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Abstract—This study investigates the integration of multiple
biological signals to assess the impact of sleep deprivation on
attention levels. Electrocardiogram (ECG), electroencephalogram
(EEG), and electrooculogram (EOG) data from sleep-deprived
healthy participants were analyzed with performance outcomes
from the Psychomotor Vigilance Test (PVT), which measures
response times. The primary objective was to develop a robust
predictive model for the level of drowsiness based on these signals.
By leveraging machine learning models, the study demonstrated
the feasibility of signal-based assessments for predicting drowsi-
ness levels. Random Forest achieved the highest accuracy when
using reaction times as the true labels. It also showed promising
agreement with the subjective evaluation of the alertness levels,
highlighting conditions where the individuals may risk to under-
estimate their drowsiness. The results underscore the potential of
biological signals to improve understanding of sleep deprivation’s
impact on cognitive performance and potentially contribute to
develop robust drowsiness detection systems for practical contexts.

Index Terms—Computational neuroscience; Computer aided
diagnosis; Sleep deprivation; Machine learning.

I. INTRODUCTION AND STATE OF THE ART

Sleep deprivation is a growing concern in modern society,
significantly impacting cognitive functions, attention, and over-
all performance [1]. A real-time drowsiness detection system
would have the potential to mitigate these risks, enhancing
safety and productivity and reducing accidents and injuries
[2]. A prolific line of research deals with multi-modal sys-
tems [3]–[5] integrating different biosignals to detect fatigue
and discomfort which may be predictors of drowsiness [6]–
[8]. A first category of works aims to identify metabolic
changes associated with drowsiness and detect disorders related
to sleep [9]–[11]. For example, [9] investigates the use of
signals from wearable devices and processing through AI to
replace polysomnography to diagnose sleep apnea/hypopnea.
In [10], a deep learning framework for sleep stage classification
using physiological signals such as EEG and ECG is presented,
to detect fragmented sleep patterns due to sleep apnea. The
same problem is tackled in [11] using a long short-term
memory network on both polysomnography and oximetry data,
to possibly avoid and/or corroborate time consuming manual
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scoring by a professional. A second category of related papers
aims to assess distress and drowsiness conditions for machinery
operators or vehicle drivers, to improve safety in transportation
[6], [7], [12]. Among others, [6] focused on urban rail operators
and used heart rate, electro-dermal activity, and eye movements
from wearable devices and cameras. They showed that fusion
from multiple sensors has the ability to significantly reduce
the required observation window, allowing for faster detection
times. Instead, [12] proposes an integration of electronic vehi-
cle identification with a number of physiological parameters of
the drivers, ranging from fatigue state to breathing and heart
rate, to improve road safety.

Following this line of research, we investigate a data-driven
approach to assessing drowsiness levels by integrating multiple
biological signals—electroencephalogram (EEG) [13], elec-
trooculogram (EOG), and electrocardiogram (ECG) [14]. Using
data from the DROZY dataset [15], which includes record-
ings of sleep-deprived individuals undergoing the Psychomotor
Vigilance Test (PVT), we trained three very common machine
learning models: support vector machine (SVM), random forest
(RF), and neural network (NN). As a novelty, we trained
them w.r.t. two labeling approaches: quantitative PVT-derived
response times and the qualitative Karolinska Sleepiness Scale
(KSS) scores. All achieved a reasonable level of accuracy, with
the RF model performing the best (82.72%) when applied to
PVT labels, highlighting the effectiveness of this method for
reliable drowsiness detection. We also explored the classifica-
tion accuracy outcomes when the models are trained on the
KSS scores, shedding light to a promising agreement between
the machine learning evaluations and the individual subjective
ones [16].

By exploring the use of advanced signal processing and
machine learning techniques, this study provides a foundation
for developing reliable, scalable, and real-time drowsiness
detection solutions applicable to various real-world scenarios
[10]. It also supports the research best practice aimed at
designing machine learning-based solutions able to provide
explainable results [17].

II. SYSTEM MODEL

The signals undergo preprocessing to remove noise and
artifacts, followed by feature extraction to identify relevant
biomarkers. The extracted features serve as input for a ma-



Fig. 1. A representative example of preprocessed (top) ECG signal, (middle)
EOG signal, and (bottom) EEG signal.

chine learning model, which is trained to classify the level
of drowsiness. We compare two different approaches in terms
of chosen true labels: the first one uses the PVT outcomes
(reaction times), the second one the KSS scores.

