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Abstract—In-ear EEG has recently emerged as a promising
avenue to assess cognitive workload using minimally obtrusive
sensors, thus promoting continuous and ubiquitous health mon-
itoring. However, concerns around the quality and representa-
tiveness of data collected with this new technology need further
investigations. In this work, we utilize a dataset related to a
participant engaged in various mathematical tasks while wearing
an in-ear EEG device. We apply signal processing techniques
and feature extraction methodologies to analyze the EEG data.
Feature vectors were constructed from each data segment, and
subsequently used to train various machine learning classifiers
to discriminate between different levels of cognitive workload.
Moreover, we investigate the effectiveness of feature selection
methods, to reduce the dimensionality of the feature space and
potentially improve classifier performance. The results indicate
that in-ear EEG, together with proper processing in terms of fea-
ture selection and machine learning, can adequately differentiate
cognitive workload levels. Our findings proved the convenience of
carrying on the investigation of this new kind of technology to
promote a healthcare service closer to patients.

Index Terms—In-ear EEG, BCI, Data quality, Machine learn-
ing, Neural networks.

I. INTRODUCTION

Electroencephalography (EEG) captures the brain’s electrical

activity, which arises from the simultaneous activation of a

large number of nearby neurons in different areas of the brain,

depending on the task to be accomplished by the individ-

ual [1]. EEG offers several advantages over alternative brain

function assessment techniques in terms of reduced hardware

costs, elimination of exposure to radiation or the need for

injections [2], [3], and faster acquisition times, making it an

exceptionally safe investigation modality. Furthermore, EEG

provides superior temporal resolution, capturing changes on

the millisecond scale.

The EEG signal is subdivided into distinct frequency bands:

delta (0.5–4 Hz), theta (4–7.5 Hz), alpha (7.5–14 Hz), beta

(14–30 Hz), and gamma (above 30 Hz) [4]. These frequency

bands are indicative of various cognitive states, and deviations

from normative EEG patterns can assist clinicians in diagnosing

neurological disorders [5].
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In this spirit, the unprecedented advancements of machine

learning and automated reasoning techniques have led to con-

ceive many applications of human activity or brain condition

classifications from EEG-related signals [6]–[10], broadly ex-

panding the horizons for possible automated real-time detection

of brain function anomalies.

However, in traditional scalp-measurement systems, an EEG

cap embedded with several sensors has to be worn, which

represents a source of discomfort for the individual. This has

motivated the development of in-ear EEG devices, designed to

capture neural signals through electrodes placed within the ear

canal [11], [12]. This offers a promising avenue to advance

Brain-Computer Interfaces (BCIs) by improving user comfort

and easing the widespread adoption [13], [14] of this technique.

In this paper, we utilize a dataset by IDUN Technologies

involving a participant engaged in three phases of mathematical

tasks with varying difficulty levels, while wearing an in-ear

EEG device [15]. A range of signal processing techniques

and feature extraction methodologies were applied, including

Welch’s periodogram method for power spectral density es-

timation, to analyze the EEG data [16]. The feature vectors

were then constructed from each data segment, encompassing

the statistical, temporal, and frequency domain features.

This was then used to train various machine learning clas-

sifiers [17]–[20], including random forest (RF), perceptron,

and support vector machine (SVM), to discriminate between

different levels of cognitive workload. Moreover, our study

investigates the effectiveness of feature selection methods, such

as SelectKBest [21], to reduce the dimensionality of the feature

space and potentially improve the performance of the classifier.

Our results show that in-ear EEG recordings, combined with

appropriate feature selection and machine learning models, can

adequately classify distinct cognitive workload levels. At the

same time, in-ear EEG is confirmed as a cost-effective and

comfortable alternative to assess cognitive workload remotely,

which is key in various fields such as human-computer inter-

action, neuroergonomics, cognitive science, and, more general,

in the continuous and ubiquitous health monitoring [22], [23].

The rest of this paper is organized as follows. In Section

II, we review the related literature. Section III presents our

analysis, detailing preprocessing and filtering, as well as clas-

sification inputs. In Section III-D, we introduce the different

classifiers that we designed. Section IV shows numerical re-



sults, and we conclude in Section V.

II. RELATED WORK

One line of application for in-ear EEG with the contex-

tual implementation of ML techniques is the recognition of

emotions, where multiple authors have been advocating for the

better practicality of an easy to wear device versus scalp-based

EEG sensors. A preliminary work in this sense is [11], where

mismatch negativity is used as the signal of interest, and the

results are discriminated through an SVM classifier, so as to

detect four classes of emotions, relative to the two categories

of positive/negative and high/low arousal. Also, the paper is

one of the first describing a generic in-ear EEG device based

on a silicone structure.

