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Abstract—We study a control system where sensor mea-
surements are transmitted to a remote station. Information
may become outdated due to system drift or compromised
by malicious false data injection. To quantify the impact of
staleness and inaccuracy in the information at the receiver’s
side, we use Age of Incorrect Information (AoII). In particular,
we consider the Excess AoII above a certain threshold as our
key objective to minimize, which we argue to be a sensible
goal for many real-time control systems. We adopt a game-
theoretic framework to model the strategic interaction between
a transmitter, which aims to minimize both Excess AoII and
transmission costs, and a malicious agent, which seeks to
maximize the same Excess AoII metric while minimizing its own
costs. Our analysis reveals the existence of a Nash equilibrium
for this game, and we investigate how the system parameters
influence the adversary’s decision to attack, identifying the
conditions under which an attack becomes advantageous or
not.

Index Terms—Cyber-physical systems; Cyberattack; False
data injection; Markov processes; Age of information; Age of
incorrect information; Game theory.

I. INTRODUCTION

Real-time control in remote sensing is essential for cyber-
physical systems, as applications like industrial automation,
healthcare monitoring, and critical infrastructure management
require timely and accurate data [1]–[3]. Rapid data pro-
cessing enables effective decision-making and reduces risks
associated with outdated or incorrect information, which can
lead to harmful decisions [4].

However, remote sensing and real-time control are sus-
ceptible to noise and interference, which can be exacerbated
by data drift caused by changing conditions or malicious
interventions [5].

In response to the growing demand for low latency in
real-time applications, the concept of Age of Information
(AoI) was introduced over a decade ago in seminal works
such as [6]. This concept has recently been extended to the
Age of Incorrect Information (AoII) [7], which quantifies the
impact of information staleness and inaccuracy. AoII serves
as a multi-faceted penalty metric that combines the increase
in information staleness with its divergence from the true
value, making it particularly suitable for systems where status
updates occur only during dynamic changes [8].

In applications involving remote sensing, a critical chal-
lenge is the selection of the transmission rate. This choice
must balance the freshness of the data with the associated

costs of communication [9]. A higher transmission rate
can lead to more timely updates, thus reducing AoI and
improving decision making. However, it also incurs greater
operational costs, which can be a significant concern in
resource-constrained environments.

Moreover, communication over networks is not immune to
cyberattacks that can compromise the integrity of transmitted
data [10]. Such attacks can alter the communication process,
leading to the dissemination of incorrect or outdated infor-
mation. Therefore, it is essential to make informed choices
about transmission strategies that not only enhance data
freshness, but also improve the security of the communication
process. Implementing robust security measures and adaptive
transmission strategies can help mitigate the risks posed by
potential cyber threats, ensuring that the system remains
resilient and reliable in the face of adversarial conditions.

Various adaptations of AoI have emerged to capture differ-
ent perspectives relevant to network control objectives. For
instance, [11] suggests that while limited increases in AoI
are unavoidable, it is more pragmatic to focus on reducing
the probability that information staleness exceeds certain
threshold requirements. AoI violations can be defined as
instances in which the staleness of information exceeds a pre-
determined limit, which can be related to the instantaneous
AoI value or the peak age [12].

Multi-source systems can be scheduled to ensure guar-
antees on (peak) AoI violations, as demonstrated in [13].
The penalty for a violation can be quantified by measuring
the probability that AoI exceeds the threshold, similar to an
outage [14], or by measuring the extent to which AoI exceeds
this threshold, which we refer to as excess AoI.

Recent research has also explored the vulnerability of
status update systems to cyberattacks, including denial-of-
service attacks and eavesdropping. For instance, [15] inves-
tigated optimal jamming policies in status update systems,
demonstrating that threshold-based strategies are effective for
both AoI and AoII metrics from the attacker’s perspective.
In contrast, [16] examined the trade-off between AoI at
legitimate receivers and eavesdroppers, employing a social
welfare framework to optimize updates and balance infor-
mation freshness with security.

