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Abstract—Sensor networks, especially when deployed in a field
with little supervision, are vulnerable to a broad range of attacks.
In this paper, we study a scenario where multiple competitive
adversaries inject false content in the sensed data with the intent
of impairing network control. We use game theory to analyze
the different behavior of adversaries acting independently or
in a coordinated fashion. This analysis ultimately results in the
evaluation of efficiency metrics for the utility of uncoordinated
attackers, based on the Age of Incorrect Information (Aoll),
which is compared to the coordinated case. Our numerical results
show that generally the lack of coordination is detrimental for the
two attackers. With the exception of few edge cases, competition
leads the attackers to be more concerned with prevailing over
each other than actually compromising the system.

Index Terms—Age of Incorrect Information; Cyber physical
systems; Data acquisition; Game theory; Security.

I. INTRODUCTION

The technology for wireless sensors has rapidly progressed
in recent years, which can be attributed to several key
factors. The advancements in semiconductor technology the
development of micro-electromechanical systems (MEMS)
enable the miniaturization of sensors while maintaining high
performance [1]. Additionally, the enhancement of communi-
cation protocols especially in the area of uncoordinated low-
power access, such as LoRa [2], [3] or Zigbee [4], which
has improved the reliability, range, and energy efficiency of
wireless sensor networks [5]. This, in turn, has led to the
integration of sensing and control in the Internet of things
(IoT) to realize cyber-physical systems [6].

However, the increased capabilities of sensor networks
go hand in hand with their susceptibility to tampering or
unauthorized access, especially when the physical placement
of sensors is in the open and difficult to monitor [7]. The
distributed character of data generation, along with wireless
data transmission, creates security issues that are less common
in centralized wireline systems, posing threats of interception
and eavesdropping [8], [9] as well as unauthorized access and
false data injection [10]-[12].

In this paper, we focus on the last scenario by considering
two adversaries injecting false data in the sensor readings with
the purpose of corrupting the system operation. Their objective
can be related to age of incorrect information (Aoll), a metric
proposed by [13] that increases linearly with the time elapsed
since the injection of inaccurate information. The approach is
general and can be applied to any other metric that relates
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to the deviation from the system normal operation, amplified
over time [14].

We assume that the adversaries are competitive and unco-
ordinated, meaning that each of them wants the system to use
their own false data, and not that of the other [15]. In other
words, an attacker’s utility increases as long as their injected
data remains in the system, but this increase in utility is reset
whenever the data is overwritten—either by the legitimate
system control or by another attacker. Therefore, this kind
of scenario requires to analyze decision-making in distributed
and competitive environment, and we find that game theory
would be the instrument of choice to that end [16], [17].

Game theory enables for the systematic analysis of strategic
interactions between multiple agents with different goals. This
type of analysis is often used to model cybersecurity problems,
as it helps predicting rational strategies for an attacker and
optimal defenses [18]. However, in the specific study pre-
sented in this paper, there is no strategic involvement from the
network’s perspective, meaning that the legitimate transmitter
is not a player of the game. This makes our scenario not really
adversarial (despite involving network security and attackers)
[19]-[23], but rather competitive, since the strategic players,
i.e., the malicious transmitters, desire to prevail over one
another but not to disable the other’s activity, if not indirectly.

This game theoretic model allows us to study how the lack
of coordination impacts the attackers, unveiling whether their
interaction can be seen as mutually reinforcing or merely
antagonistic, ultimately making the system defense easier.
This is computed through efficiency metrics, which quantify
the decrease in utility caused by uncoordinated action, similar
to the price of anarchy [24].

Our findings align with the general conclusion that, when
the attackers have little margin for action, for example because
their activity expenditure is high and/or the network control
is tightly monitoring the network, their efficiency is close to
1. In such cases, it is not particularly significant whether they
act in a coordinated manner or selfishly [25]. However, the
broader the freedom of the attackers, whether due to limited
system supervision or low malicious injection cost, the higher
the anarchy of uncoordinated attacks. This conclusion leads to
interesting implications for scenarios of environmental moni-
toring, especially in agriculture, forestry, or marine contexts,
where the cost of supervising the network may be too high to
be preemptively sustainable, yet strategic responses to attacks
can be envisioned.
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The rest of this paper is organized as follows. In Section
I, we review related work. Section III presents the system
model, and Section IV analyzes it via game theory as a game
of complete information. Numerical results are presented in
Section V. Section VI concludes the paper.

