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Abstract—We leverage the latest advancements in generative
AI for music creation to develop an automated system producing
short sound messages. These sound-based messages, referred to
as Transmit In Sound code (TIScode), are brief audio sequences
lasting 5 seconds that carrying digital information. They can be
recognized by a specific smartphone application in an Internet of
Audio Things (IoAuT) scenario. We describe the methodologies
of the TIScode pipeline, which includes generation, transmission,
and ultimately, reception and decoding. For the generation phase,
we use MusicGen, a state-of-the-art autoregressive transformer
model, and we introduce a channel coding system based on the
quantization of sound features and high-level features extracted
through convolutional neural networks (CNNs). The extracted
features are mapped to create a unique bitmap for each TIScode,
simplifying the decoding process. We present an algorithm for
the recognition phase, combining sound feature analysis with
frequency-based peak analysis to enhance detection accuracy.
Experimental results, obtained through simulation and field tests,
demonstrate the effectiveness of the system in retrieving the
digital information encoded within sound messages.

Index Terms—Generative AI, Internet of Audio Things, Audio
Classification, Channel Coding, Digital Signal Processing

I. INTRODUCTION

The convergence of IoT and audio technologies has led to
the emergence of innovative concepts such as the Internet of
Audio Things (IoAuT) [1]. These paradigms integrate devices
capable of producing, analyzing, and transmitting audio data
in real time, enabling a wide range of applications.

The concept of TIScode (Transmit In Sound Code) emerges
from the fusion of these technologies [2]. TIScode is a distinc-
tive jingle that blends audio elements from various genres and
styles, creating a diverse and dynamic sound. Each TIScode
last 5 seconds and it is capable of carrying information. At the
time of its creation, a digital piece of information is assigned
to it, which can later be retrieved once the TIScode is decoded
by a smartphone application. This process occurs seamlessly,
without requiring the user to unlock the device, turn on the
recorder, or activate the camera. The app detects an opening
marker, a brief sound preceding the actual audio containing
the information, which triggers autonomous recording. Upon
unlocking the device, the user gains access to the digital
content embedded within the TIScode.

This technology has numerous applications, ranging from
transmitting information through radio broadcasts in cars, to
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receiving ambient information in a context-rich environment
[2]. In advertisement, TIScode integrates with radio/TV broad-
cast as well as movies or concerts to deliver promotional
content directly to personal mobile devices [3]. In localized
marketing, it facilitates targeted promotions in shopping cen-
ters and malls. Events and exhibitions benefit from digital
catalogs and real-time updates via ambient acoustic signals
[4]. In hospitality and tourism, the system provides automatic
updates on restaurants and accommodations [5]. Museums and
cultural institutions can use it for interactive tours and exhibits.
In transportation hubs, it can deliver real-time travel updates
[6].

TIScode also supports healthcare, providing regulatory in-
formation and patient instructions, and education, enabling
seamless distribution of institutional announcements. It en-
hances accessibility for visually impaired users and those with
disabilities, ensuring inclusive communication [7]. TIScode
enables automated, passive interaction, making it a powerful
tool for contextual and location-based information dissemina-
tion [8]. It can also be useful for new types of multiple-factor
authentication that differ from usual visual codes [9], without
aiming the camera at a screen and with automatic handling and
directional tracking, ensuring a new layer of security [10].

The IoAuT is an emerging research field where AI-powered
sound recognition technologies are advancing rapidly. These
developments enable applications such as urban noise mon-
itoring, environmental surveillance [11], anomaly detection
[12], and data sonification [13], which involves converting
information into sound. Semantic audio technologies further
enhance interoperability by extracting structured data from
audio signals, while web-based tools facilitate real-time audio
processing for interactive and distributed applications [14].

