and if K > Kmax, there will be no
malicious activity since a strategic adversary will realize that
it is not convenient to further increase the system’s AoII with
respect to what the failures and the natural drift already do (at
no cost to the adversary). This underlines the importance of
system-awareness in the opportunistic selfish behavior by the
adversary [17].

If K ≤ Kmax, combining (8) into (9) obtains

t = [2(C +K)(1− f)]−1/2 . (10)

which highlights an increase in activity with respect to (5),
whereas of course if K > Kmax then t = t0.

It may be useful to get an estimate of the upper limit
Kmax, since it is a quantification of the amount of defense
that the network operator has to put in place to prevent
malicious activities so that there is no adversarial injection if
the price of adversarial activity is beyond that value. This can
be achieved numerically based on the information provided
above, although it is possible to derive closed-form bounds.

It may be tempting to consider the case of a vanishing
system drift d → 0, in which case we can immediately find
an estimate K̃0 by imposing

√
2K < t−1 and taking the

expression of t from (10), resulting in

0 ≤ K < K̃0 =
C(1− f)

f
. (11)

However, this bound is very loose if d is small but non-zero
because the actual condition is

1√
2K

>
1√

2(C +K)(1− f)
+ d

and the two sides of the inequality have a constant bias that
only depends on d and is non-vanishing when its value is
non-zero, even if small.

A tighter bound can be found by reordering the terms as

2dK

√
fK̃0 +K(1− f) < f(K̃0 −K) (12)

where we neglected the term in d2 but not that in d. Clearly, if
d = 0 then we fall back to the previous upper bound K < K̃0,
but if we instead impose

√
K = x we can solve the third

degree inequality resulting from (12):

2d
√

1− fx3 + (2d

√
fK̃0 + f)x2 − fK̃0 < 0 (13)

whose associated equation only admits one positive solution α,
the LHS term being always strictly increasing in x ∈ [0,∞),
and its values at 0 and ∞ being negative and positive,
respectively. This means that (13) gives a tighter upper bound
K̃1 =

√
α on the values of K where adversarial activities are

possible, whenever K < K̃1.

IV. NUMERICAL EVALUATIONS

We present numerical evaluation samples derived from the
computations discussed in the previous section. In all the
plots, the transmission price for the reporting user R is set
at C = 1.0, and the system drift is d = 5 · 10−2. While these
specific values were used for the sake of illustration, the anal-
ysis is inherently general and can seamlessly accommodate
other values as needed.

In the plots, we consider two different values of the failure
probability f ∈ {f1, f2}. Specifically, we set f1 = 0.1
and f2 = 0.3. Such values correspond to Kmax ≈ 2.464
and Kmax ≈ 1.421, respectively, as determined numerically.
Moreover, the upper bounds computed in the preceding section
are K̃0 = 9.0 for f1 and K̃0 = 2.33 for f2. However,
these bounds are shown to be particularly loose. Alternatively,
tighter upper bounds are provided by K̃1 = 2.590 for f1 and
K̃1 = 1.446 for f2.

Fig. 2 illustrates the transmission rate t of the reporting user
R at the NE. It demonstrates that when the price of adversarial
activities surpasses Kmax, the adversary is absent, and t can
be set solely based on the value t0, determined by drifts and
failures. However, if the price of adversarial activities falls
below Kmax, making malicious injection favorable for the
attacker, the reporting user is compelled to compensate by
increasing activity. Notably, even in scenarios with relatively
lower failure rates, the resulting value of t might exceed the
one observed when the failure rate is higher, but no adversary
is present. This underscores the notion that a strategic adver-
sary can inflict more substantial damage than a higher failure
probability alone.