Dataset and preprocessing

We took data from the DROZY dataset, from which we
extracted the polysomnography (PSG), regarded as the gold
standard to study sleep and sleep stages, the PVT scores, an
objective measure of vigilance and drowsiness, and the KSS
scores, a self-assessment tool used to measure an individual’s
subjective level of sleepiness [15]. The EEG, EOG, and ECG in
the PSG data were collected from 14 participants subjected to
three levels of sleep deprivation. Then, each individual under-
went three 10-minute sessions in which they were administered
PVT: they had to press a red button in response to a yellow
visual stimulus that appeared on the monitor. The time from the
onset of the stimulus to the pressure of the button was recorded
as reaction time. The visual stimuli were repeatedly shown
throughout the 10 minutes at irregular intervals. At the same
time, the abovementioned biological signals were measured
from the individual. At the beginning of each PVT, participants
were asked to estimate their level of drowsiness, according
to the KSS, assigning a value from 1 to 10 (1 defined as
“extremely alert” and 10 as “about to fall asleep”). All acquired
signals and data are time-aligned and synchronous.

We applied a band-pass filter with a range of 0.5-60 Hz
to the ECG signals to remove low-frequency noise, such as
baseline wander, and high-frequency noise, such as muscle
artifacts and electrical interference, thereby preserving the most
informative frequency components for accurate analysis. We

Fig. 2. A representative example of 20-second PVT signal from session 1 of
participant 1. Peak detection is also shown with green and red circles.

applied a bandpass filter (0.5 to 30 Hz) to the EOG signals
to remove baseline drift, electrical interference, and muscle
artifacts while maintaining the integrity of the eye movement
data which are fundamental for the extraction of the following
features. Then, we filtered the EEG signals with a 1-45Hz
Butterworth bandpass filter of fourth order to eliminate baseline
drifts and high-frequency noise sources, such as EMG activity
and power line interference. After preprocessing, signals appear
as in Fig. 1.

Feature extraction and dataset design

Every 10 minutes session was segmented into 20 second
segments, resulting in 30 segments per session. Every partic-
ipant took part in 3 separate sessions. Therefore, a maximum
of 1260 segments (90 segments/session × 3 sessions × 14
participants) per signal were obtained. However, due to some
missing sessions in the database, the actual number of segments
was only 1080. Finally, from every segment, we extracted 10
unimodal features, as described in the following.

Based on literature, we extracted from channel C3 of EEG
the most relevant features associated with drowsiness [18],
[19]: the power in the α, θ and β bands [3], [13]. Increases in
EEG-α and EEG-θ are indicative of increases in reaction time,
eye blink duration, and drowsiness, while EEG-β is indicative
of alertness and concentration, with beta levels decreasing
during periods of drowsiness. From EOG, we extracted the
blinking duration (BD), the blinking rate (BR), the peak eyelid
closing velocity (PCV), and the ratio between the amplitude
and the peak closing velocity, called amplitude velocity ratio
(AVR). Finally, since the ECG shows significant variations due
to drowsiness, we extracted the heart rate (HR), the distances
between two consecutive QRS complexes (R-R intervals, or
RRI) and the signal power at both low frequencies (PLF) and
high frequencies (PHF). Overall, the dataset consisted of 1080
samples and 10 features.



Fig. 3. Confusion matrix associated with the 8-class Random Forest classifier
with KSS scores as groundtruth. Classes are numbered from 1 to 8 for
convenience, but they refer to KSS scores from 2 to 9, respectively. Note
that the true class represents the subjective evaluation of each individual of
their own drowsiness level.

From the PVT, we derived a signal having the shape shown
in Fig. 2 (blue line). This signal carries relevant information
to assess drowsiness levels. We segmented the PVT signal into
20 second segments, consistent with the electrophysiological
signals. After identifying the peaks, we extracted some relevant
features, including median reaction time (med RT), standard
deviation of reaction time (stdRT), minimum (minRT) and
maximum reaction time (max RT), and number of lapses. Based
on our analysis and the literature review, the median RT is the
most suitable feature for assessing drowsiness [20].