Our approach is different since it considers a scenario
where both the system controller and malicious attackers act
as strategic players, leading to a game-theoretic framework



[17]–[21]. This setup allows us to explicitly focus on an
adversarial context, where the interaction between the system
and an attacker is modeled as a dynamic game, establishing
the existence of a unique stationary equilibrium [18].
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Fig. 1. Age of Incorrect Information

A. Proposed Metric: Excess AoII

We propose Excess Age of Incorrect Information (Excess
AoII) as a new performance metric that captures the impact
of both outdated and inaccurate information in remote mon-
itoring systems. In contrast to classical AoI or AoII, Excess
AoII introduces a threshold-based evaluation, penalizing the
system only when the inaccuracy becomes critical, i.e., when
it exceeds a predefined tolerance level.

Let y(t) represent the true value of the quantity monitored
at time t, and y(tu) the most recent value received by the
remote system at the update time tu. The instantaneous AoII
is defined as:

δ(t) = (t− td) · g(y(t), y(tu)), (1)

where td is the most recent time instant when the system
enters an incorrect state due to a change (or drift) in the
monitored value, and g(y(t), y(tu)) ∈ {0, 1} is a binary
indicator of correctness. Specifically, g(y(t), y(tu)) = 1 if
the received value y(tu) no longer matches the current state
y(t), and 0 otherwise.

We assume that once g(·) becomes 1 (that is, the informa-
tion is incorrect), it remains so until a new accurate update
is received. The frequency at which drifts occur is modeled
using a parameter called drift rate, denoted as d, which
represents the average number of incorrect state transitions
per unit time (i.e., the reciprocal of the expected time between
successive drifts).

To isolate and quantify only significant inaccuracies, we
introduce a threshold 1/θ, corresponding to the maximum
tolerable AoII. The Excess AoII metric is defined as:

δ1/θ(t) =

(
δ(t)− 1

θ

)
· 1{δ(t)≥ 1

θ }
, (2)

where 1{δ(t)≥ 1
θ }

is the indicator function, equal to 1 when
AoII exceeds the threshold, and 0 otherwise. Thus, the Excess
AoII captures only those periods during which the receiver
is exposed to outdated and incorrect information beyond the
acceptable limit.

Fig. 1 illustrates how the Excess AoII corresponds to the
shaded regions above the threshold line. These areas high-
light the severity and duration of unacceptable information
inaccuracies.

We study this metric in a game-theoretic framework, where
a system controller chooses a transmission rate p to minimize
Excess AoII and its associated costs, while a malicious agent
attempts to increase the metric by injecting false updates at
a rate q. The interaction between the two strategic entities
forms the basis for our analysis.

B. Paper Contributions

The key contributions of this paper are as follows.
I. We introduce Excess AoII, a threshold-based metric that

extends AoII to focus on periods of critical system
inaccuracy.

II. We formulate a game-theoretic model between a trans-
mitter and a strategic attacker, where each agent aims
to optimize their utility based on Excess AoII and
associated costs

III. We prove the existence and uniqueness of a Nash
Equilibrium (NE) in the strategic interaction and provide
explicit expressions for the optimal update and injection
rates.

IV. We analyze how system parameters such as drift rate,
cost coefficients, and the threshold impact strategic
behavior and the conditions under which attacks become
profitable.

V. Through simulations, we show that our approach offers
actionable insights into update scheduling and cyberse-
curity, particularly in cyber-physical systems exposed to
false data injection.

C. Paper Organization

The subsequent sections of this paper are organized as
follows: In Section II, we define our system model. Section
III analyzes the strategic interaction between the transmitter
and the attacker using game theory. In Section IV, we present
numerical simulations to gain insight into how the NE is
influenced by various parameters of the system. Finally,
Section V concludes the paper and summarizes our findings.

II. SYSTEM MODEL

We consider the following dynamical system:{
ẋ(t) = f(x(t), u(t))
y(t) = h(x(t)),

(3)

where x(t) ∈ Rn represents the plant state, u(t) ∈ Rp is
the control input, and y(t) ∈ R is the output at time t. The
functions f(·) and h(·) denote the state transition and output
selection functions, respectively. We assume that the sensor
measurements acquired in the filed, must be communicated
to a remote station (e.g., a SCADA system) by transmitting
the output measurement y(t) with an average rate p. For
simplicity, our analysis concentrates on scalar output mea-
surements; however, many real-world applications involve
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Fig. 2. Continuous-time Markov process illustrating the transitions between
states representing the Age of Incorrect Information.