More recent evaluations were proposed by the authors of

[24], further expanded upon in [7], considering only two classes

of emotions, positive and negative, but replacing the signal of

interest with the PSD and considering a deep neural network

methodology that allows for considerable improvements in the

classification accuracy, despite the presence of some limita-

tions, e.g., the relatively small size of the dataset.

Fatigue and stress detection is also another relevant potential

application of in-ear EEG, which can find useful application

in monitoring drowsiness of personnel working in hazard-

prone environments such as transportation, healthcare, or pre-

cision industry, to reduce the risk of accidents [8]. A first

paper proposing to leverage in-ear EEG measurements from

an absolute standpoint, and specifically towards automated

mechanisms for drowsiness detection is [12]. In [9], in-ear

measurements were more specifically exploited for monitoring

attention level, with similar purposes of increasing safety and

efficiency under complex task. Also, an advanced machine

learning mechanism based on echo state network was used,

obtaining improved accuracy.

For the specific task of cognitive workload assessment,

which we tackle in this paper, a close reference is [25], whose

main focus is the application of SpO2-based tracking. However,

this study also explores in-ear EEG as a complementary

modality for the classification of mental fatigue. Similarly,

[10] studies in-ear EEG for measuring cognitive fatigue us-

ing mental arithmetic tasks and compares the performance

of different EEG methodologies, such as in- and around-ear

EEG as well as traditional cap EEG. In [26], in-ear EEG

is considered to explicitly address the problem of classifying

the cognitive workload of construction workers. Also, [27]

discusses the problem for control room operators, highlighting

how the power spectral density of theta waves in the EEG signal

has the potential to identify excessive cognitive workloads. In

[28], two experimental protocols were employed to evaluate

data quality of in-ear EEG recordings as compared to a

conventional 64-channel EEG system. The authors showed that

in-ear and scalp EEG signals exhibited similar spectral power

and fluctuations (especially in the α band), with comparable

RMS values and a slightly lower signal-to-noise ratio (SNR).

Fig. 1. Filtered EEG recording of the entire experiment.

However, mismatches between the two types of signals were

observed, leaving significant room for hardware improvements.

Thus, in our work, we align to the above lines of investiga-

tion while focusing on the exploration of different traditional

machine learning models. In a first phase, we decided not to

include deep learning models, to evaluate the effectiveness of a

very simple and portable solution that includes an in-ear EEG

device and a simple computational module that can implement

standard ML. This represents a viable way to realistically

bring a minimally obtrusive technology closer to users while

providing reliable results with a small computation need.

III. SYSTEM MODEL

A dataset from a study executed by IDUN Technologies [15]

was taken into analysis, where only the ear-centric EEG signal

was acquired. The investigation involved a single participant

engaged in solving mathematical tasks while equipped with

the IDUN Guardian earbud, a single channel EEG apparatus

with the reference electrode located in the left ear canal. The

experimental protocol was segmented into three phases: an

initial series of simple arithmetic tasks, followed by more

challenging problems, and concluding with another sequence

of simple tasks.

The EEG data for the cognitive workload assessment were

recorded over a duration of approximately 8 minutes at a

sampling rate of 250 Hz.

A. Pre-processing and data cleaning

The dataset employed included both unprocessed (raw) and

filtered signals. Typically, the raw signal would undergo pro-

cessing through a filter bank to eliminate artifacts such as power

grid noise, followed by various procedures such as indepen-

dent component analysis (ICA). However, for this study, it

was chosen to employ the already preprocessed signal. Given

that preprocessing was performed by IDUN Technologies, we

determined that this represented the optimal filtering approach

available, and any additional attempts at processing on our

part would probably have been inferior. The entire filtered

EEG recording is plotted in Fig. 1. The preprocessed dataset

was provided in a comma-separated values (CSV) format,

with each sample containing a timestamp, the instantaneous

EEG value, and a label. This last field indicated one of five

distinct conditions: calibration, initial easy calculation phase,

challenging calculation phase, second easy calculation phase,

and end of experiment. For the purpose of this analysis, the



timestamp field was removed from each sample and all samples

labeled as calibration or end of experiment were discarded

because they provided negligible information with respect to

our classification problem.

To visually explore potential features within the frequency

domain, power spectral density (PSD) plots were generated for

the three aforementioned experimental sections. To compute

the spectral density of the signals across the three tasks, we

initially computed the Fast Fourier Transform (FFT) on all

samples within each dataset. Subsequently, Welch’s algorithm

[29] was applied to each of the phases of brain workload

to further refine our analysis. Welch’s method enhances PSD

estimation by segmenting the input signal into overlapping

parts, each subjected to a window function to reduce spectral

leakage. For each windowed segment, the FFT is computed.

The periodogram, obtained by squaring the normalized FFT

magnitude, is averaged across segments for the PSD estimate.

