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Abstract—Age of Incorrect Information (Aoll) is particularly
relevant in systems where real time responses to anomalies are
required, such as natural disaster alerts, cybersecurity warnings,
or medical emergency notifications. Keeping system control with
wrong information for too long can lead to inappropriate re-
sponses. In this paper, we study the Peak Aoll (PAoll) for multi-
source status reporting by independent devices over a collision
channel, following a zero-threshold ALOHA access where nodes
observing an anomaly immediately start transmitting about it. If
a collision occurs, nodes reduce the transmission probability to
allow for a resolution. Finally, wrong or lost feedback messages
may lead a node that successfully updated the destination to
believe a collision happened. The PAoll for this scenario is
computed in closed-form. We are eventually able to derive
interesting results concerning the minimization of PAoll, which
can be traded against the overall goodput and energy efficiency,
but may push the system to the edge of congestion collapse.

Index Terms—Anomaly detection, Age of Incorrect Informa-
tion, Random Access, Internet of Things

I. INTRODUCTION

Modern communication systems provide a plethora of real-
time services in which timely and accurate information is
critical [1]. This is especially true for alert systems designed
to notify users of events or conditions requiring immediate
action [2]. Over the last decade, Age of Information (Aol)
has emerged as a practical metric to quantify timeliness of
information [3], [4]. However, alongside Aol, the accuracy
of the notifications and a timely tracking of critical status
changes in the system play an equally pivotal role, leading to
the popularity of the more recently proposed Age of Incorrect
Information (Aoll) [5].

In scenarios involving safety, health, or tactical monitoring,
obsolete information can still be useful as long as it reflects
the system condition, whereas failure to timely report that the
last status report has become incorrect can have catastrophic
consequences. We argue that in these systems a suitable goal
metric to minimize would be, rather than Aol alone, the value
of Peak Aoll (PAoll), i.e., the maximum duration for which
system control is exposed to incorrect or misleading data
before a correction is received. This metric is valuable for
emergency notifications and whenever keeping erroneous data
for too long can lead to inappropriate responses.

In this paper, we analyze PAoIl for a network of users,
each reporting over different sensed quantities to a common
sink. The information content of each sensor is not correlated
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Fig. 1: Example of the Aol and Aoll evolution for a node.

with the others and the access procedures are also distributed,
following an ALOHA model over a collision channel [6].
A seminal analysis of Aol for ALOHA systems is already
presented in [7], and has seen many follow-up extensions
involving carrier-sense [8], capture effect [9], or finite horizon
scheduling [10]. Frame Slotted (FS) ALOHA [11] has also
been shown to be particularly convenient for Aol minimization
over multi-access channels due to its framed structure that
decreases the variance of the individual success probability.
In [12], an analysis of FS ALOHA was performed, focusing
only on Aol. Moreover, [13] analyzed Aol in slotted ALOHA
by considering an age threshold, which is shown to benefit
information freshness by decreasing collisions and allowing
nodes with staler information to gain priority. However, this
approach is conceived without considering Aoll and status
inaccuracy. A threshold-based approach and a framed structure
are combined in [14], which applies a threshold mechanism to
FS ALOHA, with the same goal of improving Aol. Protocol
enhancements leveraging decentralized scheduling to improve
Aol have been also presented in [15], essentially based on the
degree of innovation that packets bring, and in [16], which
establishes a round robin schedule among competing users.

Fig. 1 highlights the significant difference between tradi-
tional Aol and Aoll. The latter is suited to anomaly reporting
applications, where the interest in the freshness of the state
depends on the state, resulting in protocols that operate very
differently as compared to the ones optimized for Aol. The
studies that optimize protocols for Aoll are rather sporadic.
Aoll is evaluated with a Markov model in [17], for both slotted
and FS ALOHA versions. In [18], the goal of Aoll minimiza-
tion is tackled with a distributed approach, and finally [19]
compares different strategies for update reporting over a multi-
access collision channel. In this work, we combine the novelty



of Aoll analysis with an often-neglected aspect, i.e., the
reliability of the feedback channel.

Our study can be seen as considering the reactive strategy,
where transmissions are made by sensing nodes only when
a change in their observed metric occurs, but without waiting
for any threshold, until they eventually reach acknowledgment
from the sink. The effect of lost feedback messages [20] causes
additional unnecessary transmissions from nodes mistakenly
believing that an update was lost. In other words, each node
is in an idle state until it observes an anomaly, in which
case it starts reporting about it until the message is eventually
received at the common sink. If collisions occur, they cause the
nodes to enter a resolution phase with lower access probability.
However, failure to receive an acknowledgment (ACK) may
erroneously lead a node to believe that a collision occurred. We
analyze the system and optimize the protocol parameters, with
the interesting conclusion that a value precisely minimizing
the PAolI can be found on the brink of system instability, but
preceded by a general plateau for most other key performance
indicators such as goodput and power consumption. Therefore,
the worst-case PAoll can be optimized, possibly leaving a
proper margin to avoid instability.

