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Abstract—Large language models (LLMs) are game changers
for future next-generation networks, unlocking new opportunities
for disruptive and interactive services and applications. Edge
computing enables deployment of LLMs closer to the users,
allowing for the implementation of highly responsive intelligent
systems. This paper proposes a matching theory-based algorithm
to optimize the user-LLM association and considers both the
communication and inference delay, in the presence of capacity-
constrained edge nodes. The objective is to minimize end-to-
end user delay, that is, the time elapsed between when a user
submits a request and when the response is sent back. Therefore,
a matching game is formulated between the users and the LLMs,
assuming heterogeneous LLMs, specialized in different types of
learning tasks. The scenario is modeled as a matching game with
externalities and incomplete lists, which terminates in a stable
configuration, leveraging monotonic user preference list metric,
within the algorithm execution. A comparative performance
evaluation against different state-of-the-art techniques confirms
the advantages of adopting a joint communication and inference
aware approach to orchestrate the user-LLM assignments.

Index Terms—Distributed computing, large language models,
generative Al as a service, matching game, edge computing.

I. INTRODUCTION

In recent times, large language models (LLMs) have drawn
significant attention for their exceptional ability to understand
and produce natural language and media. From a technological
point of view, LLMs are based on deep neural networks and
self-supervised learning, both of which have been established
for decades. However, what distinguishes recent LLMs is
their unprecedented scale and versatility, which have reshaped
their applications and broadened our understanding of their
potential [1], [2]. Thanks to their extensive training process,
based on billions of parameters and Internet-scale datasets,
these models can handle previously unseen data without ad-
ditional training, adopting a zero-shot learning approach [3],
or can be further refined using smaller, task-specific datasets
to improve their performance for particular applications, thus
adhering to the fine-tuning paradigm [4]. Prominent examples,
such as ChatGPT and Bard, have transformed the way artifi-
cial intelligence (AI) approaches natural language processing.
These models demonstrate advanced understanding, ability to
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generate human-like text, contextual adaptability, and strong
problem-solving capabilities. These features, together with
advances in communication technologies that provide reliable
high-rate links [5], permit, in perspective, LLMs to proactively
assist and engage users, providing support for decision-making
or facilitating interactive applications.

Nonetheless, current LLMs are highly dependent on cloud
computing, which introduces challenges such as long service
latency, significant bandwidth usage, and privacy risks [6],
[7]. The intrinsic centralized nature of cloud computing limits
the ability to deliver rapid inferences required for real-time
applications, e.g., in robotics control or exploration, where
instant responses are key [8]. Moreover, the need to transmit
vast amounts of multi-modal data to cloud servers results in
substantial bandwidth consumption, cost, and network conges-
tion [9]. Edge computing solutions, i.e., deploying LLM on
edge nodes closer to data sources, represent a promising way
to overcome these limitations [10], [11]. In this picture, the
limited resources typical of edge infrastructures must be effi-
ciently managed to ensure low-latency responses and seamless
interaction between users and LLMs [12]. Moreover, designing
a resource-aware strategy for user-edge node assignments,
which is instrumental in establishing appropriate user-LLM
pairings, becomes essential [13], [14].

We propose a joint communication-inference allocation
strategy to assign users to LLMs. Our framework applies
matching theory [15], establishing a matching game with
externalities to provide the allocation. The dual structure of
matching theory is well suited to formalize the problem, where
each user demands a specific learning task to a specialized
LLM. The objective is to minimize the user’s end-to-end (e2e)
delay, i.e., the time elapsed since the submission of the service
request until the LLM generates the result and sends it back to
the user. Each user can be served by only one LLM, and that
LLM must be specialized in the task required by the user. This
leads to the formulation of a matching game with incomplete
lists [16]. Furthermore, due to the dependencies between
the users’ preference lists, the resulting matching involves
externalities; thus, its stability is not guaranteed applying the
algorithms available in the literature [17].

Our contributions can be summarized as follows. (i) Mod-
eling the user-LLM assignment problem, considering both
the communication and inference delay, where LMMs are



deployed at the edge of the network but are specialized in
different learning tasks. With respect to the literature, account-
ing for the LLM inference delays that impact responsiveness
and decision-making represents a further original element.
(i) Design and implementation of a matching game with
incomplete lists and externalities to provide an assignment
with the objective of minimizing the mean e2e user delay. The
proposed matching algorithm is stable despite the presence of
externalities, thanks to the monotonicity of the user preference
list metric over algorithm iterations. (iii) Comparison of the
proposed framework with different approaches in terms of e2e
delay and dropping rate, i.e., the probability of receiving the
service after the deadline associated with each user.

