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Abstract—In the era of smart cities and Industry 4.0, Digital
Twin (DT) technologies have emerged as transformative tools
for optimizing urban and industrial systems. We explore the
application of Green DTs (GDTs) in the context of Third-
Party Logistics (3PL) to enhance sustainability and operational
efficiency. By integrating real-time data with predictive an-
alytics, GDTs enable the optimization of delivery networks,
minimizing resource consumption and carbon emissions, while
addressing challenges such as traffic congestion and reverse
logistics. We investigate a 3PL scenario, involving a large-
scale delivery network, focusing on the misalignment between
environmental goals of the central operator and the profit-
driven strategies of third party providers. We employ a game-
theoretic approach to evaluate inefficiencies through the Price
of Anarchy (PoA) and the Price of Stability (PoS). The results
demonstrate the potential of GDTs to dynamically model agent
behavior, optimize route planning, and enhance collaboration
in decentralized supply chain networks to reduce emissions.

Index Terms—Price of Anarchy, Digital Twins, Sustainability,
Logistics, Supply Chain, Game theory.

I. INTRODUCTION

In recent years, smart cities have gained prominence as
a promising solution to global challenges such as climate
change and resource depletion. Governments and industries
have accelerated the deployment of sensors and IoT tech-
nologies in urban environments, enabling the collection of
real-time data to enhance decision-making and operational
efficiency [1], [2]. This trend has catalyzed the adoption of
Digital Twin (DT) technologies, to create virtual replicas of
physical systems, even entire cities [3], providing a platform
for optimizing resource management in urban contexts [4].

Within logistics, DTs have been tailored to address chal-
lenges in supply chain management, including minimizing
pollution, as well as promoting sustainable practices and
process optimization by integrating real-time monitoring and
predictive capabilities [5], [6].

A significant evolution in this field is the emergence
of Green Digital Twins (GDTs), which focus explicitly on
sustainability goals. GDTs integrate real-time data with pre-
dictive analytics to optimize energy use, reduce emissions,
and support carbon neutrality [7], [8]. They are instrumental
in logistics, as enablers of comprehensive emission map-
ping, and supporting reverse logistics strategies to reduce
environmental impact [9]. Additionally, GDTs offer tools for
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Fig. 1. Interplay between a Digital Twin framework and a GDT applied to
a multi-node Third-Party Logistics 3PL network.

forecasting and managing road freight emissions, aligning
logistics with global sustainability goals [10], e.g. through
carbon trading mechanisms that involve the use of a market-
place to buy and sell credits that allow companies or other
parties to emit a certain amount of carbon dioxide [11], [12].

DTs may be extremely beneficial in the context of Third-
Party Logistics (3PL), where activities such as transportation,
warehousing, and distribution are outsourced to specialized
providers [13]. Modern 3PL systems can leverage the real-
time insights provided by DTs, which help manage complex
dynamic processes across multiple locations, reduce mainte-
nance costs, and adapt to fluctuating demands [14].

We analyze a 3PL transportation network managed by a
large company overseeing numerous routes directly while
outsourcing segments to third-party operators. The company
aims to minimize environmental impact by determining op-
timal routes using a weighted shortest-path approach. How-
ever, third-party operators, motivated by profit maximization,
may deviate from globally optimal solutions, introducing
inefficiencies. The GDT system is leveraged to predict and
analyze this scenario within a game theory framework.

Fig. 1 shows the GDT system, with the physical transporta-
tion network of warehouses and trucks displayed in the lower
layer, while the upper layer illustrates the virtual DT model,



representing nodes and edges optimized for environmental
and operational metrics. Edge weights w; (0, u, 7,€) encode
dynamic factors such as emissions, travel time, and cost,
enabling real-time optimization and coordination between
stakeholders. By simulating agent behavior and identifying
stable working points, the DT offers a dynamic, scalable, and
cost-effective alternative to traditional approaches, reducing
operational overhead and enhancing decision-making.

Game-theorethic investigations to green logistic manage-
ment are less explored in the literature, with few exceptions
[15], [16]. Moreover, GDTs are applied to logistics with the
aim to find the optimal solution for a certain task [17]. Differ-
ently from those papers, our contribution lies in leveraging
game theory for 3PL settings, where third-party providers
manage segments of the logistics network. Instead of just
seeking optimal solutions, we focus on identifying equilibria
that realistically capture decision-making dynamics.

The system’s efficiency is quantified using Price of An-
archy (PoA) and Price of Stability (PoS), so as to evaluate
whether self-interested behavior deviates from the most en-
vironmentally sustainable solution [18]. The main finding is
that the PoA may be subject to spikes, especially in the case
of low rewarding deliveries, whereas the PoS is relatively
limited. This suggests that a careful equilibrium selection
mechanism is required to drive the system toward efficient
allocations even under de-centralized management [19].

The remainder of this paper is organized as follows:
in section II, we describe our system model, outlining in
subsection II-A the synthetic topology and in subsection II-B
the real-world dataset used to validate the obtained results. In
section III, we analyze the presented scenario from a game-
theoretic perspective, introducing the algorithm employed for
the simulations. In Section IV, we describe the obtained
results, while in Section V we conclude.

II. SYSTEM MODEL

In this section, we first model our scenario providing the
mathematical formulation for network topology and describe
how we quantify the environmental impact. In II-A, we
introduce our synthetic topology and in II-B, we explain how
we collect real-world data to develop the model.