II. SYSTEM MODEL

We consider a scenario in which a set A” of N = |N|
sensors, need to report anomalies to a single gateway over a
shared channel. We consider a slotted time system; at each
time step, an anomaly may be independently detected by any
sensor with probability A. Anomalies persist until they are
successfully reported to the gateway. The state of the measured
process at time ¢ is x(¢) € {0,1}": if x,,(t) = 1, there is an
unreported anomaly for sensor n. The Markovian transition
matrix H,, for the state x,,(¢) of sensor n is then

e TR ER

where &, (t) is an indicator variable, equal to 1 if n success-
fully transmits a packet in slot ¢ and 0 otherwise. Following
the common definition [5], the Aoll A,,(¢) is

An(t) =1 (xn(t) = 1) An<t - 1) +1, 2

where I(+) is the indicator function, equal to 1 if the argument
is true and O otherwise. The Aoll grows only when the sensor
is in state 1, i.e., there is an unreported anomaly, and resets
to 0 when the node successfully transmits an update. We also
define the PAoll 6, i.e., the maximum Aoll reached before
the anomaly is successfully reported. This is equivalent to
sampling the Aoll when x,, ()¢, (t) = 1.

Our communication model is a collision channel: if more
than one sensor attempts a transmission in the same slot,
no packet is received. On the other hand, there is an error
probability € even if a single sensor transmits, representing
the channel uncertainty. Given vector v(t), with v, (t) = 1 if
sensor n attempts a transmission in the slot and 0 otherwise,
the probability of success is then

Pr [y enén(®) = 1y®)] =T(v®I =1) (1 —¢), 3
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Fig. 2: Protocol state diagram.

where ||-|| is the L2 norm of a vector. If a sensor is successful,
we consider a latency of 1 slot, i.e., the PAoll if the sensor
transmits immediately is equal to 1. Furthermore, we consider
an imperfect feedback channel operating over Time Division
Duplex (TDD): at the end of each slot, the gateway transmits a
short ACK packet. Transmitting nodes then switch to receiving
mode, but the ACK may be lost with probability .

We then consider a slotted ALOHA protocol with backoff,
in which nodes may be in 3 different states: (i) Idle nodes
have nothing to transmit; (ii) Active nodes need to transmit
an anomaly, and attempt a transmission in each slot with
probability «; (iii) Backoff nodes did not receive an ACK,
and thus switch to the backoff transmission probability S.

The protocol state diagram is represented in Fig. 2, in
which we distinguish between collided nodes, i.e., sensors that
enter backoff mode after a packet is lost in the uplink phase,
and mistaken nodes, whose packet was received correctly
but which missed the relative ACK. From the perspective of
the sensor, these events are completely indistinguishable, but
the distinction is useful in the analysis. Mistaken nodes may
become collided if a new anomaly appears.

III. PROTOCOL ANALYSIS

We can now analyze the system as a Markov chain, con-
sidering a compact state s = {a,c, m), which represent the
number of active, collided, and mistaken sensors, respectively.
Naturally, a+c+m < N, and we define the auxiliary variable
I = N —a— c— m, i.e., the number of idle sensors. We
denote the set of possible states as S and the change in a
when transiting from state s to state s’ as d, = a’ — a, and
define d. and d,,, analogously.

A. Steady-State Analysis
First, we can easily compute the probability that ¢ idle
sensors and m mistaken ones will detect a new anomaly as
¢{*) = Binj (i) Bin' (7). @)

where Binf)v (m) is the binomial Probability Mass Function
(PMF). On the other hand, the probabilities of success for a
specific node in active and backoff mode when there are a

nodes in active mode and b nodes in backoff mode are

oala,b) =(1 —&)a(l —a)* (1 - B); (5)
op(a,b) =(1 —&)(1—a)*B(1 - B)*~". (6)



We can then distinguish a number of cases, listed in Table L!
In particular, if the system is in state s = {(a,c,m) and i €
{0,...,I} idle nodes and j € {0,...,m} mistaken nodes
detect a new anomaly, we have these transitions from s to s':

e Case A: An active node successfully transmits and gets

the ACK, s' ={(a+i—1,¢+j,m — j).
e Case B: An active node successfully transmits, but the
ACK is lost, ' = (a+i—1,c+j,m—j+1).

