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Abstract—We focus on remote monitoring applications, in
which a large number of devices send time-stamped status
updates over a wireless channel to a common receiver. An uncoor-
dinated medium sharing policy based on ALOHA is considered,
and the overall goal is to maintain an up-to-date perception
at the receiver, captured via the average age of information
(AoI) metric. In this setting, we propose and evaluate a simple
reinforcement learning algorithm which is run independently at
each node in a fully decentralized fashion. Leaning on a binary
success/collision feedback distributed by the receiver, the solution
adapts the access behavior of transmitters based on the current
value of AoI. We compare the performance of the scheme to that
of threshold ALOHA [1], a benchmark protocol that resorts to a
central optimization of the access parameters. Interesting insights
on the potential of reinforcement learning for AoI improvements
in random access channels are derived.

I. INTRODUCTION

Age of information (AoI) has recently emerged as a key
indicator to gauge the performance of communications sys-
tems that need to deliver information in a timely fashion
for computation or actuation. Originally introduced in the
context of vechicular networks [2], [3], the metric quantifies
the time elapsed since the generation of the last received
message from a source of interest, expressing how up-to-date
the available knowledge is at the point of collection. Owing
to its simple definition and mathematical tractability, AoI has
received significant attention in the literature [4], and has
been shown to effectively capture some fundamental trade-
offs in a variety of settings, providing insights on the design
of sampling and transmission strategies [5], as well as of more
complex communications network protocols [6].

The notion of information freshness is paramount in a broad
set of applications, ranging from asset tracking to distributed
control, cyber-physical systems, and industrial automation.
A scenario of particular relevance is that of remote source
monitoring in the Internet of things (IoT) [7]. In this case,
multiple devices sense physical quantities of interest, and
report collected data over a shared wireless channel to a
common receiver for decision making policies, which benefit
from a low AoI. In such settings, grant-based transmission
strategies are inefficient due to potentially unpredictable and
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sporadic traffic generation, together with the large number
of often low-power, low-complexity sensing devices that may
be deployed. As a result, random access protocols based on
variations of ALOHA are employed in commercial solutions
[8]. On the other hand, the uncoordinated behavior of nodes
and the interference-prone multiplexing render the definition
of AoI optimal access strategies non-trivial.

This spurred recent research efforts [9] underpinning some
key aspects. Exceedingly large values of AoI are experienced
in random access channels for low traffic (sporadic updates) as
well as high transmission rates (channel clogged by collisions).
In the absence of feedback, initial results [10], [11] showed
an inverse proportionality between information freshness and
aggregate throughput, with average AoI that scales as em in
a slotted ALOHA system with m contending terminals.

Significant improvements can be attained if a return channel
is available to inform nodes about the outcome of each
transmission. A simple collision/success feedback makes each
terminal aware of its own AoI, enabling policies that give pri-
ority to nodes the receiver has a stale perception of. Intuitively,
barring access for devices that recently delivered an update
reduces channel congestion, and favors the successful commu-
nication with the receiver for nodes with higher AoI. Following
this approach, different variations of slotted ALOHA that
implement a threshold policy have been proposed.

Fundamental insights were derived in [1], assessing the
performance of a scheme that silences nodes with AoI below
a threshold, and lets others contend with a common trans-
mission probability. By jointly optimizing access parameters
and threshold, an average AoI that scales as 1.4169m was
obtained, almost halving the result in the absence of feedback,
and incurring a near-negligible throughput loss. A similar
solution was introduced in [12], allowing for a dynamic change
of the transmission probability and reaching an asymptotic
scaling law of em/2 for the average AoI. To this aim, an
algorithm akin to Rivest’s stabilization [13] is employed, with
nodes listening to the feedback after each slot, not only after
performing a transmission. Both solutions provide remarkable
performance for a random access channel. However, they
require knowledge of the network population, and either
resort to central optimization or undergo increased complexity
in terms of feedback (higher energy expenditure) and local
computation. Both aspects may be problematic in large and



dynamic IoT systems with low-power devices [14].
These remarks trigger the question of whether simpler

distributed solutions can be derived [15], [16]. In this paper,
we propose an approach based on reinforcement learning [17],
in particular, a Q-learning solution that nodes can run in a fully
uncoordinated manner, leveraging only feedback received after
attempting a packet delivery [18], [19]. This leads each node
to choose between slotted ALOHA contention or refraining
from channel access based on their current AoI [20]. The
algorithm is flanked by a dynamic adaptation of the trans-
mission probability based on the success/collision outcome
of own attempts. Both procedures are simple to implement
and entail low computational complexity. A threshold-based
behavior emerges, providing interesting AoI performance. The
initial trends we present are promising, and our work aims to
further stimulate results on the application of reinforcement
learning to AoI reduction in random access channels.