Our comparative analysis shows superior performance over
other matching strategies, thus providing efficient and timely
task allocation. The remainder of the paper is organized as
follows. In Sec. II the related literature is presented, and in
Sec. III the problem statement is detailed. Sec. IV describes
the matching game designed, and the results are illustrated in
Sec. V. Conclusions are drawn in Sec. VL.

II. RELATED WORKS

In [18], the authors investigate the potential of large-scale
Al models in the context of sixth-generation (6G) wireless
networks, highlighting how these models can enable innova-
tive applications and enhance network capabilities while ad-
dressing critical technical and operational challenges. Another
framework in [19] exploits LLM on the autonomous edge for
connected intelligence, focusing on how LLMs can enable
edge devices to handle complex tasks with minimal human
intervention, emphasizing their applicability in distributed and
resource-constrained environments.

LLMind is introduced in [20] as a system to integrate
LLM with IoT systems, with the objective of solving complex
tasks. Orchestration to align LLM capabilities with [oT data
is investigated, highlighting challenges in terms of scalability,
real-time performance, and task adaptation. In [10], the authors
propose the application of LLMs to enhance multi-agent sys-
tems for 6G communications, so as to improve task coordina-
tion, decision-making, and dynamic adaptability in multi-agent
environments. Similarly, the LAMBO framework [21] inte-
grates LLMs into distributed edge intelligence, addressing the
deployment of LLMs on resource-constrained edge devices.
Therefore, the paper discusses challenges in resource manage-
ment, latency reduction, and task-specific optimizations. The
application of LLMs in 6G edge environments is then explored
in [22]. The paper in-depth reviews the vision, challenges,
and opportunities arising from pushing LLMs to the edge,
addressing key issues such as computational constraints, data
privacy, and real-time processing in decentralized networks. In
[11], the authors propose a novel Cached Model-as-a-Resource
paradigm to provision LLM agents for edge intelligence in
space-air-ground integrated networks. The study focuses on
leveraging cached LLMs to improve computational efficiency
and resource utilization in highly dynamic and heterogeneous
environments. The framework addresses critical challenges in

latency, scalability, and task-specific adaptability, paving the
way for more robust and intelligent edge applications.

Conversely, the problem of assigning edge computing re-
sources efficiently, yet avoiding a full-scale optimization, e.g.,
with some meta-heuristic approach, is also found in the
literature. For instance, [13] considers a distributed Markov
approximation algorithm with linear complexity to optimize
task allocation in real-time. In [23], a similar problem is solved
through particle swarm optimization. Other works solve this
distributed optimization assignment task through the use of
game theory tools. In [24], the authors use a static game of
complete information to assign task on the edge or the cloud.

Instead, we represent the assignment of edge computing
resources as a matching game. This idea can be found in
other papers such as [15], which uses it for resource allocation
accounting for capacity constraints and user preferences to
optimize edge server selection. However, the main aspect co-
existing with the server selection in that paper is the existence
of inter-cell interference, which the matching game tries to
avoid, by selecting the best association that avoids causing
interference, whereas the content of the task itself is atomic.
Conversely, in our analysis the main parameter to match is the
suitability of the LLM to the specific task, especially including
the inference delay, which is harder to characterize.

Similar approaches are also considered in [14] and [25].
The former considers the objective of the matching to be the
social welfare, under a general utility function that includes
also economic aspects. The latter instead includes, among
other terms, the computation time, as we do here, but the
main focus is about the uncertainty of the evaluation, which
makes the game Bayesian in nature. Instead, our approach
assumes knowledge about the e2e user delay, but the main
distinguishing aspect, not considered by any of the previous
paper, is the inference delay, resulting in different suitability
scores of the LLM models to the task requested by the user.

Previous research on LLM deployment at the edge has
largely concentrated on model compression, task offloading,
or heuristic allocation strategies, often treating communica-
tion and inference latency as separate concerns rather than
optimizing them jointly. In contrast, our approach introduces
multiple innovations, listed below.

Joint Optimization of Communication and Computation. While
existing methods focus on either communication or com-
putation efficiency, our matching framework integrates both,
ensuring an allocation that minimizes end-to-end delay.
Matching Game with Externalities and Incomplete Prefer-
ences. Unlike centralized optimization approaches, our method
models the user-LLM association as a matching problem,
incorporating externalities and incomplete preference lists to
enable a scalable and distributed solution.