vector outputs, which we plan to explore in future research.
We assume no propagation delay between the controller and
the remote station, allowing for time synchronization. As
time progresses, sensor information can become outdated or
incorrect due to natural phenomena, termed system drift, or
malicious actions like false data injection. In this context,
with the term drift, we refer to the time after which a
measurement no longer accurately reflects the system’s state
due to being outdated. To model this, we assume that the
intervals between successive drifts follow an exponential
distribution with a mean of d, representing the average drift
rate. In other words, d denotes the average time for the
function g(·), defined in (1), to reach a value of 1. Conversely,
information can also become incorrect due to the actions of
a malicious agent who performs false data injection at a rate
q. From the perspective of the receiver, as depicted in Fig. 2,
we can model the system using a Markov chain with two
distinct states: Right (R) and Wrong (W ). The system is in
the R state when the information available at the receiver
correctly represent the current state of the system, while it is
in the W state when the latest available information do not
correctly represent the current state of the system anymore
due to a system drift or a malicious update.

We aim to measure the average duration the system spends
above threshold when in the W state of the Markov chain.
This duration is represented by the average area of the upper
triangles in Fig. 1 over a complete period, which corresponds
to the interval between two successive successful updates. To
quantify this, we consider the expected value of Excess AoII,
denoted as ∆ 1

θ
= Et[δ 1

θ
(t)]:

∆ 1
θ
= max

0,

1
2

(
1
p − 1

θ

)2

1
d+q + 1

p

 .

Note that ∆ 1
θ
= 0 when p > θ, which means that legitimate

updates are performed before allowing the system to exceed
the threshold.

Both the transmitter and the malicious agent incur costs
when transmitting updates. For the transmitter, the cost is
C, which is proportional to the transmission rate p. For the
malicious agent, the cost is K, which is proportional to the
injection rate q. These costs can be understood as energy
expenditures or shadow prices.

We model the strategic decision-making process using a
game theoretic approach. In particular, we formulate a max-
imization task in which the utility function of the transmitter

T and the malicious agent M are:

uT(p, q) = −∆ 1
θ
− C · p, uM(p, q) = ∆ 1

θ
−K · q . (4)

Here, uT(p, q) represents the utility of the transmitter that
wants to minimize the sum of ∆ 1

θ
and its transmission

costs by properly selecting the transmission rate p. Instead,
uM(p, q) is the utility of the malicious agent, seeking to
maximize ∆ 1

θ
but also limiting the cost undertaken for

malicious injections by selecting the injection rate q.

III. GAME THEORETIC ANALYSIS

The interaction between the transmitter T and the ma-
licious agent M can be formalized as a static game of
complete information, denoted as G = (P,A,U). Here,
the set of players is defined as P = {T,M}, with player
T choosing an action p ∈ [0,∞) and player M selecting
an action q ∈ [0,∞). The utility set is represented as
U = {uT, uM}. This setup is common knowledge among the
players. The game is classified as static because each player
makes their choice independently, without knowledge of the
other’s action.

Remark 1. It is important to clarify that the term static in this
context refers exclusively to the nature of the game between
the transmitter T and the malicious agent M , and not to
the physical system being monitored. While the underlying
system evolves dynamically over time (e.g., due to drift),
the game is static because both strategic players select their
actions, namely, the transmission rate p and the injection rate
q, once at the beginning of the game. Thus, the game captures
a one-shot strategic interaction, independent of the temporal
evolution of the monitored process.

The most desirable outcome for both players is typically
characterized by the NE.

Theorem 1 (Existence of a NE). The game G admits a NE.

The proof is provided in Appendix A.

Corollary 1.1 (Uniqueness of the NE). The NE is also
unique.

Proof. The uniqueness follows directly from the monotonic-
ity of the utility functions for both players across their entire
action range. This property guarantees that the ε-fixed point
to which they converge is consistent.