This averaging action reduces the variance compared to the

single-periodogram methods. Mathematically, such a PSD can

be expressed as:
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Welch’s technique balances frequency resolution and variance,

making it widely used in applications like EEG analysis, as

suggested by [30], to identify frequency components related

to cognitive states. In the analysis presented, the recorded

EEG activity was segmented with a Hanning window of 500

samples, allowing 250 samples of overlap at the extremes, and

using 1024 points for acceptable FFT frequency resolution.

Fig. 2 depicts the PSD of the EEG signal during the three

distinct phases of the experiment. As expected, discerning

salient characteristics in the frequency domain through visual

inspection proved challenging; however, a subtle similarity

between the PSD plots of the two easy calculation phases was

observed.

B. Segmentation

To prepare the data for classification, we followed a well-

established approach [4], [6]: Each of the three experimen-

tal recordings was segmented into 1-second epochs and any

residual sample that did not align with the epoch length was

discarded. This segmentation process facilitated the extraction

and selection of features from different segments that could be

associated with either “easy" or “hard" computational tasks.

Note that the dataset showed a moderate imbalance between

the two classes: the “easy" class included 370 samples, while

the “hard" class only 134. However, we decided not to apply

any augmentation or subsampling technique, as we verified

that this imbalance did not lead to significant biases in the

classification. This is also confirmed by results obtained in the

3-class classification problem.

C. Feature Extraction

From every 1-second segment, we extracted both temporal

and frequency domain features.

In particular, the following temporal domain features were

extracted employing the SciPy and NumPy libraries:

• mean, variance and standard deviation;

• peak-to-peak, absolute minimum and maximum values,

with their corresponding indexes;

• mean square and root mean square (RMS) values;

• absolute discrete difference between adjacent datapoints;

• skewness and kurtosis.

In the frequency domain, the measured power within the

delta, theta, alpha, beta and gamma bands was the main object

of study. The bandpower() function of MATLAB was used

to this scope, with further processing in Python.

D. Classification Methods

Three different machine learning classifiers were employed

to differentiate between task conditions (2 classes, "easy"

vs "hard") based on all extracted features. For all models,

we adopted a standard 80%-20% split for training and test,

respectively, and the same training and test sets were used by

all different models to ensure fair comparison of the results.

We evaluated the performance of the selected models with all

available features. Later, we also explored the performance with

a reduced set of features, selected by using different criteria.

Perceptron

The Perceptron [31], a simple linear classifier, effectively

identified linear decision boundaries, but its performance was

somewhat limited due to the complexity of EEG signals, as

illustrated in the confusion matrix presented in Fig. 3(a).

Nonetheless, it served as a useful baseline, allowing for com-

parison with more sophisticated techniques. The training loss

for the perceptron was 0.09, the test loss was 0.14, and the

accuracy on the test set was 86.14%.

Random Forest

A Random Forest (RF) can offer a robust predictive perfor-

mance with an accuracy that highlighted its ability to handle

the complexity and variability in EEG data [18]. The ensemble

approach of this classifier combines the predictions of multiple

decision trees, proving to be effective in capturing nonlinear

relationships within the data, ensuring greater flexibility, and

improving generalization over single models such as decision

trees. The RF model achieved notable accuracy in identifying

task conditions, underscoring its suitability for EEG-based

cognitive load classification. The training loss for the RF was

almost zero, while the test loss was 0.04. Correspondingly, we

obtained the confusion matrix reported in Fig. 3(b) and the

accuracy was 96% on the test set.

Support Vector Machine

The Support Vector Machine (SVM), particularly with a

linear kernel, was explored due to its effectiveness in high-

dimensional spaces like those formed by EEG features [17].

SVM excels in binary classification tasks where the classes are

somewhat separable and provides high accuracy by maximizing
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Fig. 2. (a) PSD of EEG during the initial phase (easy calculations). (b) PSD of EEG during the second task (more complex problems). (c) PSD of EEG during
the third task (easy arithmetics, again).

the margin between the two classes. Here, SVM achieved a

very satisfactory classification, as evidenced by the confusion

matrix in Fig. 3(c). The training loss for the SVM was 0.04,

the test loss was 0.05, and the accuracy on the test set was

95%.

IV. RESULTS AND DISCUSSION

To potentially enhance model efficiency and improve perfor-

mance, a feature selection process was undertaken to reduce the

dimensionality of the feature space [32]. After that, a second

round of classification was conducted using SVM to assess any

improvements in the results.

A. Frequency-domain features

In previous literature [33], cognitive workload was proven to

be associated with the power of theta, alpha, and beta bands.

