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Abstract—We analyze a sensing system where multiple sources
transmit status updates to a common receiver. We assume that the
correlation of transmitted information allows updates from one
source to enhance the information freshness of others. We study
the objective of minimizing individual information staleness,
quantified by the Age of Information (AoI), at the receiver’s
end. We evaluate both centralized and distributed optimization
strategies. In the former case, we select the globally optimal
transmission rates for each source to minimize the total average
AoI of the system. For distributed optimization, sources are seen
as players in a non-cooperative game of complete information,
for which we compute the Nash equilibria. As an example, we
consider a fixed correlation budget shared among two sources and
evaluate the transmission rates depending on the specific level of
correlation. Our results show that, under a centralized approach,
it is convenient that only the source with more influential content
transmits, while the other source reduces its data injection rate.
In contrast, independent transmission in a distributed setup
leads to greater congestion and higher average AoI. However,
as correlation increases, the performance of the distributed
system approaches that of the centralized model, indicating that
decentralized management becomes effective in highly correlated
scenarios.

Index Terms—Age of Information; Queueing theory; Game
theory; Remote sensing; Wireless sensor networks.

I. INTRODUCTION

Real-time remote sensing involves delivering up-to-date
status information about a system. Age of information (AoI) is
a metric that quantifies the freshness of status updates transmit-
ted by sensors over time. Its broad adoption as a performance
metric is attributed to its versatility across applications and its
computational simplicity [1].

Consider a sensor that sends status updates to a re-
ceiver at specific time instances denoted by the set T =
. . . , τ1, τ2, . . . , τN , . . .. The AoI at a given time t is

δ(t) = t− τ`(t) , (1)

where `(t) = arg maxj τj ≤ t. A relevant literature on AoI
focuses on various kinds of queueing systems [2]–[5], and in
this contribution we leverage some of these results.

In particular, we consider the case of multiple sources,
as explored in [6]–[10]. The main challenge in AoI studies
for such scenarios is treating the information sources as
independent agents, each aiming to prioritize its own updates
in the queue. This issue can be addressed using game theory,
which is a popular approach for modeling situations with
multiple (competing) AoI values [11]–[13].

However, game-theoretic studies usually just address the
competition over the scarcity of communication resources
(e.g., a shared server, or a shared medium). Hence, status
updates sent by one source congest the network and worsen the
AoI value of others. In reality, many scenarios involve sensing
sources that are correlated with each other [14]. Different
agents might monitor the same environment, but at different
locations, or measure different but correlated quantities [6],
[15]–[18]. In such cases, correlation can be leveraged to im-
prove the transmission [19], [20]. Even though the competition
in this case is less impacting, game theory is still a useful
instrument to evaluate the system performance, particularly
to determine whether the decentralized management of the
system achieves efficient performance [21], [22].

Building on this existing literature, this paper offers the
following original contributions. First, we extend the system
model by considering different correlation factors among
sources. In this setup, updates from one source i may be valid
for another source j as well, with a probability that is different
for every (i, j) pair. Next, we use game theory to evaluate
the inefficiencies in a distributed management [23], where
each source independently chooses when to send updates,
as opposed to following an optimal pattern. Despite corre-
lation, nodes may still prioritize their own updates, which are
guaranteed to improve their individual AoI, but may consider
decreasing their activity if the transmission cost increases.

Our findings indicate that, under the global (centralized)
optimum, the source with content most correlated to others
continues to transmit, while the optimal transmission rate
for the remaining sources decreases to zero as correlation
increases. In contrast, when the sources choose their transmis-
sion rates independently, they continue to transmit regardless
of the growing correlation, leading to greater congestion
compared to the centralized approach, as each source acts in
its own interest. Consequently, the average AoI obtained with a
distributed approach is increased. However, at high correlation,
the performance of the distributed system tends to that of the
centralized model, suggesting that decentralized management
becomes more viable in highly correlated environments.

The remainder of this paper is as follows: Section II
reviews related work. Section III outlines the system model,
while Section IV addresses the centralized optimization of the
transmission rate. In Section V, we formalize the problem as a
game and analyze its equilibria. Section VI presents numerical
results. Finally, Section VII concludes the paper.



II. RELATED WORK

Our investigation is framed in the context of AoI for
correlated sources, possibly using game theory for the analysis.
In the literature, these aspects were already investigated by the
seminal results in [9], where a case of multiple independent
sources was studied. That work also suggests a game theoretic
investigation, but seen from a perspective akin to a duopoly
[24]. In other words, two sources (or any number greater
than one) achieve better individual AoI by coordinating their
sharing rather than competing, which is the same game theory
principle according to which a cartel performs better for com-
panies (but worse for the customers) than market competition.