The activity rate q of the malicious player M is depicted in
Fig. 3. The figure presents the ratio between q and t to gauge
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Fig. 3. Ratio of transmission rates of the adversary and the reporting user
q/t, as a function of the price of adversarial activities K.

this in proportion to the data exchange rate, indicating that,
except when the price K is exceptionally low—wherein the
activity of M escalates—typically, the injection rate of false
data is lower than t. As elucidated in the analysis, when the
price rises beyond Kmax, the adversary refrains from attacking,
leading to a drop in its activity rate to 0. It is worth noting that
the adversary remains active (i.e., q > 0) when K and C are
comparable. In such instances, albeit restricted to a fraction
of t, the attacker finds it convenient to cause damage (and, as
will be observed in the next figure, this action proves to be
successful and increases AoII). This implies that it would be
crucial for the network manager to implement measures that
make malicious injections more costly for the attacker than
legitimate reporting from the user.

Finally, Fig. 4 shows the average AoII of the system. The
trend mirrors that of Fig. 2, starting from a higher value and
then saturating to an asymptote corresponding to the case
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Fig. 4. Average AoII of the system vs the price of adversarial activities K,
with and without an adversary.

without an adversary when K reaches Kmax. However, this
highlights the non-trivial property that, due to the adversary’s
presence, an increased transmission rate by the reporting user
still corresponds to a higher AoII, rather than a lower one.
This once again reaffirms the criticality of the presence of an
adversary in the system, ultimately deteriorating the system
performance even in the presence of strategic countermeasures.
Therefore, the optimal approach to control it is by implement-
ing system protections that make it prohibitively expensive for
the attacker to intervene.

A very active adversary can make a system with a low
failure rate worse than one with a higher failure rate but no
adversary. This is evidenced by the intersection of the NE
curve for a failure rate of f = 0.1 with that for f = 0.3 in the
absence of an adversary. Additionally, the earlier saturation of
the AoII, albeit at a higher value, for a higher failure probabil-
ity is explained by the observation that when the transmission
is already noisy, the adversary finds it less advantageous to
further disrupt it [15].

This happens because failures do not impose any cost on
the adversary, whereas false data injection comes at a price.
Therefore, the adversary is active only when deemed conve-
nient. This highlights the possibility that system management
might intentionally degrade system performance slightly to
enhance its defense against attacks. While this approach may
be justified if the primary goal of system control is stability and
predictability rather than maximizing performance, it is essen-
tial to acknowledge that it ultimately diminishes overall system
performance. One could then argue that an effective strategy to
mitigate false data injection might involve convincing adver-
saries that the system is inherently unreliable, thereby deterring
further intervention. Hence, the real takeaway lesson is that
attacks are performed based on the malicious adversary’s
awareness of the system [17]. This highlights the importance
of secrecy not only for the exchanged contents, but even for
the global system characteristics, and possibly prompts further



exploration within game theory, specifically concentrating on
the Bayesian beliefs of the players and configurations that
enhance system security [11].

V. CONCLUSIONS

We investigated a security problem concerning medical self-
reporting data, with the objective of minimizing the average
AoII [18]. This entails maximizing the accuracy and timeliness
of reported information, even in the presence of an adversary
injecting false data. The problem was formulated as an adver-
sarial game involving status updates between the legitimate
user and the adversary [21].

Our study involved a game-theoretic analysis of the in-
teraction between two players, the user and the adversary.
We derived closed-form expressions revolving around the
modeling of the system as a two-state Markov chain with
variable transition rates. These rates are controlled by the
actions of the players, who, constrained by transmission costs,
aim to minimize or maximize the average AoII [15].

We computed the NE and demonstrated that the adversary
may remain inactive if its cost is prohibitively high. In such
cases, optimal system control merely needs sporadic updates.
However, if the cost is within an acceptable range, the activity
of both players increases, leading to higher expected AoII.

We successfully established connections of various param-
eters, including the resulting expected AoII, the data injection
rates by the legitimate user and the adversary, as well as the
valid range for the adversary transmission price where the
adversary is active, with the quantitative characteristics of the
system. This enables a practical evaluation in closed form.

Future research could explore extended scenarios encom-
passing other forms of attack, as well as more advanced
strategic interactions between the players. This could include
incomplete information and Bayesian games [13], [19].
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