II. RELATED WORKS

An excellent introduction to AoI, with an overview of key
results in different settings can be found in [4]. Focusing on
random access, the performance of ALOHA-based contention
was first explored in slotted systems in [10], [16], later
tackling unslotted setups in [11]. These contributions triggered
a flourishing line of research, exploring the impact of different
aspects on AoI. Among these, slotted ALOHA in the presence
of energy harvesting was considered in [21], whereas the role
of retransmissions was tackled in [14], [22]. A game theoretic
approach to the setting was discussed in [23]. As mentioned
in Sec. I, the possibility to leverage feedback was thoroughly
studied in [1], [12]. Further improvements were attained in
[24] through an additional level of contention among nodes
with age above threshold, reaching an average AoI scaling as
0.9641m. Information freshness in protocols that go beyond
simple ALOHA was studied among others in [25] considering
framed access, whereas modern random access solutions that
combine packet repetitions and interference cancellation at the
receiver were studied in [7], [15], [26].

Reinforcement learning has been applied to slotted ALOHA
networks, mainly focusing on throughput optimization. Along
this line, [18] first proposed a Q-learning strategy for framed
access, later refined by [27] considering additional informa-
tion exchange among nodes, whereas a multi-armed bandit
approach was followed in [28]. Deep reinforcement learning
techniques were targeted in [19], while an average-payoff
method is presented to improve the throughput of delay-
constrained ALOHA schemes in [29].

Aiming at AoI minimization, reinforcement learning based
scheduling policies were proposed in [20], [30], as well as
in [31], considering RF-powered devices, and [32], delving
into the impact of hybrid ARQ. In random access channels,
research has concentrated on deep reinforcement learning.
Along this line, [33] leans on the role of urgency to develop
age-aware policies, while [34] jointly optimizes the wireless
energy transfer and the system AoI by combining a deep
neural network and tabular Q-learning. Moreover, state of the

art deep-Q networks have been proposed in [35] with the
integration of interference cancellation.

III. SYSTEM MODEL

We consider a population of m users (nodes), sharing a
wireless channel towards a common receiver (sink). Time is
slotted, and the parameters of the system are set such that a
data packet fits one slot. All nodes are assumed to be slot
synchronized. Medium contention follows a slotted ALOHA
policy i.e., in each slot, users independently decide whether to
access the channel with probability τ , or to remain silent. This
probability may differ among nodes, and change over time. In
case of a transmit decision, the user sends over the slot a
time-stamped message addressed to the receiver. Following a
generate-at-will setting [1], [10], we assume fresh information
to be always available for transmission, so that the time stamp
of any message is set to the start of the slot it is sent over.

We capture the effect of interference triggered by the
uncoordinated access policy via the well-established collision
channel model [23]. Specifically, the transmission of two
or more packets in the same slot impedes decoding at the
receiver, whereas the message of a sole user accessing a slot
is successfully retrieved. At the end of each slot, the sink
broadcasts a binary feedback, informing all nodes of whether
a collision occurred or a packet was decoded. The feedback
is modeled as instantaneous and error-free.

Throughout our discussion, we are interested in gauging the
ability of the system to maintain an up-to-date knowledge at
the sink. To this aim, let δ(i)(n) denote the current age of
information for node i at slot n, i.e.

δ(i)(n) := n− σ(i)(n) (1)

where σ(i)(n) is the time stamp of the last message the
receiver collected from node i as of time n. The metric grows
linearly over time until the reception of a new message from
user i resets it to one slot (i.e., the time needed for the message
to be transmitted and decoded by the sink). An example of
the time evolution of δ(i)(n) is reported in Fig. 1. This slot-
wise feedback renders each node aware of its own current AoI
value. Leaning on (1), we will focus on the average AoI for
a node up to time n, defined as

∆(i)(n) :=
1

n

n∑
ℓ=1

δ(i)(ℓ). (2)

As n→∞, the value converges to the common definition of
average AoI [4]. In addition, we will consider the normalized
average network AoI at time n, computed as

∆̄(n) =
1

m

m∑
i=1

∆(i)(n).