Further game theoretic approaches have been proposed to
encompass multiple sources that are not just sharing the server
but also the medium, which is therefore subject to interference
[25], collisions [26], or even an intentional malicious activity
[27]. In [21], a similar scenario is considered but focusing on
multiple sources independently sending the same information.
Thus, the problem in this case is not competition, but rather
resource waste due to lack of synchronization.

This latter case can be further extended considering the case
where multiple sources are (partially) correlated, i.e., they
have some form of overlap in their information content, which
allows an update sent by a certain source to be considered
beneficial for the AoI of another quantity [17], [20].

It is often sensible to assume that information content
from multiple real-time sources is correlated in the context of
environmental monitoring (e.g., sensors monitoring the same
area) [15], or when the ultimate objective is to extract features
from a data-rich series, e.g., through machine learning [28].

The literature is actually ambiguous on this issue, and
no uniform taxonomy exists, with the “age of correlated
information” (AoCI) as introduced in [18] actually describing
a scenario where multiple sources must all deliver information
for freshness of information to be reset. In other words, AoCI
corresponds to an “and” condition (as opposed to our “or”
one) over multiple content, and is computed as the age of the
oldest content, a view that is also adopted in [16]. In [23],
this is partially amended to age of “federated” information,
i.e., the case where a subset of contents is to be updated, but
not necessarily all of them, which prompts a game theoretic
analysis for their selection. This is also different from the
correlation-aware AoI used in [29], which instead refers to
the degree of novelty brought by a new update, a concept that
is more similar to Version AoI as studied in [10], [30].

We combined these two directions of considering sources
with overlapping information content and a game theoretic
approach for the first time in [6], where we showed that
correlation is useful to not only improve the efficiency for
centrally coordinated transmissions as proved by [20], but also
decrease the price of anarchy for a game theoretic scheduler.
However, in that paper we only considered a generic uniform
correlation, whereas it is actually interesting to consider, as is
done here for the first time, a possible case of unbalance, and
what this entails for the resulting distributed management.
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Fig. 1. Queueing system with N sources and correlated content.

III. SYSTEM MODEL

We analyze the scenario depicted in Fig. 1, where multiple
sources, represented by the set N = {1, 2, . . . , N}, send status
updates to a shared receiver. The receiver organizes all the
incoming packets in a First-Come First-Served (FCFS) M/M/1
queue. The status update packets share the same queue, but
each packet influences a distinct AoI value associated with its
corresponding sending source.

The sources in N generate traffic according to Poisson
processes with arrival rates λ1, λ2, . . . , λN , respectively. The
queue has an overall service rate of µ, and packets from all
sources are served under identical conditions, with service
times following an exponential distribution and an average
duration of 1/µ.

A similar scenario was explored in [9], where we assume
that the monitored statuses exhibit some degree of correlation,
with potentially different correlation factors between pairs of
sources. Specifically, the update packet transmitted by the i-th
source affects its own AoI value but can also serve as a valid
update for source j 6= i with a certain probability; the latter is
set as a parameter αij ∈ [0, 1] as discussed in the following.

Current advancements in AoI analysis consider memoryless
transmission systems modeled as queues with various service
disciplines [2], [5], [7], [8]. For simplicity, we focus on an
M/M/1 FCFS queue, though more complex queueing systems
could be incorporated into the game-theoretic framework with-
out significantly altering the conclusions. The M/M/1 FCFS
queue effectively represents independent nodes operating as
data sources with configurable transmission rates. Employing
more complex systems, while possible, would introduce ad-
ditional complexity to the analytical derivations, leading to a
more cumbersome mathematical analysis. For a comparison
between memoryless and deterministic data generation, we
refer the interested reader to [31]. While deterministic gen-
eration may better represent sensing scenarios with periodic
reporting, it does not provide a straightforward closed-form
solution. Nonetheless, it has been shown that the same quali-
tative conclusions apply, with deterministic systems exhibiting
AoI values that are effectively scaled-down versions of those
observed under memoryless generation.



The average AoI ∆ obtained considering an M/M/1 queue
with transmission rate λ and service rate µ is [1]

∆ =
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
, (2)

where ρ = λ/µ is the load factor of the queue. We assume
a normalized service rate of µ = 1, which simplifies the
formulas by eliminating the coefficient 1/µ at the beginning
and substituting ρ with λ. This leads to

∆ = 1 +
1

λ
+

λ2

1− λ
, (3)

which can be adapted for a non-unit service rate by re-scaling.
The same adjustment applies to all equations introduced
thereafter. Also, for the system to be stable, we require λ < 1.