The NE conditions for the specific formulation can be
derived numerically by solving the following equations [22]:

∂uM(p, q)

∂q
= 0

∂uT(p, q)

∂p
= 0, (5)

which yield:

∂∆ 1
θ

∂q
= K

∂∆ 1
θ

∂p
= −C. (6)



Rearranging the term in
∂∆ 1

θ

∂q = K leads to a second-
degree equation in q:

(p− θ)2

2(d+ p+ q)2θ2
= K. (7)

Solving this equation yields two solutions, of which only one
is viable since the other is negative for all values of K:

q = −d− p+
θ − p√
2Kθ

. (8)

Substituting this expression for q into
∂∆ 1

θ

∂p = −C and
rearranging produces another second-degree equation in p:

K − 1

2

(
1

p2
− 1

θ2

)
+

√
2K

θ
= −C. (9)

This equation also presents two solutions, one being negative
for all possible values of C. Thus, the equilibrium conditions
yield:

p =
θ√

1 + 2θ
√
2K + 2θ2(C +K)

. (10)

Consequently, the NE is expressed as:

p =
θ√

1 + 2θ
√
2K + 2θ2(C +K)

,

q = −d− p+
θ − p√
2Kθ

.

(11)

In (11), the expression for p is always positive. For q
to also be positive, the injection cost term K must be
sufficiently small. If q is negative, it indicates that the attacker
does not get any benefit and chooses to remain inactive.

The injection cost term K must therefore balance the
natural drift rate d, the transmission rate p, and the threshold
θ. If these terms grow excessively large, q can remain positive
only if K is sufficiently low. This emphasizes the trade-offs
among the various factors influencing the system dynamics.

To ensure that q is positive, a necessary condition is that
p be less than θ. Mathematically, this is expressed as:

p =
θ√

1 + 2θ
√
2K + 2θ2(C +K)

< θ, (12)

which is satisfied if:√
1 + 2θ

√
2K + 2θ2(C +K) > 1. (13)

This condition is always fulfilled, suggesting that under
attack conditions, it is not advantageous for the transmitter to
excessively increase the transmission rate to keep AoII below
the threshold 1/θ, as this would incur excessive costs.

Further, it is essential to determine the appropriate values
for K to ensure that player M actively participates in the
game, i.e., that (11) accurately represents the NE of the
system.

Notably, p is strictly monotonic in θ, leading to the limit:

lim
θ→∞

p =
1√

2(C +K)
(14)

Fig. 3. Upper bound on the transmission rate p with respect to θ.

Note that the expression for p in (14) aligns with the
analysis in [22]. Specifically, as θ approaches infinity, it
signifies that the acceptable time for the system to remain
in the W state is zero. In addition, we have derived an upper
bound for p, which is θ. Therefore, we consider the upper
bound for p to be

p̄ = min{θ, 1√
2(C +K)

} (15)

This behavior is also illustrated in Fig. 3.
When p can be approximated as 1√

2(C+K)
, the analysis re-

mains consistent with previous work [22]. Thus, we conclude
that there exists a critical value K∗ such that if K > K∗,
then q = 0.

To ensure that q > 0, we need to satisfy

−d− p+
θ − p√
2Kθ

> 0,

which simplifies to:

√
2K <

1

θ
· θ − p

d+ p
=

1

d+ p
− p

θ
· 1

d+ p
.

Given that p < θ implies 0<p
θ<1, we can conclude that

√
2K <

1

d+ p
<

1

d+ θ
.

This establishes a critical cost K∗ for the adversary to be
active in the game as

K∗ =
0.5

(d+ θ)2
.

This means that if K < K∗ the malicious agent will
participate in the game. When this happens, the problem
reduces to a single player optimization where the transmitter
selects the transmission rate as

p = argmaxp{−∆ 1
θ
− C · p} .



Fig. 4. Comparison of strategic update rate p with and without a malicious
agent, C = 1 and θ = 5. The black line indicates the upper bound for
p computed through (15).

Combining these results together, at the NE the transmission
and injection rates are

p =


θ√

1 + 2θ
√
2K + 2θ2(C +K)

if K < K∗

argmaxp{−∆ 1
θ
− C · p} otherwise

(16)

q =

−d − p +
θ − p√
2Kθ

if K < K∗

0 otherwise
, (17)

IV. NUMERICAL RESULTS

This section presents the numerical application of the
NE derived in equations (16) and (17), along with the
conclusions of Theorem 1. The results quantify the game-
theoretic interactions between a controller, which minimizes
the Excess AoII at a remote receiver, and an adversary that
injects false data, which seeks to maximize the Excess AoII,
with both aiming to minimize their associated costs.

