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Abstract—Sleep disorders such as apnea and hypopnea have
significant health implications, and their accurate identifica-
tion from biological signals such as polysomnography (PSG)
or electrocardiogram (ECG) is essential for effective diagnosis
and treatment. We propose a new approach to pinpoint the
specific features of these signals that best reveal sleep apnea and
hypopnea, through a random forest (RF) algorithm and Shapley
value analysis. We validated our approach on the St. Vincent’s
University Hospital dataset, which includes overnight PSG and
ECG signals, from which we extracted time and frequency
features, capturing indications sleep apnea and hypopnea. We
fed these features into the RF model and evaluated the most
influential features in the recognition process, which possibly
enables better diagnostic approaches and personalized treatment
strategies, combining machine learning with interpretability to
advance understanding of sleep disorders.

Index Terms—Machine learning; Feature extraction; Random
forest classifier; Shapley value, Sleep Apnea; Hypopnea.

I. INTRODUCTION

Obstructive sleep apnea syndrome (OSAS) is a very com-
mon disorder with an incidence estimated at 5 to 14 percent
among adults aged 30 to 70 years. The clinical importance
of OSAS is related to an increased risk of cardiovascular
disease, as well as higher morbidity and mortality [1]. The
gold standard for the diagnosis of OSAS is the polysomnog-
raphy test (PSG) [2] that provides information on the severity
of OSAS and the degree of sleep fragmentation. However,
PSG requires an overnight evaluation in a sleep laboratory,
dedicated systems, and attending personnel [3].

Recently, medicine has embraced innovative data analysis
techniques, especially based on machine learning (ML), to
effectively analyze vast volumes of clinical data. This aims
to deepen our understanding of diseases and enhance diag-
nostic capabilities. In this spirit, we employ a supervised
ML approach, specifically a random forest (RF) classifier [4],
to address the classification of sleep apnea and hypopnea.
The data set is taken from St. Vincent’s University Hospital
[5]. The dataset contains a ground-truth classification between
apnea and hypopnea conditions, in three different categories:
obstructive (O), central (C), mixed (M). Thus, the classification
is in six classes (HYP-0/C/M, APNEA-O/C/M).

Then, we calculate the Shapley value for each signal to
determine their respective contributions to the final diagnosis
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[6]. This allows us to identify the specific features of each
signal that have the greatest impact on sleep apnea and
hypopnea. Our Shapley value computations are performed
through SHAP (Shapley Additive explanations), a popular
software tool for the explainability of ML models [7].

Several studies have explored machine learning for the
detection of sleep apnea, highlighting RF as a strong choice
for both accuracy and interpretability. Sharaf [8] demonstrated
that RF outperforms support vector machines (SVMs) and
decision trees in apnea detection based on electrocardiogram
(ECG), achieving 91.65% accuracy. This classification task
was performed on the Physionet Apnea-ECG dataset, sorted
into three groups: Apnea (A), Borderline (B), and Normal (C).
This study emphasized the role of feature selection, employing
sequential feature selection (SFS) and principal component
analysis (PCA) to identify the most relevant features. We argue
that Shapley values, as we apply in this contribution, would
be an even better choice for interpretability based on ML.

Bedoya et al. [9] further validated RF by comparing it with
other ML models, showing that ensemble methods achieve the
highest accuracy of around 90%. These results were obtained
in a binary classification setting, where the dataset was divided
into OSAHS positive (Hypopnea Index > 5) and OSAHS
negative (Hypopnea Index < 5).

Osa-Sanchez et al. [10] reviewed Al-based sleep apnea
detection and noted that deep learning models require ex-
tensive data and high computational resources, making them
impractical for many real-world applications. They also high-
lighted RF as an efficient alternative that balances accuracy,
computational cost, and ease of interpretation.

In general, these studies highlight the effectiveness of RF in
detecting sleep apnea through ML for its precision, efficiency,
and interpretability. They also show the importance of feature
selection in improving model performance.