The AoI-optimal value of λ in (3) is determined to be λ ≈
0.531 [1]. This implies a strategy that is neither idle too often,
nor too aggressive, as λ is somehow intermediate between 0,
which would result in stale information, and 1, at which point
the queue becomes unstable, leading to extremely high AoI.

In follow-up contributions [7], [9], [32], the results of (3)
were extended to the average AoI for N independent sources.
From [32, Eqs.(25)–(26)], the expected AoI ∆j of source j as
a function of vector λ = {λi}i∈N can be written as

∆j(λ) =
1− Λ

(Λ− Λ−jEj)(1− ΛEj)
+

1

1− Λ
+

Λ−j
λj

(4)

where: Ej =
1 + Λ−

√
(1 + Λ)2 − 4Λ−j
2Λ−j

(5)

Λ =
∑
i

λi, Λ−j = Λ− λj =

N∑
i=1
i 6=j

λi .

Note that, thanks to the superposition property of Markov
processes, all data injected from sources other than j, with
rate Λ−j , can be treated as a single memoryless source.

Building on this literature, we extend the analysis by con-
sidering that the packets transmitted by a source may contain
data that is correlated with the process monitored by another
source, with correlation factors varying for different source
pairs. Specifically, a data packet sent by source i can also affect
the instantaneous AoI of another source j with probability αij ,
similar to how packets from source j influence the AoI of
source i [19]. Therefore, the AoI value of source i benefits
from packets sent by source i with probability 1 and from
packets sent by any other source j 6= i with probability αij .
Due to the memoryless nature of data, αij can alternatively
be interpreted as the fraction of data from source i that is
beneficial to source j, rather than as a probability.

IV. CENTRALIZED OPTIMIZATION

We can reformulate (4) by considering this correlation
among the data contents. This implies that, while Λ is the
same, the rate of transmitted data that are useful for the AoI
∆j of source j increases to

`j = λj +

N∑
i=1
i 6=j

αijλi, (6)

whereas the injection rate of data that do not enhance ∆j is

L−j =

N∑
i=1
i6=j

(1− αij)λi. (7)

Modifying (4) as per [6] gives the mean AoI of source j as

∆j(λ) =
1− Λ

(Λ− L−jεj)(1− Λεj)
+

1

1− Λ
+
L−j
`j

(8)

where εj also follows from replacing Λ−j with L−j in (5):

εj =
1 + Λ−

√
(1 + Λ)2 − 4L−j
2L−j

(9)

Introducing αij enables us to distinguish a range of scenar-
ios. When αij = 0,∀i, j, we encounter the case of multiple
independent sources, which is the reference scenario in [9],
where the average AoI is given by (4). If αij = 1,∀i, j,
all sources behave as a single flow with transmission rate
Λ, reverting to the basic scenario of [1] with a single source
injecting λ = Λ, whose average AoI is provided by (3). In the
intermediate case where 0 < αij < 1, the status updates of the
sources are correlated, indicating that some packets transmitted
by one source can serve as updates for another [6], [20]. The
average AoI in this scenario is described by (8).

It is worth noting that the entire concept of AoI arises from
the redundancy of information over time. This redundancy sug-
gests that multiple consecutive updates can congest processing
at the end server without significantly improving information
freshness; therefore, it may be more effective to distribute
these updates evenly over time. Our analysis extends this idea
to spatial redundancy, indicating that unnecessary updates can
be avoided if another source has already transmitted an update
about a related or identical process [33].

In this context, the global optimum vector λ? =
[λ?1, . . . , λ

?
N ] of injection rates is given by

λ? = arg min
λ

N∑
j=1

∆j(λ) , (10)

whose solution can be obtained numerically, or by calculating
the first-order partial derivatives of the objective in λj , j =
1, . . . , N , through (8), and setting them to 0 [22]. We remark
that in a global optimization framework, each source selects a
distinct transmission rate, optimized to minimize the system’s
overall average AoI.

V. DISTRIBUTED OPTIMIZATION VIA GAME THEORY

Game theory analyzes strategic interactions among multiple
agents, each pursuing its own objectives. In a similar vein to
related works such as [13], [21], we apply this methodology to
scenarios involving multiple sources, where each agent aims
to minimize its own AoI. This leads to the formalization
of a static game of complete information, where the Nash
Equilibrium (NE) is computed, often in closed form, using
the theoretical framework described above. Although this
equilibrium reflects the outcome of distributed optimization



by each source, it is typically suboptimal from the standpoint
of the global system. Therefore, it can be compared to the
globally optimal transmission strategy, which yields a lower
AoI for all nodes—i.e., a Pareto-efficient solution.