In particular, the power in the theta band was shown to serve

as a robust indicator of cognitive workload, while alpha and

beta powers exhibited significant influence. Thus, we tested the

performance of an SVM model trained on frequency-domain

features, only. However, the results of this choice were clearly

suboptimal, with a training loss of 0.12, a test loss of 0.14. The

confusion matrix is reported in Fig. 4(a) and the model reached

an accuracy of 86.13%. These values are notably worse than

those obtained without any form of feature selection.

B. SelectKBest method

As the manual selection of the features, based on previous

literature, was found to be limited, we decided to employ the

popular SelectKBest method. The latter automatically selects

the most discriminative features based on the mutual infor-

mation criterion. This approach focused on identifying the

most significant features, effectively reducing computational

complexity and improving model performance without com-

promising accuracy. Setting k = 5 resulted in the selection of

the following features: mean, index of minimum value, mean

square, root mean square, and beta power band. We chose to

keep k to a very low value to assess the classification per-

formance when the number of features is drastically reduced.

Both training and test losses exhibited promising results, with

values of 0.05 and 0.08, respectively, indicating superior per-

formance compared to the previous feature selection method.

Correspondingly, the confusion matrix is reported in Fig. 4(b),

and the model achieved an accuracy of 92.07%.

C. Augmented SelectKBest method

As a third experiment, we explored the classification perfor-

mance in the case where the SelectKBest method is augmented

by the integration of the features in the alpha and beta bands.

The confusion matrix is reported in Fig. 4(c). Augmenting the

feature space with this strategy yielded a notable improvement,

with the training loss decreased to 0.06 and the test loss to 0.04.

Correspondingly, the model achieved an accuracy of 96%, as

can be computed from the confusion matrix. This result exceeds

previous outcomes from similar articles (e.g., 69% accuracy

using in-ear EEG for an arithmetic task [10]).

D. 3-class classification

To investigate potential changes in cerebral activity asso-

ciated with habituation to mathematical tasks or increased

relaxation over the course of the experiment, a multi-class

classification was conducted. This involved distinguishing not

only between “hard” and “easy” tasks (with the two "easy" task

phases aggregated), but also between the two different easy

task phases. For the classification, we trained two different RF

models, the second using the augmented SelectKBest method

described above. Figs. 5 and 6 report the confusion matrices

obtained in the two cases. The models achieved accuracy of

68.3% and 70.7%, respectively, which is consistently higher

than the chance level of 33.3% for this classification problem.

On the other hand, both classifiers failed to differentiate be-

tween the first and second easy tasks, as clearly seen from the

number of misclassified "easy" task-related samples (labels 0

and 1).

Nevertheless, this can be interpreted as the fact that the

individual can easily recover cognitive energies to perform an

"easy" task, even though he/she has just accomplished a "hard"

task. More interestingly, we can conclude that a simple machine

learning model can easily classify in-ear EEG recordings, as



(a) (b) (c)

Fig. 3. Confusion Matrices of binary classification using (a) Perceptron, (b) RF, (c) linear SVM.

(a) (b) (c)

Fig. 4. Confusion Matrices of binary classification with feature selection using (a) frequency domain features only, (b) SelectKBest, (c) Augmented SelectKBest.

Fig. 5. Confusion Matrix of the 3-class classification using RF model (all
features). Labels 0 and 1 are for the "easy" task, while 2 is for the "hard" task.

expected: samples associated with an "easy" task are clearly

distinguished from those related to a "hard" task.

V. CONCLUSIONS

The study showed how combining statistical, temporal, and

frequency domain features from EEG data allows for a robust

Fig. 6. Confusion Matrix of the 3-class classification using RF model with
feature selection (augmented SelectKBest method). Labels 0 and 1 are for the
"easy" task, while 2 is for the "hard" task.

classification of cognitive load levels. Machine learning models

effectively separated the conditions, with feature selection

critically enhancing model performance.

The results of this investigation highlight the significant

potential of classification over in-ear EEG signals for cognitive



tasks, demonstrating its viability for practical BCI applications.

This finding aligns with prior research [14], which underscores

the remarkable potential of in-ear EEG data for clinical moni-

toring. This technology positions itself as a valuable resource

for researchers, clinicians, and engineers actively contributing

to the field of neural engineering.

As a continuation of the current investigation, the methodolo-

gies outlined herein could be applied to the raw signal without

any supplementary filtering. The resulting outcomes could then

be juxtaposed with those obtained from the present analysis,

aiming to identify concordant findings. Should similar results

be observed, this would prove beneficial, as it could potentially

eliminate the initial signal pre-processing phase.

Additionally, a larger dataset with a larger number of fea-

tures could be considered to confirm our findings, and to

enable further exploration using diverse deep neural network

architectures, which yielded valuable insights such as in the

work by [34]. The objective would be to identify the minimal

complexity solution capable of generating predictions with

sufficient accuracy while being embedded in the wearable

device itself.
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