There are also papers exploring Shapley values and their
application to the specific case of sleep apnea. In particular,
Tsai et al. [11] considered a collection of anthropometric data
from a set of Taiwanese patients, with the aim of avoiding
time-consuming polysomnography (PSG), whereas Maniaci et
al. [12] analyzed the importance of clinical scores. In both
cases, Shapley values are used for a reduction in dimensional-
ity of features to the most important, enhancing interpretability
in research on ML-based sleep apnea.

Our approach instead considers a joint analysis of PSG and
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Fig. 1. A sample of few seconds of the signals in the dataset

ECG signals, with a much larger set of available features.
Although these can already be compressed through standard
techniques of dimensionality reduction, we aim at showing
how using Shapley values allow for further improvements,
as well as interpreting the results by giving a physiological
characterization of importance to certain features, particularly
concerning heart rate variations, brain activity in certain inter-
vals, and overall breathing patterns.

II. MATERIALS AND METHODS
A. Dataset

St. Vincent’s University Hospital Sleep Apnea Database [5]
contains 25 full overnight polysomnograms with simultaneous
three-channel Holter ECG, from adult subjects with suspected
sleep-disordered breathing. PSG is the gold standard test for
sleep disorder diagnosis [2] and it records multiple channels,
using the Jaeger-Toennies system. Signals recorded were: EEG
(C3-A2), EEG (C4-Al), left EOG, right EOG, submental
EMG, ECG (modified lead V2), oro-nasal airflow (thermis-
tor), ribcage movements, abdomen movements (uncalibrated
strain gauges), oxygen saturation (finger pulse oximeter), snor-
ing (tracheal microphone) and body position. Three-channel
Holter ECGs (V5, CC5, V5R) were recorded using a Reynolds
Lifecard CF system [5]. A sample of the signals in the dataset
is shown in Fig. 1.

The dataset labels, which indicate apnea and hypopnea
event types, were pre-assigned by medical professionals in
the original St. Vincent’s University Hospital Sleep Apnea
Database. These annotations were made according to es-
tablished polysomnography (PSG) guidelines, ensuring accu-
rate and standardized classification of respiratory events. The
dataset consists of six predefined event categories—Hypopnea
(HYP-O, HYP-C, HYP-M) and Apnea (APNEA-O, APNEA-
C, APNEA-M)—which were directly incorporated into our
study without modification.

A RF classifier was applied to this dataset after training it
with these labels taken as ground truth. However, the focus
of our approach was to analyze the pre-processing, where the
signal is segmented, then relevant features are extracted. In
particular, our pipeline consists of the following steps.

B. Preprocessing

After PSG and ECG signals are read from the dataset, no
additional noise removal or artifact rejection was needed, as
the signals of the dataset are pre-cleaned. Thus, we just needed
to perform segmentation, dividing the signals based on pre-
annotated respiratory events. We based it on the available la-
bels assigned by experts, each segment including an individual
respiratory event. Thus, segments can be variable in length,
depending on the duration of the corresponding respiratory
event. Z-score normalization was applied to each physical
quantity to ensure consistency across the data, translating
and down-scaling each segment to have zero mean and unit
variance for all components. We remark that the normalization
was computed per segment, not globally.

We extracted relevant features from the segmented signals.

In this study, we extracted a total of 170 features from both
PSG and Holter ECG signals. Several well-known features
are extracted from input signals such as RR interval signals,
ECG-derived respiration (EDR) signals, heart rate variability
(HRV), oxygen saturation signal (Sp0O2), blood gas or blood
oxygen saturation (Sa02), and autocorrelation function (ACF).
From PSG, we also extracted a larger set of time-domain
features (e.g., mean, standard deviation, variance, kurtosis)
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Fig. 2. Top 50 features selected and sorted based on their statistical significance (output of SelectKBest Python’s method).

and frequency-domain features (e.g., alpha power, beta power,
delta power) computed using Wavelet Transform (WT) [13].
Additionally, we included respiratory-related features, such as
SpO2 mean and respiratory flow variability. From Holter ECG,
we extracted a smaller subset of features, mainly focusing
on HRV-related metrics such as: (i) difference in the root
mean square of RR peak amplitude; (ii) time interval between
consecutive HRV signals not exceeding 50 milliseconds; (iii)
standard deviation of HRV signals; (iv) mean, variance of ECG
signals.