Many of these applications rely on field-programmable gate
arrays (FPGAs), which are power-efficient and highly suitable
for computationally intensive tasks like convolutional neural
networks (CNNs) [15]. Some works also consider the use
of transformer-based architectures for sound recognition and
classification tasks, as done in [16] with the introduction of
a multi-resolution attention mechanism for audio samples.
Other works employ transformers to improve the classification
in the presence of considerable ambient noise [17]. In this
paper, we outline the process of generating TIScodes using
existing Generative AI algorithms. We also introduce a feature
selection and coding algorithm designed to maximize the



accuracy of TIScode decoding. To validate our approach, we
present performance evaluations based on both simulations
and real-world experiments. The practical implementation of
IoAuT-related technologies remains relatively unexplored in
the existing literature, highlighting the novelty and significance
of our contribution.

The reminder of this paper is organized as follows: in Sec-
tion II, we introduce the role of Generative AI in the creation
of TIScodes. Section III covers the methodologies necessary
for TIScode channel coding. In Section IV, we present and
analyze the results of these techniques, demonstrating the
performance of our system’s channel coding. Additionally, we
highlight the effectiveness of various AI techniques in both
generating and classifying short sound messages. Finally, we
conclude in Section V.

II. SOUND MESSAGE TRANSMISSION

The use of sound messages for communication is com-
mon in various contexts, such as in wireless acoustic sensor
networks, where low-power nodes with microphones enable
event detection through sound classification and localization
[3]. Similarly, sonification employs microphones in produc-
tion machines to detect anomalies by analyzing acoustic
signals, with classification performed via cloud-based machine
learning [13]. Here, we refer to short sound messages as
TIScodes, a patented technology by Ogenus S.R.L. These
are brief 5-second jingles received by IoAuT devices, such
as smartphones and classified through a cloud-based ML
algorithm. Once classified, each jingle is mapped to a pointer
in a database, allowing retrieval of the associated digital
information [2].

Fig. 1 shows the TIScode pipeline, comprising:
Generation: the system generates a prompt and uses it as
input for MusicGen [18], which creates a short musical piece
paired with the digital information to transmit.
Channel Encoding: the system creates a bitmap that uniquely
identifies the TIScode using various sound features. It saves
the bitmaps in a database along with an analysis of the
frequency peaks.
Transmission: users can now access the TIScode and decide
when and where to transmit it.
Channel Decoding: a device receives the TIScode and de-
codes it using a minimum Hamming distance encoding. It
enhances recognition by verifying the frequency peaks.
Information Retrieval: the system matches the TIScode to
create a pointer to the database, allowing it to retrieve the
originally paired digital information.

Managing a large number of short sound messages is essen-
tial for a TIScode platform. Manually generating each sound
is impractical and may not provide sufficient variability, espe-
cially considering that each TIScode is only 5 seconds long.
Sound generation must also ensure maximum diversity among
TIScodes. To address these challenges, we leverage MusicGen
by Meta, an autoregressive transformer-based model capable
of generating high-quality audio from text descriptions and
melodic cues [18]. MusicGen transformer process sequences

of tokens (x1, ..., xT ) of arbitrary length T . Transformer first
embeds the tokens to obtain a sequence (e1, ..., eT ). It is a
succession of blocks with residual connections. Each block is
made of the composition of a multi-head self-attention module
and a multi-layer perceptron. Importantly, the latter acts on
each token separately, whereas multi-head self-attention mixes
tokens, and corresponds to applying vanilla self-attention in
parallel [19]. More precisely, each multi-head self attention is
parametrized by a collection of weight matrices representing
query, key, value and output (Qh,Kh, V h, Oh)1≤h≤H and
returns: ( H∑

h=1

Oh
t∑

t′=1

Ah
t,t′V

het′

)
t∈{1,...,T}

(1)

where Ah
t,t′ is the attention matrix defined as [20]:

Ah
t,t′ = softmax

(
Qhet,K

het′
)
. (2)