Heterogeneous LLM Specialization with Stability Guarantees.
Our framework considers LLMs specialized for different tasks,
ensuring that the allocation remains stable, meaning that
neither users nor edge nodes have an incentive to switch
their assignments. This enhances robustness, fairness, and
adaptability in dynamic edge environments.
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Fig. 1. System Model

III. PROBLEM STATEMENT

As illustrated in Fig. 1, the scenario considers a set of
users U = {1,...,u,...,U} and a set of edge nodes & =
{1,...,e,..., E}. Each user demands learning capabilities ~,,
(in tokens) to a set of LLMs deployed on edge nodes. The
processing of -, is considered successful if completed within
the corresponding deadline d,. As a first step in the user-
LLM assignment problem, we assume that each edge node e
hosts a single LLM instance. This simplifies the formulation
and allows us to focus on optimizing the matching process,
while considering both communication and inference latency.
In practical deployments, edge nodes may host multiple LLMs,
each specialized in different tasks. In such a scenario, users can
be served through separate queues for each LLM, parallelizing
the inference process and reducing congestion at the edge.
Consequently, the set of LLMs is £ = {1,...,e,..., E}. In
line with the literature on this topic, we assume that the
edge computing nodes coincide with small base stations [26].
Moreover, we consider that each user requests task processing
accessing to a synchronous dedicated channel that does not
interfere with the access of other users within the same area.
Each edge node e € &, disposes of a total storage capacity
A., such that the residual capacity can be expressed as

Se = Ae - Z SuQuy,e, (1)

ueU

where «,, . is a binary variable equal to 1 when u is served by
the LLM placed on e, zero otherwise. Each user u occupies
Sy, storage to be served by the LLM placed on e.

Once v, arrives to e, each token is transformed into a
vector embedding, i.e., a numerical representation that the
model can process to make inferences. These embeddings are
then fed into the LLM, which processes them to produce an
appropriate output for the user. During the decoding phase, the
LLM generates a sequence of vector embeddings that represent
its response to the input prompt. These are subsequently
converted into output tokens, generated one by one until a
stopping condition (e.g., hitting a token limit or encountering
a stop word) is met. Then, the model generates an end token
to notify the conclusion of token generation. Since LLMs
generate one token per iteration, the number of iterations to

complete a response corresponds to that of generated output
tokens. Therefore, the inference delay is

Ie,u = Tyle, (2)

where 7, is the number of tokens generated by u and ¢, is the
inter-token latency. Similarly, the e2e delay of user u is

De,u =2 Ce,u + Ie,u + Qe,u; (3)

where C,, is the time spent to send the input tokens 7,
to the LLM placed on edge node e. Since we assume an
interference-free scenario without contention, the transmission
rate is constant, and the communication delay is

Yu
B’
where B, is the allocated bandwidth to edge node e.

In highly congested network environments, simultaneous
access of multiple users to the same edge node can lead to
fluctuations in latency and increased communication delays.
These effects may influence the efficiency of LLM deployment
strategies and the overall system responsiveness. Nonetheless,
we assume an ideal scenario without contention or interfer-
ence, allowing us to focus on the core optimization of the
user-LLM assignment process. Also, note that we assumed
that the output token has the same size as the input token.!
Furthermore, Q). , is the queuing delay experienced by u
due to users previously allocated on e, which depends on the
number of users assigned to the edge node. A higher number of
allocated users at node e results in longer queuing times, which
in turn affects the overall end-to-end delay. Queues follow a
first-in-first-out policy.

Our goal is to produce allocation matrix A = {ayc}ue €
{0,1}Y*E minimizing the mean e2e user delay. Formally,

Ce,u = (4)

1
min —— Z Z De,uau,m ®)
A |u| ec& ueld
s.t. Za =1, Yuel, (6)
ecf
Z Sy0y.e <A, Veel @)
ueUd

IV. MATCHING THEORY FOR
COMMUNICATION-INFERENCE USER ALLOCATION

We establish a matching game between the set of users U/
and the edge nodes £. Matching theory is a quantitative model
of choices whose objective is to build mutually beneficial
relationships between the elements belonging to two opposite
sets, considering the individual preferences of each element.
Matching theory [28] is based on preference lists that describe
the level of satisfaction of each element in being matched with
each element of the opposite set. Each element of I/ ranks

'While output token lengths can vary depending on the task, many applica-
tions exhibit an input:output ratio of approximately 1. Examples include, but
are not limited to, machine translation, and structured NLP tasks like Named
Entity Recognition [27]. Thus, assuming an equal number of input and output
tokens provides a reasonable approximation for delay estimation.