C. Dimensionality reduction

To reduce the dimensionality of the dataset, we employed
SelectKBest with ANOVA F-score (f_classif), as imple-
mented in the Scikit-learn open-source Python library [14],
selecting the 50 most relevant features. This method evaluates
the best features [15] based on the statistical significance in
distinguishing between apnea/hypopnea event classes. This
helps to eliminate irrelevant or redundant features, improving
the efficiency and effectiveness of our classification model.
Based on an empirical evaluation, we observed that the best
50 features provided an optimal balance between model per-
formance and computational efficiency. Fig. 2 illustrates the
resulting features after applying the SelectKBest method. As
expected, the majority of the top-50 informative features are
derived from the brain activity (EEG) and the heart activity
(ECG), with a remainder contribution from other sensors
(EMG for muscular activity and eye movements, and body
posture).

Pairwise correlation was applied on the remaining 50 top
features to quantify the (linear) relationship between them.
For the computation, we used Pearson’s correlation rx,y
computed as

N _ _
_ Zn:l(X(n) — X)(Y(n) - Y)

TX,Y = ~ = ~ = .

VEN (X () X2\ /S0 (¥ (n) - V)2

where X and Y are the two features considered in the pair,

while the summation is performed across the total number of

segments V. X represents the average value of the first feature
across all segments, and Y similarly for the second feature.

(D

The aim of this step was to evaluate the degree of cor-
relation still present in the dataset and support the need for
a more effective feature selection method. Also, visualizing
the correlation matrix, we could check for data quality, as
we expect higher correlation from sensors capturing the same
physiological parameter.

Afterwards, we utilized an RF algorithm for classification.
The selected features from the previous step serve as input
to the random forest classifier, allowing it to learn patterns
and make predictions based on the training data. Finally, we
calculated the Shapley values for the trained RF model, which
quantify the contribution of each feature towards the final
prediction, to gain insight into the importance of different
features in the classification.

D. Classifier

Random Forest (RF) is a well-known machine learning
classifier, which takes advantage of multiple decision trees,
each trained on random permutations of features [6]. Each
tree is trained on a different subset of the training set, and the
final prediction output is averaged.

To ensure robust classification, we randomly divided the
dataset, allocating 80% of the samples for the training and the
remaining 20% for validation. For reproducibility, we set the
random-state parameter to 42.

E. Classification performance

The classification task in this study is a multi-class problem,
distinguishing between six different apnea/hypopnea event
types. To evaluate the performance of the classifier, we use
standard classification metrics, including accuracy, precision,
recall (sensitivity), F1-score, and specificity. Given the number
of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) for each class ¢ = 1,2, ..., 6 for each
class, we calculated several well-known classification metrics.
The accuracy is computed as:

2., TP
S.(TP,+ FP, + FN,)

(%] )

Accuracy =

and it represents the overall correctness of the classifier.



Precision measures the number of predicted positive cases
that were actually correct for each class:
TP
TP + FP

Recall (or sensitivity) measures how many actual positive
cases were correctly identified:

Recall; = i
TP, + FN;
Specificity, which measures how well the classifier identifies

negative cases, was computed for each class as:

TN; + FF;
Finally, the F1-score is the harmonic mean of precision and

recall:

(%] 3)

Precision; =

(%] €y

Specificity, = 100 x [%]. 3)

2 x Precision; x Recall;
Precision; + Recall;

Fl; = 100 x [%). (6)

All the above metrics refer to a single class. However,
since this is a multi-class classification problem, aggregated
metrics can be reported, too. Particularly, macro-averaged
metrics are obtained by computing the unweighted mean of the
metric across all classes. On the other hand, weighted-averaged
metrics are computed by considering class imbalances, also.

Our classification results include precision, recall, F1-score,
and specificity per class, as well as macro and weighted
averages.