The token system of MusicGen represents discrete musical
units allowing to model complex musical structures and gen-
erate results that align with user requests. In this generation
process we can manage degrees of freedom related to: 16 dif-
ferent genres (pop, rock, blues...), 8 different production types
(Lo-Fi, 8-bit...), 16 different musical instruments (acoustic
guitar, electric guitar, flute...), 4 tempo settings (slow, medium,
moderate, fast), the key of the track and 8 different moods
(energetic, relaxing, intense...). This gives approximately 20
bits for generating audio tracks within this dataset, enabling
the creation of 220 ≃ 106 different TIScodes. The dataset
generated with MusicGen that will be used for all tests
conducted in this work consists of 1000 publicly available
audio tracks.1 These tracks were generated with a maximum
token limit of 512 per track, which translates to a duration of
about 5 seconds. One hundred of these tracks were generated
using the unconditional generation function, which involves
MusicGen generating random pieces without any input. These
were created both to test this type of generation and to
introduce more variability into the dataset to stress the tests
described later. The remaining 900 tracks were generated using
900 text AI-generated prompts. The prompts are structured
following this template:

Genre + Production Type + One or more instruments +
Mood + Tempo setting + Key .

We summarize in Tab. I all the information on the dataset.

III. CHANNEL CODING IN TISCODE

Differently from typical redundancy coming from CRC or
FEC codes, we leverage the correlation and inter-dependencies
of multiple audio features. The idea is to analyze features and
characteristics of our TIScode, then quantize them to create a
bitmap for efficient channel encoding and decoding. We extract
the features using Librosa [21] and MIRtoolbox [22], which
are platforms dedicated to the extraction from audio files of

1https://www.kaggle.com/datasets/manuelefavero/tiscode-dataset



Fig. 1. TIScode Pipeline

TABLE I
TISCODE DATASET SUMMARY

Data Description

Conditioned Generated Tracks 900
Unconditioned Generated Tracks 100
Audio Format Mono
Extension Format .WAV
Token Length 512
Time Length 5 seconds
Min. Degree of Freedom 20 bits
Available combinations 1 048 576

musical features written, respectively, in Python and Matlab.
We report the analyzed features in Tab. II.

We selected features that are robust to noise while also
able to characterize the TIScode from a perceptual sound
perspective. This ensures that differences in the generated
bitmaps correspond to perceptual differences in sound. Audio
features play a crucial role in characterizing sound by captur-
ing its tonal, rhythmic, and textural properties. For instance,
chroma features identify dominant pitch classes, helping to
determine the key and harmonic structure, while the tonal
centroid represents tonal relationships in a multidimensional
space. Spectral contrast distinguishes between harmonic and
percussive elements, shaping timbre perception. ZCR and
roughness provide insights into signal texture, differentiating
smooth from percussive or dissonant sounds. Together, these
features enable comprehending musical and audio content.

Among all these features, three are derived using a CNN:
Key, Genre, and Top Instrument. Indeed, correctly recogniz-
ing the key in the presence of high noise is challenging,
thus we used a CNN that is more resilient to noise than
traditional methods. Specifically, we applied Convolutional
Representation for Pitch Estimation (CREPE), a state-of-the-
art tool for pitch detection [15], [23]. CREPE consists of a
deep convolutional neural network which operates directly on
the time-domain audio signal to produce a pitch estimate.
The architecture consist of six convolutional layers that result
in a 2048-dimensional latent representation, which is then
connected densely to the output layer with sigmoid activations
corresponding to a 360-dimensional output vector ŷ. Each
dimension in the output vector represents a frequency bin

covering 20 cents (a unit representing musical intervals relative
to a reference pitch) [23].

To soften the penalty for near-correct predictions, the target
is Gaussian-blurred in frequency, such that the energy sur-
rounding a ground truth frequency decays with a standard
deviation of 25 cents:

yi = exp

(
− (či − čtrue)

2

2 · 252

)
, (3)

This way, high activations in the last layer indicate that the
input signal is likely to have a pitch that is close to the target
pitches of the nodes with high activations [15].