Algorithm 1 Inference-Aware Matching

Input: Set of devices U, set of edge nodes €
Output: Stable matching M of devices and edge nodes
/I Step 1: Build preference lists
for each device v € U do
Construct preference list based on communication and infer-
ence latency
for each edge node e € £ do
Construct preference list based on request deadline
/I Step 2: Proposal phase
9: for each device u € U do
10: Send a proposal to the most preferred edge node
11: // Step 3: Edge nodes accept proposals
12: for each edge node ec& getting at least one proposal do
13: Accept the most preferred user among the proposals
14: Reject the remaining proposals
15: /] Step 4: Iterate
16: while some devices remain unassigned do

NRw N

® D

17: Unmatched users update preferences
18: Unmatched users propose to the preferred edge node
19: Edge nodes update assignments based on preferences

20: return Stable matching M

the elements of £ to denote its individual preference in being
computed on each LLM, and vice-versa.

Each user u creates its preference list V,(-) ranking in
increasing order each edge node e, accordingly to

Vu(€e) = De . ®)

As a consequence, the first choice LLM for user u is the node
inducing the lowest e2e delay. The edge node preference lists,
denoted with W, (u), are built in accordance with

We ('LL) = du 5 (9)

sorting the users in descending order. The proposed matching
algorithm works as follows

1. Each unallocated user creates its preference list in accor-
dance with (8), ranking edge nodes having the LLM special-
ized on the learning task requested by the user.

2. Each unallocated user proposes to be computed on its
favorite edge node.

3. Each edge node builds its preference list.

4. Each edge node selects the best proposal among those
received, and rejects the others.

5. Repeat 2)-5) until all the users are allocated or resources
are available and coherent with the learning tasks.

The proposed algorithm, whose pseudocode is detailed
in Algorithm 1, subtends that preference lists are updated
after each algorithm round, to keep consistency between the
algorithm choices, the residual available resources, and the
queue size on each edge node. This implies the existence
of dependencies among players’ preferences and impacts the
stability of the game, which is not trivial. To validate the
convergence of the proposed approach in a stable outcome
matching M, the definition of a two-sided exchange stable
matching (S2ES) is recalled [29].

Def. 1: An outcome matching M is an S2ES matching if
no pair of users (u1,us) exists s.t.:

1) Vi, (M(uz)) <V, (M(u1)) and

2) Vuz (M(ul)) < Vuz (M(Uz)) and

3) WM(UI)(UQ) < WM(ul)(Ul) and

4) WM(uz)(ul) < WM(UQ)(UQ) and

5) F € {uy,ug, M(u1), M(uz)} s.t. at least one of the
conditions 1) — 4) is strictly verified.

Based on Def. 1, the proposed matching algorithm reaches a
final S2ES configuration, since the resources of edge nodes
iteratively decrease as the algorithm proceeds. Similarly, since
the system does not drop already allocated requests, (), can
only remain the same or become worse. This means that,
considering a target user v allocated on edge node e during the
kth iteration of the algorithm, it cannot increase its condition
by changing partner, since the available resources and the
queue delay experienced of remaining edge nodes will remain
unchanged at best. The same reasoning can be extended to
edge nodes, proving that condition 5) of Def. 1 is not verified,
concluding that the outcome matching M is stable.

The computational complexity of the algorithm can consider
the worst-case scenario where all users prefer the same edge
node. In this case the algorithm terminates in |U| steps, thus
the computational complexity is O(UElog E).