For the groundtruth labels, we followed two different ap-
proaches, as mentioned earlier. We grouped the KSS scores
into two classes, based on previous literature findings: scores
of 2-6 indicate awake participants, while scores of 7-9 indicate
drowsy ones. Then, we identified the maximal RT produced by
the awake participants and used that value to separate the RT
values into two classes: RT values corresponding to an awake
reaction were 375 ms or less. Then, we classified signals w.r.t.
to the above two classes of RT values. In the second approach,
we simply used the KSS scores (values from 2 to 9) to build
an 8-class classifier.

Machine Learning Models

We considered 3 supervised machine learning models for
classification: support vector machine (SVM), random forest
(RF), and neural network (NN) emerged from the literature
due to their optimal trade-off between performance and
data / resource consumption. They shared the same data
preparation procedure: normalization (feature-by-feature) to
ensure uniformity of the range, permutation to randomize the
order of the samples, and finally 70%/30% training/test set
split. The (hyper)parameters optimization for each classifier
was obtained using cross-validation. Finally, the best models
were then evaluated on the same test set to determine their
relative performance.

III. RESULTS

First, an SVM model [18] was trained using grid search to
find the best values for its three main parameters, including
kernel function, box constraint, and kernel scale. For this pur-
pose, a 5-fold cross-validation was used. This model reached
an accuracy of 75.13% on the test set.

Then, we considered a feedforward neural network (FFNN)
model with one hidden layer. Through k-fold cross-validation,
we optimized its hyperparameters, i.e., the hidden layer size
and the regularization parameter (lambda). It turned out that
the best values for the hidden layer size and lambda are 10
neurons and 0.001, respectively. With this model, we reached
an accuracy of 80.56% in the test set.

Finally, an RF model [21] was employed. The model is
characterized by two main parameters: the number of trees
and the minimum leaf size. We performed a grid search
optimization to find their best values, through cross-validation,
finding 150 trees and a minimum leaf size of 5 as the optimal
choice. This model reached an accuracy of 82.72% on the
test set. As this model came out to be the best among the
three candidate models (SVM, RF, NN), we also report other
meaningful performance: the number of true positive was 44,
the true negative were 218, while false negative were 47 and
false positive were 15 (with positive meaning the class of
drowsy individuals).

Reaction times vs subjective drowsiness perception

To assess the agreement between the machine learning
models and the subjective evaluation of the drowsiness level,
we performed a second classification step using the KSS scores
as groundtruth labels. Every participant assigned KSS values
to their drowsiness, before starting the PVT test. Although the
KSS scale ranges from 1 to 10, no participant assigned the
two extreme values. Thus, 8 values were chosen (from 2 to
9) and, using these new labels, we increased the granularity
of the classification moving from the previous 2-class to the
current 8-class problem. We decided to train another RF model,
since RF was found to be the best approach in the previous
classification. We applied randomization and normalization of
the training data. With this second approach, we could reach
an overall accuracy of 77.16% (chance level = 12.5%). The
corresponding confusion matrix is reported in Fig. 3.

Although the overall accuracy decreased as compared to the
values obtained in the previous classification step, here the
chance level was significantly lower (the number of classes
was much higher), then the performance of our RF model
can be considered quite satisfactory. Moreover, it is promising
that a machine learning model consistently agrees with the
subjective evaluation of the drowsiness level given by a number
of different individuals [16].

However, if we deepen the investigation of the confusion
matrix, we can observe that the classification errors are dis-
tributed in a very similar way to the 2-class problem. Provided
that KSS score 5 is defined as “Neither alert not sleepy,” we
can count the number of errors in the submatrix corresponding



to KSS scores 2-4 (15), the number of errors in the submatrix
corresponding to KSS scores 6-9 (33), the number of errors
where the participants perceived themselves as more sleepy
than classified by the RF model (11), and the number of
errors where the participants perceived themselves as more
alert than classified by the RF model (19). This pattern reflects
a similar error distribution obtained in the 2-class problem.
The agreement between the machine learning model and the
individuals is rather high: about 90% the predicted score was
the same, or at least very close to the subjective one. On
the other hand, if we believe the machine learning model
captured more objective features of participants’ brain activity,
we can note the effect of the subjective perception of each own
alertness level [16]: in fact, about 6% individuals are at risk of
underestimating the degree of their drowsiness.

For this reason, and because the machine learning model’s
output can be obtained in real time, in a continuous modality,
without distracting the individuals from their activity, the
machine learning based drowsiness monitoring seems more
appropriate for several applications, such as alertness moni-
toring during driving and attention support systems in working
environments.