Studies concerning this approach focus on uncorrelated
systems tracked by different nodes, leading to AoI values
that are independent of each other. This independence fosters
competition and greater inefficiency. Naturally, a globally
optimal allocation that reduces the overall AoI is not seen
as a NE by the players. While not directly adversarial, the
players view the service of data generated by other sources as
irrelevant and may prioritize their content instead.

We expect correlation among sources to reduce competitive
behavior, as a source can potentially lower its own AoI by
allowing others to transmit. To formalize this quantitatively, we
define a static game of complete information, G = (N ,A,U),
where the players set N corresponds to the N sources. The
action set A = [0, 1]N includes each λj ∈ [0, 1] as the action
of the j-th player, and the utility set U consists of −∆jj∈N .
The negative sign follows from the game-theoretic convention
where utilities represent quantities to maximize, whereas in
our case, the average AoI ∆j represents the objective of the
j-th player, a quantity to minimize.

Although decisions are made individually and without coor-
dination—hence the game is static—the common knowledge
shared among players ensures that, even with selfish goals,
they are aware of the broader consequences of their actions.
Thus, no player will attempt to monopolize the queue’s
service capacity with excessive traffic, as this would result
in congestion and high AoI.

In our scenario, players are also expected to recognize
that they can be less aggressive and leverage correlation to
assist each other [14]. Depending on the values of αij , each
player may see that updates from another source can partially
benefit their own AoI, encouraging more cooperative behavior.
Therefore, applying game theory to this system is not primarily
about modeling competition among players, but rather about
approaching it as a distributed system management issue,
where understanding the overall efficiency is key [13], [23].

The NE can be determined by considering the self-interested
perspective of each source, leading source j to calculate its
best response (BR) to the transmission rates selected by the
other players as

λ
(BR)
j (λ−j) = arg max

λj

∆j(λ) , (11)

where λ−j = λ1, . . . , λj−1, λj+1, . . . , λN represents the set
of strategies chosen by all sources except the j-th.

The NE, denoted as λNE = [λNE
1 , . . . , λNE

N ], is achieved
when all sources play a BR strategy. In practice, this is
found by solving a system of equations, each corresponding
to the derivative of player j’s BR function with respect to its
transmission rate λj , set equal to zero.

The difference between the two approaches is subtle but
significant. The global optimum involves setting λ? simulta-
neously for all sources, whereas at the NE, λNE, each source
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Fig. 2. Two-sources scenario.

focuses only on minimizing its own AoI, ∆j , through its
transmission rate, λj . In the distributed approach, source j
(and all other sources) does not consider minimizing the AoI
of the others and has no control over their actions.

Because the service capacity is a shared resource, the NE
deviates from the optimal allocation due to inherent differ-
ences in objectives and decision-making criteria. The optimal
allocation reflects a system working point that is efficient for
the entire network, meaning the server is shared in such a way
that the average AoI for all users is minimized collectively. In
contrast, the NE arises when individual sources make strategic
decisions to minimize only their own AoI, disregarding the
collective welfare of the network. This selfish approach can
result in suboptimal resource allocation, as sources prioritize
their own interests over the network’s efficiency [9].

VI. NUMERICAL RESULTS

We present the numerical results obtained for a two-source
case as depicted in Fig. 2. For ease of notation we set α1 =
α2,1 and α2 = α1,2. We consider a correlation budget x ∈
[0, 1] that is split between α1 and α2, that is α1 + α2 =
x. We will examine three distinct scenarios. In the first one,
the correlation budget is evenly distributed between the two
sources. In the second scenario, the entire correlation budget is
assigned to α2. In the third and last one, an intermediate case
is considered, where α1 = 0.2x and α2 = 0.8x. Thus, for all
scenarios, α1 ≤ α2, implying that the packets transmitted by
source 1 exhibit a higher correlation and are therefore more
useful to convey information.