We classify Genre and Top-Instrument using wav2vec [20],
a convolutional feature encoder trained on different datasets
[24], [25]. The encoder comprises blocks with temporal con-
volutions, layer normalization, and GELU activation. The
output is fed into a transformer-based context network. In
self-supervised training, the encoder output z is discretized
using product quantization, selecting representations from G
codebooks with V entries, concatenating them, and applying
a linear transformation [20]. The Gumbel softmax enables
choosing discrete codebook entries in a fully differentiable
way. We used the straight-through estimator with G hard
Gumbel softmax operations [26]. The feature encoder output
z is mapped to l ∈ RG×V logits and the probabilities for
choosing the v-th codebook entry for group g are

pg,v =
exp(lg,v + nv)/τ∑V
k=1 exp(lg,k + nk)/τ

, (4)

where τ is a non-negative temperature, n = − log(− log(u))
and u are uniform samples from U(0, 1). During the forward
pass, codeword i is chosen by i = argmaxj pg,j and in the
backward pass, the Gumbel gradient of the outputs is used.

We analyzed and tested the percentage variation of each
feature against every other TIScode in the dataset. Based
on this analysis, we selected the 28 features reported in
Tab. II (including the mode, which indicates whether the
key is in the major or minor scale) as the most suitable
for constructing bitmaps that identify TIScodes maximizing
their pair-wise distances. In other words, we maximize the
minimum Hamming distance between the bitmaps, represented



TABLE II
FEATURES COMPARED FOR SOUND ANALYSIS WITH THE SELECTED FEATURES HIGHLIGHTED

Attack Time Attack Slope Average Zero-Crossing Rate Brightness Centroid
Contrast Decay Slope Decay Time Event Density Flatness
Genre Harmonic Ratio Inharmonicity Irregularity Key
Kurtosis of Audio Signal Low Energy Low Energy Ratio Maximum Bandwidth Maximum Flatness
Maximum Peak Prominence Maximum Roll-Off Maximum Strength Mean of Audio Signal Mean Pulse Curve
Mean Roughness Mean Strength Mean Tempogram Minimum Bandwidth Minimum Centroid
Minimum Contrast Minimum Flatness Minimum Roll-Off Minimum Strength Minimum Tempogram
Modulation Index Musical Mode Pulse Clarity Root Mean Square (RMS) Skewness of Audio Signal
Spectral Centroid Spectral Entropy Spectral Roll-Off Spectral Spread Max Pulse Curve Peak
Tempo (BPM) Temporal Centroid Tonal Centroid Top Chroma Note 1 Top Chroma Note 2
Top Instrument Top Tonal Network Class Variance of Audio Signal Width of Top Correlation Peak Zero Crossing Rate

as binary strings. We mapped all numerical features with 8 bit
to obtain a final 193 bit bitmap that uniquely identifies every
TIScode in our dataset.

The obtained Hamming distance can be used for error
control (detection or correction) [27]. In this work, we exploit
the redundancy due to the large number of features used to
recover the TIScode through minimum Hamming distance
decoding, so as to fix errors caused by ambient noise or
erroneous matches of some features [28]. We also save spectral
information of our short sounds separately from the features
to improve the recognition precision. To analyze the spectro-
grams in the frequency domain, we divide them into multiple
windows using the short-time Fourier transform (STFT):

STFT{x(t)}(m,ω) =

∞∑
n=−∞

x[n] · w[n−m] · e−jωn . (5)

We set a 0.5 seconds window w[n] and, for each window,
we select the 10 most significant frequency peaks, saving
their frequencies and the time intervals between them [29].
The map created from the peaks and their temporal positions
will further contribute during the recognition phase by intro-
ducing redundancy, enabling more accurate identification of
best match candidates. To test the recognition capabilities of
our system, we design Algorithm 1. For the experiments, we
select two noisy datasets: the “Ambient Dataset”2 which is
less noisy, featuring sounds like rain, thunder, and wind, and
the “Hospital Dataset” [30], which is noisier, including sounds
like screams, small and very loud rooms, etc.