IV. AOI-BASED Q-LEARNING SLOTTED ALOHA

For the setting under study, we are interested in decen-
tralized policies based on slotted ALOHA that are able to
improve the AoI performance [10], [15]. Specifically, we
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Fig. 1. Example of time evolution for the current AoI of a node.

target distributed algorithms that allow nodes to dynamically
tune their channel access solely based on local knowledge
gathered through the binary feedback provided by the sink.
An optimal solution to the problem is in general elusive, due
to the presence of multiple non-coordinated agents contending
for the same resource, and in view of the potentially time-
correlated interference structure experienced in the system.

To tackle the problem, we thus resort to a reinforcement
learning approach, more precisely Q-learning [17] in view of
its model-free, off-policy and online control properties. Indeed,
in the setup at hand, each agent is unaware of some global
channel features such as the number of users or the AoI of
other nodes (model-free), and shall learn a strategy directly
from raw experience (online, off-policy). Formally, we define
the state of agent i at time n ∈ N as its current AoI, capped
to a maximum value Θ:

s(i)n :=

{
δ(i)(n) δ(i)(n) ≤ Θ

Θ otherwise

The truncation of the state space as S = {1, . . . ,Θ} aims at
reducing the computational complexity and speeding up the
convergence of the algorithm, with the value of Θ chosen
such that nodes experience high AoI values only sporadically.
In the remainder, we shall drop the node superscript i when no
confusion arises. At each slot, an agent selects an action from
space A = {w, t}. In the former case (w), the node remains
idle and does not access the channel. When t is selected,
the agent performs a slotted ALOHA contention to attempt a
packet delivery. The outcome of executing a ∈ A when in state
s ∈ S leads to a reward R, which will be presented shortly.
Based on this, the algorithm looks for the best policy π(a | s),
determining the action to be chosen in each state, through the
optimization of the Q-value function Q(s, a) as described for
completeness in the pseudo-code at the top of next column.

The procedure is executed independently at each agent.
In terms of notation, ε denotes the exploration rate, γ the
discount factor, and α the learning rate.

By construction, the algorithm returns a deterministic policy,
as an agent will consistently choose the action returning the
maximum Q value in the current state. We cast this into a slot-
ted ALOHA setting by having each node apply a contention
probability whenever action t is selected. Specifically, the
node actually attempts packet delivery with probability τ , and
refrains from accessing the channel otherwise. To complete
the proposed approach thus, two aspects have to be specified:

Algorithm 1 Q-learning

Initialize the Q values and the hyper-parameters
• Q(s, a) = 0 for all s ∈ S, a ∈ A, for every node i
• α, γ ∈ [0, 1], ε > 0

for each slot n do
Given current state sn, choose action a acting ε-greedy:
x← uniform random number in [0, 1]
if x ≤ ε then

a← random action from the state space
else

a← argmaxb∈A(S) Q(sn, b)
end if
Take action a, observe sn+1, retrieve R
Update Q value:

m← γmaxa′∈A Q(sn+1, a
′)

Q(sn, a)← Q(sn, a) + α(R+m−Q(sn, a))
end for

the definition of the reward and how to set the value of τ . As
to the former, we consider the following strategy:

• a choice to wait provides a reward which solely depends
on the current AoI of the agent, regardless of the behavior
of other nodes:

R(w) = 1− δ(n)

∆(n)
(3)

where we recall that ∆(n) is the average AoI of the agent
up to time n, defined in (2);

• conversely, when the agent selects action t, the reward
depends on the {success,collision} outcome observed
over the current slot, and notified by the receiver via the
feedback channel:

R(t) =


δ(n)

∆(n)
− 1 if success

−1 if collision

0 if agent remains silent

(4)

Here, the last case denotes the reward when the node
refrains from accessing the channel (probability 1− τ ).

Aiming at a low average AoI for the node, a transmission
that leads to successfully delivering an update to the sink is
rewarded proportionally to how much the AoI is lowered. This
discourages too quick attempts after a reset, which would lead
to limited benefit, and incentivizes the agent to become more
aggressive when experiencing higher values of AoI. Similarly,
a wait action is first positively reinforced (low δ(n)) – prevent-
ing an agent from seizing the channel and potentially allowing
other nodes in worse condition to communicate –, and later
negatively reinforced (high δ(n)). In turn, the introduction of
a penalization in case of experiencing a collision mixes the
single-agent and the aggregate network objectives in order to
promote distributed cooperation. Finally, a neutral reward is
foreseen when the node refrains from sending a message after
having chosen t, irrespectively of the AoI level, as such a