Fig. 4 illustrates the relation between the transmitter rate
p and the adversary injection rate q at the NE as a function
of the adversary injection cost K, with C = 1 and θ = 5. In
the presence of an adversarial agent, the transmitter increases
its transmission rate in response to the adversary’s actions.
However, as the injection cost K increases, the adversary
decreases its injection rate q, prompting the transmitter to
reduce its transmission rate. Eventually, the transmitter ap-
proaches the attack-free transmission rate as the adversary’s
injection rate converges to zero. The black line represents the
upper bound for p computed through equation (15), which
holds only when the adversary’s injection rate q is non-
zero. When q = 0, the problem reduces to a single-player
optimization problem, making the bound irrelevant.

In Fig. 5, the strategic update rate p is shown as a function
of the transmission cost C, with fixed values K = 1
and θ = 5. As in the previous figure, the presence of
the adversary results in an increased transmission rate. As
parameter C increases, the cost burden forces the transmitter

Fig. 5. Comparison of strategic update rate p with and without a malicious
agent, K = 1 and θ = 5. The black line indicates the upper bound for
p computed through (15).

Fig. 6. Comparison of strategic update rate p with and without a malicious
agent, K = 1 and C = 1. The black line indicates the upper bound for
p computed through (15).

to reduce its rate until it stabilizes. Notably, (16) shows that
the transmission rate under attack is independent of the drift
rate d, which explains the consistency of the transmission rate
across varying drift rates when the system is under attack.
The black line once again represents the upper bound for p
from equation (15), applicable only when q ̸= 0.

Finally, Fig. 6 depicts the relation between the transmission
rate p and the adversary’s injection rate q at the NE as
a function of the threshold θ, with K = 1 and C = 1.
As θ varies, an interesting pattern emerges: without attack,
a smaller θ leads to a rapid increase in the transmission
rate, especially when the drift rate d is low. However, for
larger values of θ, the transmission rate decreases more
rapdily. Under attack, the transmission rate increases, but
larger values of θ favor the adversary. A θ of zero signifies
an infinite acceptable threshold, making it impossible for the
malicious agent to compromise the system. In contrast, as
θ increases, the acceptable threshold decreases, enabling the
malicious agent to more easily compromise the system while
making it more costly for the transmitter to defend.



V. CONCLUSIONS

We examined a scenario in which a transmitter sends infor-
mation to a receiver over a network vulnerable to injection
attacks. The presence of the attacker can be detected, but
not blocked. To counteract the attacks, the transmitter can
increase its activity.

We utilized game theory to model the interaction between
the transmitter and the adversary. The malicious agent incurs
a cost that is directly proportional to its activity rate, which
corresponds to the percentage of blocked updates. Instead,
the legitimate agent faces a cost that is proportional to
its transmission rate. The malicious agent’s objective is to
maximize the Excess AoII at the receiver while minimizing
its own costs. In contrast, the legitimate agent aims to
minimize the Excess AoII metric at the receiver and its own
costs. Through our analysis, we computed the unique NE,
which is guaranteed to exist under the given conditions.

Our findings indicate that the presence of the adversary
leads to an increase in the transmission rate p. Moreover, a
higher threshold 1/θ encourages the adversary to refrain from
intervening; the higher the threshold, the more challenging
it becomes for the malicious agent to compromise the com-
munication to an acceptable level. Importantly, our analysis
reveals the existence of a threshold K∗. If K > K∗, the
malicious agent chooses not to intervene. This result provides
valuable information on resource allocation strategies that
aim to reduce the likelihood of attacks.

APPENDIX A
PROOF OF THE EXISTENCE OF THE NE

Proof. The utilities described by (5) are continuous and
resemble polynomial functions. In line with the adversar-
ial framework of our study, these utilities exhibit a strict
monotonic behavior with respect to the actions chosen by
the respective players. Specifically, uT(p, q) strictly increases
with p for a fixed q, as uM(p, q) does with q for a fixed
p. Additionally, these utilities are concave, i.e., their first
and second derivatives are positive and negative, respectively
[23]. Consequently, we can apply Glicksberg’s theorem [24],
which generalizes Nash’s theorem to continuous cases.

In more detail, the NE can be identified as a 0-Nash
equilibrium, which is an ε-Nash equilibrium for ε=0. This
equilibrium is the limit point of a sequence of actions
that alternate between the players’ best responses, with ε-
convergence to a fixed point ensured by the properties of con-
tinuity, monotonicity, and concavity mentioned above.
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