In the audio recognition literature, the frequency responses
of device microphones are often simplified as low-pass filters
or not considered at all [14], [31]. To introduce a repre-
sentation closer to real-world conditions we have conducted
experiments in an anechoic chamber, recording a sweep from
20 Hz to 20 kHz in the Mel scale using various smartphones
placed one meter from the sound source.3 With the sweep
recorded by the phone y(t) and its original version x(t), we
first convert the two signals in the frequency domain as X(f)
and Y (f), respectively. Then, the frequency response H(f) is

H(f) =
Y (f)

X(f)
. (6)

2https://www.kaggle.com/datasets/solorzano/ambient-noise/data
3https://github.com/manuelefavero/DSP

Algorithm 1 Simulations Recognition Algorithm
1: Select a number N of simulations
2: for each simulation do
3: Choose a random TIScode from the dataset
4: Choose a random noise sample from the noise dataset
5: Set an attenuation level in dB for the TIScode
6: Set an attenuation level in dB for the noise sample
7: Overlay the TIScode and noise
8: if a phone’s frequency response is selected then
9: Apply the frequency response of the phone’s

microphone to the overlaid sound
10: end if
11: Extract features and perform frequency peaks analysis
12: Match the audio with the highest-scoring TIScode in

the database
13: end for
14: Compute the total number of matches
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Fig. 2. Hamming distances distribution within the TIScode dataset.

Finally, we derive a general representation of the microphones
impulse response h(t) using the inverse discrete Fourier trans-
form (IFFT) [32].

IV. RESULTS

In this section, we present the results of the tests conducted
for the various methodologies listed in the previous sections,
highlighting how the proposed techniques are suitable for an
IoAuT system that leverages communication through short
sound messages. First, we create a bitmap for each TIScode
in our dataset, as described earlier and we compute and
analyze how the Hamming distances are distributed within
our dataset. The Hamming distances computed between all
bitmap pairs and the frequencies are reported in Fig. 2. With



0 20 40 60 80 100
Hamming Distance (dH)

0

20

40

60

80

100
Cu

m
ul

at
iv

e
Pe

rc
en

ta
ge

(%
) Selected Features

Discarded Features

Fig. 3. CDF of Hamming Distances

-9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB
∆ Sound Level [dB]

0

20

40

60

80

100

Co
rr

ec
t

M
at

ch
es Discarded Feature Set

Random Feature Set
Selected Feature Set

Fig. 4. Recognition benchmark of the three feature sets under Ambient Noise.

the generated mapping, we achieve an average distance of 80
bits, a maximum distance of 134, and a minimum distance
of dmin = 31. We thus can correct up to

⌊
dmin

2

⌋
= 15

errors, which correspond to the bits of almost two entire
features being detected incorrectly due to noise or distortion.
By correcting these errors, we obtain the TIScode identifier
as close as possible to the original codeword, thus pointing
to the digital information database with which that sound was
originally generated.

We observe that not all minimum distances are clustered
near the Hamming distance of 31. In fact, this is a minimum
value that occurs only in a few cases. As shown in Fig.
3, the probability of generating a TIScode with a Hamming
distance below 50 is under 2%, and the probability of obtaining
one with a distance below 60 bits is less than 10%. Given
these results, to improve the minimum distance we can choose
to intervene at the source, during the post-generation phase.
We adopt a brute-force approach where, once a TIScode is
generated, its Hamming distance is tested. If the new minimum
Hamming distance does not exceed a previously set threshold,
it is discarded and regenerated iteratively. To strengthen the
selection of our features, we verify their impact during the
recognition phase. In Fig. 4, we present a recognition test
performed on three different feature pools: one using our
selected features, a second using discarded features, and a third
one using a random mix of 14 features from the selected set
and 14 features from the discarded set.