F. Feature selection via Shapley values

Shapley values, originating from cooperative game theory
[16], are widely used as a practical quantification instruments
by many studies requiring an interpretation of ML results [6],
[17]. In particular, they are often adopted in feature selection,
to identify the most relevant features and/or assess the con-
tribution of each feature to the prediction. They quantify the
marginal contribution of a feature by considering all possible
feature subsets, ensuring an explainable and robust feature
ranking.

In our problem, we used Shapley values to identify the
most influential features contributing to the classification of
apnea or hypopnea, while accounting for feature interactions.
We used SHAP, a practical package in Python that calculates
Shapley values for different ML models [7], including RF.
As a result, we identified those features (among the top-50
set) which mostly impact on the classification, providing an
explanation on the output of the RF classifier.

III. RESULTS AND DISCUSSION

We first assess the performance of our RF classifier. We
trained it to classify each data segment into one out of six
classes of apnea and hypopnea (APNEA-O/C/M and HYP-
0/C/M, respectively) using 80% dataset and the top-50 features
selected using the SelectKBest method. After training, the
classifier achieved an accuracy value of approximately 76%,
indicating its satisfactory ability to correctly classify the six
classes.
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Fig. 3. Correlation matrix including pair-wise Pearson’s correlation coeffi-
cients computed on the features used for the classification.
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Fig. 4. Feature relevance ranking obtained by applying SHAP.

We then studied the correlation among the 50 features:
Fig. 3 shows the correlation matrix. Features derived from the
same sensor (e.g., ECG, EEG) tend to be correlated, reflecting
the expected physiological relationships. For example, the
right bottom corner of the correlation matrix displays partic-
ularly correlated values, reflecting the common derivation of
those three ECG signals (from the Holter device). However,
the correlation between ECG features from the PSG device and
the ECG features from the Holter are not equally large. In other
works, these features may have been discarded as redundant,
but they are actually not. Therefore, we need to deepen our
investigation using a more effective feature selection method to
identify those sensors which can better capture the pathology-
related heart activity pattern.

Therefore, we applied SHAP to rank features based on their
impact of our specific classification problem. Fig.4 shows the
most relevant features as determined by this method.

As expected, the most relevant features for the classification



of apnea and hypopnea conditions are the ECG R-R interval
standard deviation, which is strictly connected with the heart
rate variability (HRV), and several EEG features, mostly
related to the beta band (13—30 Hz) power from corresponding
electrodes in the two hemispheres (C3 and C4). Additionally,
the features called Sum_mean and abdo_mean are identified by
SHAP. This is also in line with expectations, since abdo_mean
stands for abdominal mean and reflects the mean amplitude
of abdominal respiratory movements over a period, while
Sum_mean represents the combined respiratory effort of both
thoracic (ribcage) and abdominal motion, providing a global
measure of breathing effort.

Additional contributing features include those extracted
from the pulse oximeter and quantify the saturation level of
oxygen in the blood (SpOs mean, SpO, median), strictly
connected with respiration and heart activity. levels, heart
signals, and muscle activity: Blood oxygen levels (): This
represents the average oxygen saturation in the blood. Finally,
other features from ECG and EMG complete the set of the
most impactful features for the classification.

Comparing feature selection based on ANOVA (Fig. 2) and
that obtained via SHAP (Fig. 4), we can notice a certain degree
of agreement. However, the former also includes features re-
lated to eye movements and EMG that are expected to be more
correlated with disturbed sleep with nocturnal movements,
but less with purely respiratory abnormalities. Thus, we can
conclude that the set of features identified by SHAP provides
a more reliable explanation of the classifier’s performance. Fu-
ture investigations may include a more systematic comparison
of subsets of features selected by the two methods to assess
performance degradation when removing features that the two
methods disagree on.

IV. CONCLUSIONS

We used Shapley values to explain how our sleep disorder
classification model makes its decisions across six categories.
Our analysis showed that certain physiological signals play a
crucial role in determining the risk of sleep disorders and have
the greatest influence on model predictions. Key contributing
factors include heart rate variations (ECG R-R interval), brain
activity (C4A1 and C3A2 beta power), and breathing patterns
(abdominal mean), among others. Using these features for
classification is expected to provide high accuracy and reliable
predictions, which make them valuable for future studies and
alternative classification methods.
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