II. LITERATURE REVIEW

False data injection attacks are a problem well studied in
the context of power grids [17], [26]. Indeed, these cyber-
physical systems are vulnerable to maliciously injected false
measurements that, while avoiding triggering threshold alarms
[10], can lead to load shedding, as well as over- or under-
voltage [7]. Because of this, some researchers have proposed
game theoretical approaches, but the common setup is gen-
erally that of a single attacker and a single defender playing
against each other [6], [27], [28].

For example, [27] investigates a zero-sum game where an
attacker can perform the specific false data injection of load
redistribution, whereas the network agent tries to defend by
implementing a moving target strategy. Generally, even a static
game like this results in a plethora of different Nash equilibria
depending on the network parameters, as discussed in [28],
which classifies them into six different typologies (sometimes
even coexisting). The situation is complicated even more by
[6] where a multi-stage dynamic game is considered instead.

In this paper, we take instead a more general approach
that does not necessarily depend on the electrical aspects,
but makes a general reference to the freshness of information
in cyber-physical systems. To this end, the metric of choice
is Aoll, proposed in [13], which allows us to abstract from
the specific implementation aspects of both the cyber-physical
systems and the attacks performed within it. Indeed, Aoll
allows a direct connection with the mean absolute error, as
discussed in [14], and in general expresses a balance between
accuracy and timeliness of the information available in the
system, a concept that is becoming increasingly popular for
real-time content whose freshness is often quantified through
age of information [15], [20], [29].

The main contribution of our analysis, i.e., to consider
multiple attackers, is reminiscent of other game theoretic
studies where the anarchy between multiple players acting in a
distributed fashion is considered and some form of exogenous
coordination is introduced to improve upon it [30], [31]. For
example, [30] focuses on incentivizing distributed players in a
crowdsourcing scenario to provide fresh information, whereas
[31] considers the superimposition of reinforcement learning
to increase data throughput.

However, for what concerns previous studies related to
freshness of information, our studies is more similar to [15]
and [29]. The latter reference [29] considers a scenario where
two sources can both provide fresh status updates, however, if
they both do so at the same time due to their lack of coordi-
nation, the redundant data causes the system to be inefficient.
Conversely, [15] analyzes the case of two competing sources,
each wanting to push their own updates. Our problem is
similar to these approaches, but ultimately significantly differs

from them since the focus is on two malicious agents that
instead introduce false data, with the purpose of making the
system information inaccurate and stale at the same time. In
a sense, this combine both references previously mentioned,
since the attackers are able to increase Aoll (as in [29] they
can both decrease Aol), yet they compete to push their own
false data over the other, as in [15], even though the data are
false here.

Finally, the system model leveraging a Markov chain
switching between correct and wrong status information is
reminiscent of [11], but with a fundamental difference, i.e.,
that paper considered two strategic players corresponding to
the system manager and a single attacker. Conversely, here
we have a passive (i.e., non strategic) legitimate transmitter,
whereas the players of the game are both on the side of mali-
cious agents, albeit they are competing and not collaborating
with one another.

III. SYSTEM MODEL

A sensing scenario with just one attacker injecting false data
can be considered alternatively reporting between two states of
“correct” and “incorrect” status information [32]. The system
finds itself in the “correct” operational state when legitimate
status reports are performed by the sensor networks. When the
attacker injects false data, the state transitions to “incorrect.”
When this happens, the correct system control is jeopardized,
and a penalty known as Aoll can be computed to characterize
the resulting mixture of obsolescence and inaccuracy in the
information [14].

The transition between states are chosen as memoryless,
i.e., the time spent in each of the states is exponentially
distributed. This gives a system description as a continuous-
time Markov chain [11]. A graphical representation of the
system is visible in Fig. 1, with the rate of transitions
from correct to incorrect or vice versa have been generically
denoted as p and g, respectively. The only condition on these
terms is that they are positive real numbers for the chain to
be recurrent.

The value of Aoll at time ¢ can be described as [13]

5(t) = (t — (1)) x(t) (1)

where (t) is the time of the last status update reception and
x(t) is a binary value being equal to 1 if the last update was
malicious, 0 otherwise.

This metric can be considered as part of the objective for
a malicious attacker. As an application, think of a monitoring
system for an IoT outdoor scenario with little to no super-
vision for cost reasons. In many cases, false data can be
conveyed rather easily, given the absence of cryptography or
similar protection when deemed to expensive, not to mention
that data collection of open environments is relatively easy
and can lead to data falsification with minor effort from an
attacker [33].

Thus, as the first component in the objective of an attacker,
we include the expected value of the Aoll A = E[5(t)],
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Fig. 1. General Markov representation of the system transitions.

which the attacker wants to maximize, so it is used in the goal
function with a plus sign.