e Case C: A collided node successfully transmits and gets

the ACK, s’ = (a+i,c+j—1,m—j).

e Case D: A collided node successfully transmits, but the

ACK is lost, s’ = (a+i,c+j—1,m—j+1).

o Case &: A mistaken node successfully transmits and gets

the ACK, s’ = {a+i,c+j,m—j—1).

e Case F: A mistaken node successfully transmits, but the

ACK is lost, 8" = (a + i, ¢ + j,m — j).

e Case G: No transmission, s’ = (a + i,c+ j,m — j).

o Case H: Collision involving k € {0,...,a + i} active

nodes, s’ = (a+1i—k,c+j+k,m—j).

e Case I: An active node is the only one to transmit, but

fails, s’ = {(a +i,c+ j,m — j).
e Case J: A node in backoff mode (either mistakenly or
correctly) transmits and fails, s’ = {(a +i,c+ j,m — j).
We can then compute the probability of each case:

(1 =) (a+i)oa(ati,c+m)SP k= A

(a—i—z)oa(a—i—i,c—l—m)gs(i’j), k= B;
(1= ¢)(e+fovlati,c+m)?, k=0

Y(c+ j)op(ati, c—i—m){s(i’j), Kk = D;

Py =4 (1 =) (m = oy(ati,ctm)d?, k=& )

Y(m — j)op(a+i, c—i—m)Cs(i’j)7 k=F;
(1= )il = g)erm™, k=G
eBin%™(1 )Bin%‘"m(())(s(i’j), k=1,
£Bin®™ (0 )Bincﬁ+m(1) &0, k=J.

We consider case H separately, as we need to keep track of
the number k of active nodes involved in the collision:
ct+m
=Bin*(k) Y Bingtm(0)¢{. (8)
{=max(0,2— k)

pij,k(S)

Finally, we combine these events to obtain the non-zero state
transition probabilities. Each element of the transition matrix
M is then defined as

D5, o (8)+D05, 4.(s), de=—1—dyp;
A
Pai1,a.(8) +Z P, .. (s)
ke{F,G,T} dc__dm;
Mg =\ 420084, 4 () ©)

Pd,+1.4.(8) +Pa,11.0.-1(8) d

H c= ]-_dm7
+pda+17dc*1,l(s>a
Pl ity —ddotd, (), de>1—dn,

'Noise-induced errors on both channels, as well as collisions, are directly
captured by the model. However, the current version does not consider the
possibility of packet capture: this could be easily introduced as a further
division of case H, and does not significantly affect the results.

TABLE I: Events and state changes.

Event ‘ Meaning ‘ dg d. dpm
A(i, 5) Success from active node i—1 J —J
B(i,7) Lost ACK from active node i—1 j —j+1
C(%,7) Success from collided node 4 j—1 —J
D(1,7) Lost ACK from collided node i j—1 —j—1
E(i,7) Success from mistaken node i J —j+1
F(i,7) Lost ACK from mistaken node i J —J
G(i,7) Silence % j —j

H(i, j, k) Collision i—k j+k —J
Z(3,7) Loss from active node i—1 741 —J
J(,7) Loss from backoff node i J —J

Naturally, the events only have a non-zero probability if their
parameters are within the feasible bounds. We then use the
eigenvalue method to obtain the steady-state distribution 7.

B. Goodput, Energy, and Peak Aoll Analysis

The goodput G of the system, defined as the average number
of novel packets that are transmitted per slot, can be computed
as the steady-state probability of events A, B, C, and D:

I m
G=YreY. > > (e

ses i=0 j=0 ¢c{A,B,C,D}

(10)

In cases £ and F, the successfully transmitted information is
stale, as it comes from mistaken nodes. In the same way, we
can compute the expected power consumption of each node,
assuming each slot in which a sensor is active requires energy
FE, including both the packet transmission and ACK reception,
and the slot duration is 7:

> I
= N—TZW(S) (c+m)[3+Z(a+z)o¢

seS =0

(1)

We can now compute the PMF of the PAoll. New anomalies
may be detected by idle and mistaken nodes, so the probability
of a new anomaly being detected in state s can be computed
by applying Bayes’ theorem:

w(s)(m+ 1)\
b Pkt(s) = N(T! Ny
Yoees TS )T +m/)A

The probabilities are stored as row vector ppk, while column
vector pig, with pia(s) = #H’ contains the probability that
the new anomaly came from an idle node in each state. Finally,
we include the success probability for active and backoff nodes
in the column vectors n*) and (), respectively:

(12)

I-T(t=1)
7 (s ZB [=1(t= 1)()aa(a—|—z ¢+ m); (13)
=0
I m—T(t=1)
t s):ZBin)\ ZBmm =D (Noy(a + i, ¢+ m).
(14)

The overall probability of the PAoll 6 being equal to 1,
i.e., of the new anomaly being immediately reported, can be
computed via Bayes’ theorem:

mﬂ)zpm(muaﬁn+(k—m0®vm), (15)



where © represents the Hadamard element-wise product.

The following steps are more complex. Nodes that went
from idle to active may switch to backoff mode if events H
or Z happen. We can then compute the transition matrix in case
of an unsuccessful slot for a node in active mode. In the first
step, the node goes from idle to active, while in the following
steps, it is already active, so there is one less condition on
the matrix. If an event results in an active node successfully
transmitting or switching to backoff mode, we remove it from
the computation:

Ul = (16)

@' Pl 41,0, (5) de = —dm N

a’+1 ) (do=0Nnt=1);
"Dl 41,0, (5)
et Pian () de = —dpm N
+ P a0(8) + D P a.(5) (da>0ViEsT);

~e{F,G,T}
de=-1—d,, N

pga,dc+1(s) +P§a,dc(s); (da>0V t>1);

1 Pa41.0.8)4HPE a0, (5)  de=1—dm A
D01, ()] " (da>0ViE>1);

9P e tdin i de tdgn (5) de > 1 —dm A
a'+detdm ’ (do+de>—dpy Vi>1).

In cases in which the node switches to backoff mode, we have

VY = 17)
p§a+1,dc—1(S)+p1{a+1,dc—1,1(s) dc =1- dm A
a’+1 ’ (da>0Vt>1);
(detdm) PR vansdn —dp sy (s) Qe dm > 1A

@' +detdm " (datde>—dpm ViE>1).

Finally, we consider the transition matrix if the considered
node is already in backoff mode:

W(t)/ -
L (dm =0AE=1);
p:itJrl,du(s) +prla,dc (s) do— —d A
]_-7 , c ™m
" eet f,;%} ia(9) (dm >0VE>1)
+ Pd,d.0(8) + =,
PG, aera(s) de=—-1—dmn A (18)
et (dm = Nt =1);
17, C —_
C pda,dc+1(s) £ dc =-1- dm A
S P, (), (dn > 1V1E > 1);
Pgaﬂ,dc(s) +p§,,,+1,dcfl(s) de=1—dpn N

(de >0Vit>1);
de>1—dpy A
(dm >0VE>1).

+ pzi—taJrl,dcfl,l(S)a

H
pda +d<, +d'm7_d7n ydc+d7n (S)’

We then define the state posterior probabilities considering
active and backoff nodes:

(1)

1
Pacl = Ppkt @ Pt pf,k) =P © (1 —pia)” - (19)

TABLE II: Simulation settings.

Parameter Meaning Value
N Number of nodes 20
L Payload length 32b
E Transmission energy 1 mJ]
T Slot duration 50 ms
A Activation probability {0.01,0.02}
€ Uplink error probability 0.1
P Feedback error probability ~ {0,0.1,0.2}

We can compute the state distribution for the following steps if
the considered node is in active and backoff mode recursively:

T
ol = (sl o [1-n] U

T T
py = [pflf;? © [1—77“)} }V(t)-‘r [pf,i?ca [1—u<t>} }W(”.

(20)

21
We can then compute the PMF of the PAoll as
po(t) = pldn™) + pv®, vt > 1. (22)
C. Computational Complexity
The size |S| of the state space is
N N-—a
(N+1)(N+2)(N+3)
S| = N—-a—c+1) = , (23
N XZ;J ;J ( ) . (23)

which is O (N 3). To compute M, we need to consider possi-
ble activation, which requires O (N 5) operations. However,
there is a more complex operation: computing 7 with the
eigenvalue method requires O (|S|®) operations in practice,
ie., O (Ng). Finally, computing the Peak Aoll PMF up to
latency ¢ requires ¢ multiplication of the state distribution
by the transition matrix, each of which requires O (|S|?)
operations. The complete calculation of the PAoll PMF up
to ¢ then requires O (max [tN 6N 9]) operations.