IV. CONCLUSIONS

Our research revealed that using simple machine learning
models (support vector machines, random forests, and neural
networks) to predict drowsiness levels leads to good levels
of accuracy. We showed that the classification results of a
random forest classifier well matched the subjective perception
of the individual level of drowsiness. This encourages the
development of automatic, continuous, and real-time drowsi-
ness monitoring systems that are more objective and reactive
than human awareness of their own alertness. This finding
highlights the promising value of such systems in addressing
sleep-related issues in various contexts, including, for example,
transportation safety [6].

Despite promising results, further improvements are neces-
sary to enhance the efficacy of drowsiness detection systems.
The accuracy reached may still require improvements for a
practical real-time application [22]. Our study was constrained
by a limited sample size, which impacts the generality of our
findings. Moreover, inter-individual differences pose a signif-
icant challenge in generalizing drowsiness detection models,
suggesting the need for larger and more diverse datasets [23].
Another possible improvement can be given by adding con-
textual information, such as sleep patterns and environmental
conditions.
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R. Pecotić, and Z. Ðogaš, “Advanced data framework for sleep medicine
applications: Machine learning-based detection of sleep apnea events,”
Appl. Sc., vol. 15, no. 1, p. 376, 2025.

[12] S. Zhou, N. Zhang, Q. Duan, X. Liu, J. Xiao, L. Wang, and J. Yang,
“Monitoring and analyzing driver physiological states based on auto-
motive electronic identification and multimodal biometric recognition
methods,” Algorithms, vol. 17, no. 12, p. 547, 2024.

[13] G. Cisotto and D. Chicco, “Ten quick tips for clinical electroencephalo-
graphic (EEG) data acquisition and signal processing,” PeerJ Computer
Science, vol. 10, p. e2256, 2024.

[14] G. Sannino and G. De Pietro, “A deep learning approach for ECG-based
heartbeat classification for arrhythmia detection,” Fut. Gen. Comp. Syst.,
vol. 86, pp. 446–455, 2018.

[15] Q. Massoz, T. Langohr, C. François, and J. G. Verly, “The ULg multi-
modality drowsiness database (called DROZY) and examples of use,” in
Proc. IEEE Wint. Conf. Appl. Comp. Vis. (WACV), 2016, pp. 1–7.

[16] K. Kaida, M. Takahashi, T. Åkerstedt, A. Nakata, Y. Otsuka, T. Haratani,
and K. Fukasawa, “Validation of the Karolinska sleepiness scale against
performance and EEG variables,” Clin. Neurophys., vol. 117, no. 7, pp.
1574–1581, 2006.

[17] N. Ullah, J. A. Khan, I. De Falco, and G. Sannino, “Explainable
artificial intelligence: Importance, use domains, stages, output shapes,
and challenges,” ACM Comput. Surv., vol. 57, no. 4, pp. 1–36, 2024.

[18] G. Cisotto, M. Capuzzo, A. V. Guglielmi, and A. Zanella, “Feature
selection for gesture recognition in internet-of-things for healthcare,” in
Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.

[19] D. Scapin, G. Cisotto, E. Gindullina, and L. Badia, “Shapley value as an
aid to biomedical machine learning: a heart disease dataset analysis,” in
Proc. IEEE Int. Symp. Cluster Cloud Internet Comput. (CCGrid), 2022,
pp. 933–939.

[20] M. Basner and D. F. Dinges, “Maximizing sensitivity of the psychomotor
vigilance test (PVT) to sleep loss,” Sleep, vol. 34, no. 5, pp. 581–591,
2011.

[21] I. Wijayanto, S. Rizal, and S. Hadiyoso, “Epileptic electroencephalogram
signal classification using wavelet energy and random forest,” in AIP
Conference Proceedings, vol. 2654, no. 1. AIP Publishing, 2023.

[22] A. Buratto, B. Yivli, and L. Badia, “Machine learning misclassification
within status update optimization,” in Proc. IEEE Int. Conf. Commun.
Netw. Satell. (COMNETSAT), 2023, pp. 640–645.

[23] A. Tazarv and M. Levorato, “A deep learning approach to predict blood
pressure from PPG signals,” in Proc. Ann. Int. Conf. IEEE Eng. Med.
Biol. Soc. (EMBC), 2021, pp. 5658–5662.