The x-axis represents the difference in sound levels between
the two audio signals. Positive values indicate a higher in-
tensity level for the TIScode, while negative values signify

TABLE III
CORRECT MATCHES PERFORMANCES IN AMBIENT NOISE DATASETS

Ambient Dataset

-9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

Without H(f) 79% 85% 88% 95% 96% 97% 98%
OPPO A54 51% 66% 68% 75% 77% 82% 88%
iPhone 13 50% 52% 63% 76% 85% 92% 95%
Honor 9X 68% 85% 87% 88% 91% 94% 95%

TABLE IV
CORRECT MATCHES PERFORMANCES IN HOSPITAL NOISE DATASETS

Hospital Dataset

-9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

Without H(f) 72% 79% 81% 92% 95% 97% 98%
OPPO A54 32% 37% 49% 55% 62% 76% 82%
iPhone 13 42% 49% 52% 56% 69% 81% 83%
Honor 9X 62% 75% 85% 87% 89% 91% 92%

that the noise has a greater intensity. Our selected feature set
outperforms the other two, thus confirming the validity of our
feature selection. Once our features have been validated, we
proceed with recognition simulations, where the final result is
obtained by combining the previously described decoding rule
and the saved frequency peaks map. In Tabs. III and IV we
report the simulations carried out using the frequency response
of three selected phones for this recognition test: iPhone 13,
OPPO A54, and Honor 9X. Honor 9X and OPPO A54 are
new smartphones used only for these tests, while iPhone13
is a 3-years-old phone used by people on a day-to-day basis.
The results come from five sets of 100 simulations each and
should be considered with a 2% confidence interval. As shown
in the case of the Ambient dataset, the success rate never drops
below 50%, and without sound attenuation, it remains above
75% for correct matching. The noisier Hospital dataset, on the
other hand, yields worse results, although it never falls below
50% at 0 dB. These results also highlight a dependence on the
quality and condition of the microphone capsule. The Honor
9X proves to be the best in terms of correct match percentage,
while the OPPO A54, a low-end smartphone, performs the
worst. iPhone 13, although not producing excellent results,
probably due to its microphone’s capsule degradation, outper-
forms the OPPO. Overall, the system delivers solid results,
especially considering the absence of any noise attenuation
system in these experiments.

Finally, we present field tests conducted in three different
scenarios. In all three, the smartphone, in this case a OnePlus
8T, is placed 40 cm away from a DELL Inspiron 16Plus
7620 laptop equipped with a NVIDIA GeForce RTX 3050.
TIScodes were emitted by the laptop speaker, recorded with
the smartphone, and subsequently decoded on the laptop.
The recognition of a single TIScode, leveraging CUDA 12.6
for CNN-based feature extraction, takes an average of 7–8
seconds. The first scenario is a indoor room, with no significant
background noise. The second scenario is inside the same
room, but this time the TIScode is played with music in the



TABLE V
SUMMARY OF SCENARIOS WITH CORRECT MATCHES PERCENTAGES

Scenario Location PC Volume Correct Matches

Scenario 1 Room 30% 96%
Scenario 2 Room w/ background music 30% 92%
Scenario 3 Outdoor area w/ people speaking 50% 91%

background from the same PC at an intensity level half that
of the TIScode. The third scenario is an outdoors area near
the university with tables around and people talking. In this
case, the percentages of correct matches reported in Tab. V
were produced after 100 recognition tests.

V. CONCLUDING REMARKS AND FUTURE WORKS

In this work, we introduced TIScode, a novel technology
that uses audio for information transmission. We demonstrated
the integration of various artificial intelligence technologies
to automate audio generation and recognition processes.
Specifically, we employed MusicGen [18], an autoregressive
transformer-based model, for sound generation; CREPE [23], a
deep convolutional neural network, for robust key recognition;
and wav2vec [20], a multi-layer convolutional feature encoder,
for genre and instrument classification.

Our proposed channel coding leverages sound features to
create a bitmap, uniquely identifying TIScodes. Initial results
are promising, though the absence of a noise cancellation
or attenuation mechanism remains a limitation that must be
addressed to enhance system performance [33]. Further real-
world testing is required to validate the virtual simulation
results. Additionally, incorporating methods to introduce re-
dundancy and improve error correction, such as Reed-Solomon
codes and audio watermarking algorithms leveraging Discrete
Cosine Transform coefficients, will be valuable in optimizing
the system for practical applications. [27], [34].
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