IV. SIMULATION SETTINGS AND RESULTS

In order to evaluate the performance of the protocol in
different conditions, as well as the possible optimization of
its parameters, we first verified the correctness of the results
through extensive Monte Carlo simulations. However, for the
sake of brevity, the results of this check are not reported in
the figures: the Dvoretzky—Kiefer—Wolfowitz inequality [21]
states that the difference between the Cumulative Distribution
Function (CDF) F'(x) and the empirical CDF Fp (x), resulting
from L independent samples, is bounded by:

In(2)
2

Pr (sup(FL(2)—F(z)) > H}S N T 28

z€R
Considering L = 107 and p = 1073, the probability bound
is 2 x 1079, Since the empirical distribution is within this
bound at all times, we can conclude that the analysis is
correct, and only report the optimization results. The main
simulation settings are reported in Table II: the slot time
and transmission energy values are consistent with LoORaWAN
Class A devices [22] using spreading factor 7.
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Fig. 3: Performance of the system as a function of 3, with o = 0.9.

We first consider the optimization of the backoff probability
B, considering o = 0.9, i.e., a high probability of an immediate
first transmission attempt after an anomaly is detected: the
results in terms of the worst-case PAoll, goodput, and power
consumption are shown in Fig. 3. We considered two different
levels of the load p = NA: for p = 0.4, the maximum
Aoll before an anomaly is reported reaches 3 s in 5% of
cases even if the feedback channel is perfect, and is close
to 4 if there is a significant amount of errors on the channel.
In general, low values of /3 tend to optimize the worst-case
PAoII, as shown in Fig. 3a, and considering higher percentiles
leads to more conservative choices that reduce congestion. On
the other hand, the values that optimize the goodput, shown
in Fig. 3b, tend to be slightly higher. Finally, we can note
two inflection points in the power consumption, as shown by
Fig. 3c: the first is close to the optimum for goodput, after
which power consumption grows significantly with 3. The
second inflection point corresponds to a very low goodput,
and power consumption grows at a slower pace after it. In
these conditions, almost all nodes are in backoff mode all the
time, and the growth in the power consumption is given by /3
rather than by newly activated nodes, which use the higher
transmission probability «. The general trends are slightly
different in Fig. 3d, which shows the higher percentiles of
the PAoll with p = 0.2: the worst-case PAoll decreases
slowly as (3 increases, reaching a minimum just below the
point where congestion becomes catastrophic and the goodput
sharply drops to 0. Fig. 3e shows that goodput is almost flat
until that point, but sharply goes to 0 afterward, and the same
two inflection points are visible in the power consumption
curve, with a much sharper transition, as Fig. 3f shows.

We can extend the analysis to optimize both « and S, as
shown in Fig. 4. The region with the lowest worst-case PAoll

also results in a solid performance in terms of both goodput
and energy consumption. The key parameter in the analysis is
B: reducing the value of o may increase the average Aoll,
but does not have a significant impact on 95th percentile
performance unless it becomes very low, whereas /5 has a
stronger impact. The same effect is visible in terms of goodput
and power consumption: Figs. 4c and 4f confirm it, showing
a negligible effect of o on power consumption.

This phenomenon is caused by the disproportionate effect of
a sensor’s behavior after a collision on other nodes, while the
impact of the first transmission attempt is already mitigated
by the relatively low activation probability for each sensor, so
that collisions often involve nodes that are already in backoff
mode. Setting a relatively low value of 3, which depends on
the system load, can help prevent these cascades of collisions,
while still allowing nodes to report anomalies relatively often.

V. CONCLUSIONS

This work presents a closed-form analysis of the PAoll in
a reactive slotted ALOHA system for reporting anomalies,
highlighting the effect of imperfect feedback on protocol per-
formance. Our analysis finds that aiming for a high reliability
in terms of PAolIl, i.e., considering high percentiles of the
distribution as an optimization target, leads to more stable
configurations, which also have benefits in terms of goodput
and energy efficiency. On the other hand, even considering
the 95th percentile as an optimization target leads the system
right to the edge of instability, with significant consequences
for the application if the statistics of the anomaly generation
process change over time. Furthermore, we find that adapting
the probability of transmission for nodes that detect a new
anomaly has a negligible effect on both PAoll and more
traditional metrics, while the backoff probability becomes a
crucial parameter in the optimization.
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Considering an imperfect feedback channel changes the
outcomes of the optimization significantly, and further research
on the subject is required to obtain a closed-form optimum for
a given configuration; studying the robustness and adaptability
of the protocol to changes in the system statistics is another
key research direction that can exploit the analytical results
we derived in this paper.
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