From standard derivations of Markov models, A can be
promptly computed as [29]

/2

A(p,q) = m )

2)

where we wrote it as A(p, q) to emphasize the dependence
on these two parameters. In (2), 1/2p? represents the average
cumulative penalty before a system reset. The denominator
1/p + 1/q is the average duration of a cycle between two
system resets.

Additionally, we introduce a cost term associated with
the injection of false data, which can be interpreted as an
energy/effort expenditure, or any other limiting factors of the
activity, which is taken proportional to the frequency [30].
This means that the utility of the players can be expressed as

where proportionally factor K can be referred as a unit cost
of activity for the attackers.

We note that [11], [20], and [22] consider a similar system,
where a strategic adversarial interaction is played by a trans-
mitter choosing p and an adversary choosing g. Conversely,
we focus here on a case where p is pre-set, yet multiple
adversaries are present, which makes the analysis inherently
different.

The reasoning above, as well as the expressions (2) and
(3), still hold when we consider multiple attackers in the
same scenario. However, it is worth noting that, if attackers
are competitive, each of them only considers its own injected
data as relevant, where every other transmissions by another
attacker resets the Aoll value.

In the following, we limit the analysis to 2 attackers,
labeled 1 and 2, denoting their activity rates as = and y,
respectively, as shown in figure 2. This can be promptly
extended to a general case of N adversaries by replacing
adversary 2 with the combination of a multitude of attackers,
since transmissions are memoryless [25].

Since each malicious attacker considers only its own data to
give an acceptable transition towards its intentionally wrong
status operation, if we focus on attacker 1, we can keep the
same equations as before but with = and y as the strategic
decision parameters, setting ¢ = x and replacing p with p+y.
This means that the utility function includes an expected Aoll
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Fig. 2. Threat model analyzed in this paper.

term now written as A(x,y) that reads, after some algebraic
rearrangements, as

T

Az,y) = . “4)
(r:9) 2p+y)p+x+y)
and the utility of attacker 1 being, as per (3), written as

Finally, we note that focusing on either attacker 1 or 2 is
purely conventional. Due to symmetry, we can write the same
equations for attacker 2 but swapping x and y.

IV. GAME THEORETIC ANALYSIS

The aforementioned set of equations induces a game of
complete information G = (P,.A,U), whose normal form
contains the set of players P as consisting of the two attackers,
A = }Ri being the set of available actions, which are
x,y € [0,+00), and the utilities in set U as per (5).

To “solve” the game, i.e., determine valid choices of x
and y, we can preliminarily remark that, because of the
aforementioned symmetry in the players, after setting any
maximization, in the end x = y must hold, since the two
players are subject to identical conditions and follow the same
utility function.

Thus, we seek for the Nash equilibrium (NE), which is a
saddle point of the utilities, i.e., a point (x,y) € ]R2+ from
which neither player wants to unilaterally deviate [29]. This
results in setting

ox or
which gives
1 =K. 7
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The existence of at least one NE, and in this case its unique-
ness, are direct consequences of game theoretic principles and
can be proven through Glicksberg’s theorem [34]. However,
in the specific problem at hand, it is immediate to see this
constructively, by applying symmetry x = y, which shows
that the only solution to (7) satisfies

x:1/7”22K_p (8)

where the last equation meets the requirement that z > 0 only
if K < (2p?)~L.

This relationship implies that the adversaries require the
cost being below a certain threshold value, which depends
on p, to be active. Clearly, if their activity is too expensive,
they prefer to choose z = y = 0. The fact that this threshold
depends on p is also justified in light of the activity of the
legitimate transmissions as contrasting the data injected by the
adversaries at that rate [11].

However, as often happens in competitive setups [24], the
NE is not the best possible choice for the players if they are
allowed to agree on a coordinated strategy, or simply if they
are controlled by the same agent. The optimal solution can
be found by still leveraging symmetry, which corresponds to
setting x = y from the start, and taking the maximum value
of the objective transformed into a single-variable function,
ie.,

T

TR Y

where the optimum of u(z) = A(z) — Kz is found in

ou(x) OA(x)
Ox 0 = Oz ’ (10)
which implies
(222 4 3xp + p?)?K + 222 — p* = 0. (11)

Since the LHS of (11) is negative in = 0, has a positive
limit for x — 400, and is monotonically increasing in z, it
admits only one zero in the feasibility interval z € [0, +00).
This is the optimal solution that can be found through numer-
ical means. In the following, we are comparing the NE with
the optimum and argue about the efficiency (or lack thereof)
of the uncoordinated activity of the adversaries.