V. SIMULATION RESULTS

In this section, we present results obtained by resorting to
extensive numerical simulations. The algorithm behavior is
analyzed in terms of mean e2e delay and dropping probability,
i.e., the probability of having users experiencing a completion
time greater than the corresponding deadline. The experiments
focus on the decision-making ability of the matching game
proposed, in solving the problem of assignment, in comparison
with alternative schemes. Results averaged over the number of
1000 independent runs. Experimentation was performed using
an Apple M1 Pro CPU equipped with 32 GB of RAM. As
a reference scenario, we considered three types of LMMs:
text-to-text LLM, text-to-audio LLM, and text-to-image LLM.
Then, we set a number of edge node uniformly distributed
within the interval [13,17]. For each edge node, we deployed
the type of LLM by uniformly drawing a number from 1 to
3, which indicates the type of LLM hosted in that edge node.
Parameter d,, is assumed to be uniformly distributed within the
interval [1,3.5], and s,, and A, were uniformly distributed in
[1.1,3.1] and [3.3, 5.5], respectively. Similarly, we considered
an integer number of users between 95 and 105 with uniform
distribution. Furthermore, the number of tokens per user was
generated between 240 and 248 with uniform distribution.
Finally, ¢, was randomly selected within [0.01,0.03] ms, and
C., in [0.60,0.80] ms. To assess the proposed matching
approach, indicated as Inference-Aware Matching (IAM), we
implemented the following schemes from the literature.
Gale-Shapley Matching: the Gale-Shapley algorithm is applied
in its traditional form, without updating preference lists after
each assignment [28].
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Kolkata Game: this repeated game, detailed in [30], is a
matching game based on one-side preferences, i.e., where
only one of the two parties involved in the game expresses
preferences toward the other. Similarly to our approach, in
the Kolkata game users express preferences according to (8).
Once users have submitted the allocation request to edge
nodes, each node randomly selects the preferred user among
the proposing ones. The random choice represents the main
difference compared to IAM, which selects the preferred user
based on (9) among users proposing allocation.

Random Selection: each user chooses the edge node for
computation at random, according to a uniform distribution.

Fig. 2 depicts the mean e2e delay in ms, as a function
of the mean number of users demanding learning tasks. As
it is evident from the figure, IAM reduces the mean e2e
delay, in comparison to the considered alternatives, also for
system configurations where the number of users increases.
Given the close similarity between the Kolkata Game and the
Proposed Selection, the Kolkata curve is the second best. The
performance degradation compared to the proposed selection
is due to the random choice component introduced by the edge
nodes toward the users. What the curves have in common is
the increasing trend as the number of tasks grows. This is due
to the rising queue delays in the LLMs, leading to an overall
increase in the load of the system under study.

Similarly, Fig. 3 shows the mean e2e delay as a function
of the mean number of edge nodes in the network. Also
in this case, IAM outperforms the alternative schemes. For
example, by setting a quality of service constraint in terms of
mean e2e delay, and fixing it to 2 ms, we observe that the
proposed approach meets the constraint with 15 edge nodes,
whereas the Kolkata game requires approximately 23 edge
nodes. This highlights how IAS make more efficient use of
the system resources. The superior performance achieved by
IAM is also confirmed in terms of dropping probability, as
shown in both Figs. 4 and 5. In particular, Fig. 4 shows the
probability of dropping as a function of the mean deadline
value associated with the LMM learning task requested by
users. IAM reaches a lower dropping probability compared
with the benchmarks. The reason is that in (9), the edge
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Fig. 3. Mean user e2e delay as a function of the number of edge nodes

nodes prefer learning tasks with larger deadlines, i.e., those
further away in time. This choice increases the likelihood of
completing the learning task within the required deadline and
improves dropping probability of the system. The dropping
probability as a function of the mean storage per user is
illustrated in Fig. 5. Once again, the joint communication
and inference-aware approach ensures greater control over the
e2e delay, which, in turn, impacts the dropping probability. In
this case, increasing the value of s, alters the combinatorial
space of the problem. As s, increases, while keeping the
total capacity of the edge nodes constant, the number of
learning tasks that can be allocated decreases, leading to a
corresponding rise in the dropping probability.

VI. CONCLUSIONS

This paper investigated the problem of the association
between users and LLMs within a native-generative artificial
intelligent network, where edge nodes have heterogeneous
and limited capabilities, and LLMs have different learning
specializations. The paper proposes a matching game to solve
the user-LLM assignment problem, considering both the com-
munication and the inference delay. The main objective is the
minimization of the user end-to-end delay and the game for-
mulated is a matching with externalities and incomplete lists,
whose stability is proved by construction. Numerical results
exhibit the validity of the communication and inference-aware
approach compared to alternative decision-making schemes.

Future works may include the extension to multi-task
and multi-model scenarios, allowing inferences from mul-
tiple LLMs. This would require redefining the framework
to incorporate multi-dimensional preferences and resource-
sharing constraints, enabling a multi-dimensional allocation of
resources. Another important direction is the adaptation to dy-
namic edge environments, exploring reallocation mechanisms
to evolve user-LLM associations based on real-time conditions
and changing workloads. Optimizing further critical metrics,
such as energy efficiency and operational costs, would enhance
the practicality of the framework. Incorporating power-aware
resource allocation that balances performance with energy
consumption would make the system more sustainable, while
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cost-aware optimization would help reducing the cost of large-
scale LLM deployment.
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