TABLE I
PARAMETERS USED FOR AOI-Q-ALOHA

Parameter Value
learning rate, α 0.1

discount factor, γ 0.1

exploration rate, ε 0.05

maximum AoI value, Θ 600

adaptation steps for τ ωs = 0.005, ωc = 0.005

behavior is an integral part of the slotted ALOHA contention.
As to the transmission probability, we propose a simple

reinforcement approach, which runs in parallel to Q-learning.1

The value of τ is randomly initialized by each node, and iter-
atively adjusted over time. After each successful transmission
the agent increases τ by a term ωs, whereas the probability
is decreased by ωc in case a collision is experienced. The
presented approach is simple, and can be run by each node
only leaning on the feedback received after a transmission.
Rewards solely depend on the local AoI (current at time n
and average until time n), and neither prior knowledge on the
network population, nor centralized optimization of the access
parameters or the policy is required.

V. RESULTS AND DISCUSSION

To evaluate the proposed solution, we start focusing on a
network of m = 100 nodes. In the remainder, we refer to the
presented algorithm as AoI-Q-ALOHA. As a benchmark for
performance comparison, we consider the threshold ALOHA
policy [1], which resorts to a centralized optimization of
both threshold and channel access probability. The parameters
employed in our study are reported in Tab. I.

A first interesting result is shown in Fig. 2, reporting
the normalized network AoI evolution over time, i.e. ∆̄(n).
The average normalized AoI achieved by threshold ALOHA
was obtained by means of dedicated simulations, so as to
identify the best threshold and transmission probability pair.2

For comparison, the performance of a slotted ALOHA system
without feedback is also shown. In this case, the transmission
probability is set to 1/m, obtaining the minimum network AoI
em. First, focus on the trend of AoI-Q-ALOHA.

As highlighted by the plot, the Q-learning algorithm reaches
convergence rather quickly, allowing nodes to enjoy a rel-
atively low level of AoI in a short time. Furthermore, ∆̄
reaches a value of ∼ 1.7, improving by over 40% over the
basic slotted ALOHA, and remaining 14% shy of threshold
ALOHA. From this standpoint, it is important to remark that
the benchmark enforces an optimized transmission policy to
all terminals, whereas our uncoordinated approach leads each
node to independently adapting its access policy in a fully
distributed manner. As such, slightly different trends emerges

1This choice allows to reduce the space state and speed-up convergence of
the Q-learning algorithm, compared to implementing a joint reinforcement of
both the action and channel access probability.

2We note that the result is slightly higher than the scaling law 1.4159m,
as the latter only holds for an asymptotically large number of nodes [1].
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in the network, causing suboptimal performance in terms
of AoI. Nonetheless, AoI-Q-ALOHA grants a good level of
fairness, as Jain’s index for AoI among nodes reaches ∼ 0.99
at convergence. It is worth noting that the aggregate throughput
stabilizes around 0.354 [pkt/slot], with a small degradation
compared to the benchmarks.

Further insights on the algorithm are provided by Fig. 3.
Here, the average of the Q values seen by the nodes for the
transmit and wait actions are reported for each possible value
of the state (current AoI). Formally, we show, for each state
s, 1

m

∑m
i=1 Qi(sn, a) for a ∈ {w, t} and for n large enough to

have reached stable AoI performance (see Fig. 2). A threshold
behavior emerges, favored by the definition of the rewards
introduced in (3)-(4). Notably, the crossing point for the value
of t and w actions happens on average for a slightly lower
AoI value compared to the optimal threshold identified by
threshold ALOHA (pink vertical line). For completeness, the
plot also reports (green vertical lines) the lowest AoI value
at which each of the nodes in the network prefers accessing
the channel over waiting. In this perspective, it is important
to recall that the learning approach correctly reinforces the
idea to refrain from access when the current value of δ is
low, and to become more aggressive as AoI grows. However,
the algorithm implemented by each node does not converge
to a sharp threshold, due to the randomness in the history
experienced at the agent. Rather, a transient region emerges for
growing AoI, as transmission becomes progressively dominant
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over waiting. This is exemplified in Fig. 4, which depicts the
Q matrix of one of the agents in the system. On the x-axis,
the current AoI value is reported, and, for each δ, a white cell
on either the transmit or wait cell indicate a larger Q value
for the corresponding action.