V. NUMERICAL RESULTS

We quantitatively evaluate the impact of the competition
between two adversaries by comparing: (a) their utility ung
at the Nash equilibrium with (b) their utility at the optimum u*
and (c) the utility u of a single attacker with no competition.
Furthermore, we measure the transmission rate x of the
attackers and the Aoll A across all three cases. We plot these
metrics and analyze how they vary with different values of the
attacker’s transmission cost K and the controller’s transmis-
sion rate p. We recall that utility, Aoll, and transmission rate
must be the same for the two attackers both at the NE and
at the optimum. Therefore, in the plots we refer to a single
attacker, who can be either of the two.
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Fig. 5. Attacker’s transmission rate versus cost K.

Fig. 3 compares the attacker utilities against the transmis-
sion cost K, for p fixed at 1 and 2. For better visualization,
both axes are in logarithmic scale. In all the three cases, the
utility reaches 0 at K = (2p?)~!, as previously discussed in
Section IV. The behavior is monotonically decreasing for the
l-attacker case and the optimal 2-attacker case, but not for
the Nash equilibrium. In the case of a single attacker, or if
two attackers are coordinated, a lower transmission cost cor-
responds to a smaller Aoll. However, at the NE, Aoll does not
approach its maximum when K = 0. Instead, the maximum
Aoll is found at an intermediate value between 0 and (2p?) 1.
This specific value can be determined algebraically, but it does
not yield a meaningful or easily interpretable expression. The
intuition behind this is that, when the transmission cost is
small, the adversaries face fewer constraints on their trans-
mission capabilities, which leads to heightened competition
between the two at the NE. Conversely, when K is higher,
the transmissions of the adversaries are limited, forcing them
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to concede more bandwidth to one another. This results in an
increase in Aoll, as shown by Fig. 4. The attacker transmission
rate at the NE, on the other hand, monotonically decreases
with K, as shown in Fig. 5. This behavior can be easily
deduced by the expression of = at the NE in (8).

The controller’s transmission rate p also decreases the
utility of the attackers. Fig. 6 displays the utility as a function
of p in the interval [10~2, 2] with K fixed at 0.01 and 0.1. The
x-axis follows a linear scale, whereas the y-axis is log-scaled.

When p approaches 0, the utility of a single attacker and
two coordinated attackers increases indefinitely, leading to
an infinite Aoll. This phenomenon is illustrated in Fig. 7,
which plots the Aoll against p. Interestingly, this is not the
case for two competing attackers at the NE, where the Aoll
cannot reach its maximum value, as determined by K (e.g.,
for K = 0 the peak value is 1/4). This behavior is again
attributed to the selfish nature of the competing agents [24]. In
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a cooperative scenario, for p = 0 the attackers can coordinate
their transmission rate x to an arbitrarily small value, as shown
in Fig. 8. However, in a competitive scenario, if one adversary
chooses a low transmission rate, the other is incentivized to
increase its own and enhance its utility. This implies that
for p — 0, the price of anarchy (PoA), i.e., the utility ratio
ung/u*, increases indefinitely.

The main takeaway from this evaluation is that competition
between two adversaries with differing goals significantly
limits their impact on the system. The PoA can become
unbounded, and in turn this represents an efficiency limitation
that we evaluated. To do this, we adopted two measures of
efficiency, which are plotted in Figs. 9 and 10: the utility
ratio between the two attackers at the Nash equilibrium and
the optimum (i.e., the reciprocal of the PoA), and the utility
ratio between two attackers at the Nash equilibrium and
the single-attacker scenario. Both efficiency metrics exhibit
similar behavior with respect to K and p. However, the
trend is more pronounced in the comparison with the single-
adversary case. In other words, the Nash equilibrium of
multiple uncoordinated attackers is clearly less efficient than
their optimal coordination (solid lines), but is performing
particularly poorly if compared with the damage (dashed lines)
that a single attacker concentrating all the resources in a single
agent can cause to the network.

VI. CONCLUSIONS

We analyzed a system where multiple uncoordinated ad-
versaries inject false data into a cyberphysical system with



2025 IEEE Wireless Communications and Networking Conference (WCNC)

the purpose of increasing Aoll [11]. For this scenario, we
computed the resulting NEs and discussed their efficiency.

Compared to a scenario where a single malicious agent is
present, or multiple adversaries are fully coordinated, the re-
sulting working point is less threatening for the system, which
is in line with many similar game theoretic results. Shortly
put, the absence of coordination can lead to inefficiencies,
and this is true not only for legitimate nodes, but also for
attackers lacking a common control [24].

Disorganized efforts among attackers can be detrimental,
making them unable to increase Aoll and leading to high
energy expenditure [18]. Future work may expand on this
point, considering alternative objectives or different game
theoretic setups, such as involving a dynamic interaction.
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