Figs. 3 and 4 show the transmission rates λ1 and λ2 of
source 1 and 2, respectively, at the global optimum (solid lines)
and the NE (dashed lines), versus the correlation budget x,
for different allocations of the correlation budget between α1

and α2. In the first scenario, the correlation budget is equally
divided between the two sources, such that α1 = α2 = x/2.
Here, the transmission rates of sources 1 and 2 decrease
slightly with increasing x, both at the global optimum and NE.
This decrease remains minimal due to the balanced correlation
coefficients between the two sources. Notably, at NE the
value of λNE

1 and λNE
2 start from a higher value than the

global optimum, as predicted by game theoretic reasonings,
but, for increasing x, the two values become close. Moreover,
because the correlation budget is evenly distributed between
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Fig. 3. Source 1 transmission rate λ1 at the global optimum (solid) and NE
(dashed) versus correlation budget x, for different allocations of x between
α1 and α2.
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Fig. 4. Source 2 transmission rate λ2 at the global optimum (solid) and NE
(dashed), vs correlation budget x, for different allocations of x between α1

and α2.

the two sources, symmetry ensures that the globally optimal
transmission rates for both sources, λ?1 and λ?2 are equal.

In the opposite scenario, in which α1 = 0 and α2 = x,
meaning the entire correlation budget is allocated to α2,
from Fig. 4 we see that source 2 stops transmitting when
the correlation budget is x > 0.6 at the global optimum.
As a result, source 1 increases its transmission rate beyond
0.531, as shown in Figure 3, which is the AoI-minimizing
value in a single-source scenario. This occurs since, in a
centralized optimization setting, when source 1 is the only
one transmitting, it does not merely aim to minimize its
own AoI (which is minimized at λ1 = 0.531), but must
transmit more frequently to compensate for the absence of
transmissions from source 2. In contrast, when source 1 acts
selfishly, behaving as a strategic player in a non-cooperative
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Fig. 5. Average total AoI at the global optimum (solid) and NE (dashed), vs
correlation budget x, for different allocations of x between α1 and α2.

game, its transmission rate at the NE never exceeds the optimal
value of 0.531, reaching it only for x = 1. This is because
a selfish source has no incentive to reduce the AoI of the
other source, focusing solely on minimizing its own. When x
approaches 1, λ?1 goes to 0.531 as α2 = 1, thus source 2’s role
becomes entirely redundant, and the two sources act as a single
source. A similar pattern is observed in the third scenario,
where α1 = 0.2x and α2 = 0.8x, with the difference that
source 2 stops transmitting when x > 0.8, moving the point
at which source 1 is the sole transmitter further to the right
compared to the previous scenario.

So, at the NE, each source aims to minimize its own AoI
without accounting for the overall system performance. As a
result, source 1 never transmits beyond the AoI-minimizing
value of 0.531, and source 2 never stops transmission except
when α2 = 1. In contrast, under centralized optimization,
source 2’s role diminishes as x increases in the second and
third scenarios. Specifically, in these cases, source 2 ceases
transmission once x is above a certain threshold.

Fig. 5 shows the average total AoI resulting from the
transmission rates chosen through either global (solid lines)
or distributed optimization (i.e., the NE, dashed lines), versus
correlation budget x, for different allocations of x between
α1 and α2. We first observe that the average total AoI at the
NE is consistently higher than that at the global optimum.
This demonstrates that when the sources behave selfishly,
they increase the overall AoI of the system. Moreover, Fig.
5 demonstrates that as x increases, the total AoI decreases
due to the increasing correlation between the sources, which
improves the efficiency of the information update process.
Additionally, the gap between the global optimum and the NE
narrows with increasing correlation among the two sources,
indicating that even in a distributed setting, moderate to
high correlation can significantly reduce the inefficiency and
improve overall system performance [6].



VII. CONCLUSIONS

We analyzed the impact of correlated content among multi-
ple sources in a sensor network system, where status updates
are transmitted to a common receiver. We developed both
centralized and distributed optimization of the transmission
rate of each source to minimize the system AoI. Moreover,
we considered different correlation factors among the sources.

Our results focused in particular on a two-source scenario,
showing that, at the global optimum, the source whose content
is more influential on the other continues to transmit and may
even increase its rate beyond the single-source optimum, while
the optimal transmission rate of the other drops to zero, as
the correlation increases. In contrast, at the NE, both sources
continue to transmit despite the growing correlation, leading
to more congestion compared to the centralized case. As a
result, the average AoI at the NE is higher than that in the
centralized system. However, when the correlation becomes
sufficiently high, the performance of distributed optimization
approaches that of the centralized system, making decentral-
ized management feasible in highly correlated environments.

These findings have implications for the design of sensor
networks and other distributed systems [26], suggesting that
exploiting correlations between sources can significantly en-
hance performance, particularly in environments where full
central control may not be feasible.
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