Further, Fig. 5 shows the evolution over time of the trans-
mission probability. Also in this case, for each time instant
we report the average value of τ among all nodes. The result
prompts two remarks. First, we see again a quick rise of the
parameter, as nodes dynamically adapt their access probability
to the level of contention experienced, in turn affected by the
number of nodes experiencing an AoI high enough to prefer
t over w as action of choice. Secondly, it can be observed
that the average τ tends to stabilize to a value that is lower
than the optimal access probability of threshold ALOHA (red
dashed line). This behavior is consistent with the fact that in
AoI-Q-ALOHA nodes tend to switch to transmission for lower
values of AoI. Accordingly, a stronger level of contention is
likely to be experienced, leading to a less aggressive access.

To further delve into the impact of nodes estimating τ in
a fully distributed manner, we considered a (non-practical)
variation of the scheme, in which each terminal is aware of the
current AoI values of other nodes. Upon choosing a transmit
action, the agent estimates the number of contenders it might
expect over the current slot, assuming that any other node with
an AoI value that would lead the agent to transmit (checking
its own Q matrix) does so. The transmission probability is
in this case chosen as the inverse of the estimated contention
level. The decision is made slot by slot. We remark that this
solution is indeed simply a useful benchmark, as distributing
the AoI of all nodes would not be feasible in large, slotted
ALOHA based systems. The performance obtained in this
case in terms of normalized average network AoI is shown
by the green solid line in Fig. 2. Interestingly, a level of
information freshness even lower than the one of threshold
ALOHA is attained. The result buttresses the potential of even
a simple and distributed Q-learning approach, and calls for
further studies of more advanced learning strategies applied
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to the setting under investigation.
In Fig. 6, we report the normalized average AoI obtained

by AoI-Q-ALOHA at convergence against the number of
nodes in the network. As benchmark we once again report
the performance of threshold ALOHA, for which transmission
probability and threshold were optimized for each population
size by means of dedicated simulations. The plot confirms
that the proposed algorithm offers a consistent behavior, and
interestingly points out that the gap with the benchmark
reduces for larger networks. This hints at a less relevant role
played by the behavior of nodes that act with AoI thresholds
which are far apart from the average.

We conclude our study by studying the performance of AoI-
Q-ALOHA in networks that experience a dynamic change
in the number of nodes. The results are shown in Fig. 7,
reporting ∆̄(n) over time. Specifically, we started by operating
a network with 100 terminals. After 105 slots (leftmost vertical
dashed line), additional 50 nodes join the system. No knowl-
edge about this event is distributed among agents, and the
newly inserted nodes operate themselves employing AoI-Q-
ALOHA without knowing the network cardinality. Right after
the change, a sharp decrese in the average AoI is experienced.
This is due to the fact that the new agents start by convention
with an AoI of 0, thus creating a bias on the average. More
interestingly, as time goes by, the system quickly converges
again to a stable solution, which performs as it would have if
all nodes had been present from the start. At time n = 106

(rightmost vertical dashed line), we again remove 50 nodes,
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reverting to the original network population. Also in this case
the scheme proves to be robust, as the Q-learning leads nodes
to adapt their behavior, achieving the expected performance.
These results are quite interesting, as they prove the ability
of the approach to seamlessly adapt to dynamic network
topologies, which might be encountered in many applications.
We remark once more that the algorithm only leverages the
feedback each node receives after transmission, and does not
require any other form of knowledge on the status of the
network. On the other hand, Fig. 7 also highlights that a
non-negligible time is required for the considered setting in
order for the AoI to converge after a change in the cardinality.
This is especially true when the number of nodes is reduced
(rightmost part of the plot), and is related to the fact that, in
order for the Q-learning approach to update its rewards after
having stabilized, a good deal of exploration is required. From
this perspective, further studies focusing on the role played by
the exploration rate are of particular interest, and will be part
of our future works.
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[32] E. Ceran, D. Gündüz, and A. György, “A reinforcement learning
approach to age of information in multi-user networks with HARQ,”
IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1412–1426, 2021.

[33] M. Jeong, G. Seo, and E. Hwang, “Age of information optimization
by deep reinforcement learning for random access in machine type
communication,” in in Proc. IEEE Big Data, 2022.

[34] M. Abd-Elmagid, H. Dhillon, and N. Pappas, “A reinforcement learning
framework for optimizing age of information in RF-powered communi-
cation systems,” IEEE Trans. Commun., vol. 68, no. 8, pp. 4747–4760,
2020.

[35] H. Zhao, H. Yu, Z. Zhang, M. Zeng, and Z. Fei, “Deep reinforcement
learning for the joint AoI and throughput optimization of the random
access system,” in in Proc. IEEE WCSP, 2022.