A transportation logistics system is represented as a GDT,
modeled as a directed, connected, and without self-loops
graph G=(V, &, ). This formulation enables simulating the
network dynamics and decision-making processes. Nodes
v1,...,0, €V represent loading and unloading hubs within
the supply chain, while edges ej,...,e, € & correspond
to the roads connecting these hubs. Each edge is associated
with a weight wy (8, 4, 7,€), ..., wm (0, pu, 7,€) € W, where
w; (6, u, 7,€) C [0,1]. We leverage GDT collected param-
eters, which impact energy consumption and emissions, to
calculate the Carbon Footprint (CF) and we apply it for
the edge weights. CF is the total amount of greenhouse
gas emissions, primarily carbon dioxide (CO;), generated
directly or indirectly by an activity, process, or entity. In
the context of logistics, it encompasses emissions resulting

from transportation, warehousing, and energy consumption
throughout the supply chain [20]. Therefore, weight w can
be viewed as a function that approximates CF along a specific
edge and it can be expressed in terms of a CF model
represented as F (4, u, 7, §), i.e.,

w(6, 1, 7,§) = F(0, 11,7, §). (1
The CF is calculated as kgCO4 as defined by [21]
Fogcon) =7 €107 > (8- i) ©)
i=P

where §; is the distance traveled in the considered segment.
Value 7 is defined as

T= favg 3)
tideal
and represents the traffic coefficient, defined as the ratio
between the actual average travel time on a route and the
ideal travel time. Conversely £ is the emission coefficient
depending on the fuel used, i.e.

¢=CKB )

where C' is the potential carbon emission factor, K is the
carbon conversion factor and B is the carbon oxidation rate
[21]. The vehicle efficiency coefficient w;, is influenced by
the forces Fj, acting along the path. The set of possible street
categories is defined as i € {flat, uphill, downhill}.
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In (5), ny; represents the transmission efficiency, ac-
counting for mechanical losses, while n,, denotes the fuel
utilization rate of the engine [21].

We calculated the emissions for each road segment, repre-
sented as edges in the graph, and assigned the corresponding
CF values as edge weights in our logistics network. The
network is primarily managed by a large company that
controls a subset of proprietary hubs and routes, which are
always active. Outsourced companies manage specific routes
and decide whether to activate them. Activating a route means
assigning a driver with a vehicle ready to transport goods
between two nodes. When a route is activated, the travel cost
must be covered, which in our case corresponds to the edge
weight, representing the estimated emissions for that route.
However, some edges are not owned by the large company
but are outsourced to two third-party companies, which
independently decide to activate them based on operational
costs and potential rewards.

The primary goal of the logistics company is to offer
the minimum possible reward R to these operators while
ensuring the shortest weighted path is used, calculated via
Dijkstra’s algorithm [22]. The graph weights represent the
estimated CF for each route, so the shortest path in our case
is the one with the lowest emissions. This approach aims to
minimize pollution levels by rewarding third party companies



for activating edges with the lowest CF across the network.
The third-party operators aim to maximize their profits by
determining the most cost-effective strategy for activating
their routes. Collaboration between these operators and the
logistics company can lead to improved social welfare, reduc-
ing emission and environmental impact by pooling routes.
However, the reward mechanism plays a critical role in
promoting such collaboration. If the reward R is set too low,
it may fail to cover the operational costs required to activate
certain routes, discouraging the companies from participating.
In extreme cases, this lack of participation could result in
the inability to complete the delivery. We study the behavior
of 3PL companies in this scenario using two approaches: a
predefined topology with synthetic data, as described in II-A,
and real-world data, as discussed in II-B.

A. Synthetic Topology

We conducted an initial analysis using a lattice with a
predefined topology. The transportation system we construct
ensures that goods are delivered from an origin node A to
a destination node B, both considered external to a 3x3
lattice G, as shown in Fig. 2. Thus, the graph representing
the logistics network consists of n = 11 nodes and m = 18
edges in total. This lattice serves as the starting structure from
which sub-graphs are generated, as detailed in Alg. 1. In the
simulations, we apply dropout to edges, causing variations in
both the network topology and the set of reachable nodes.

In this model, the edge weights are randomly assigned
following a uniform distribution w~/[0,1] to ensure an
unbiased baseline assignment, allowing for the assessment
of model behavior and preliminary evaluation of efficiency
and parties decision-making patterns.

B. Real World Data

We also conducted experiments in a real-world scenario
to validate the use of GDTs for logistics. We selected
11 interconnected cities in Northern Italy, corresponding to
major logistics hubs and connected by highways, to construct
the topology shown in Fig. 3.

We created this scenario leveraging data by the Italian
National Institute of Statistics [23], comprising up-to-date
time and space distances between Italian cities, reflecting
real travel conditions, as derived from the 2020 TomTom
Multinet road graph. This incorporates speed profiles that
account for traffic impedance, such as congestion and road
barriers, at different times of the day. Calculations used the
ArcGIS Network Analyst’s OD Cost Matrix tool to determine
the travel times and distances between municipality centroids
as of January 1, 2021. The travel time between cities is
computed in two ways: the first is an ideal estimation based
only on the distance, while the second accounts for the
average traffic conditions along the route.

Finally, we took the technical specifications of a possible
vehicle for the transportation-related data (frontal area, max-
imum payload, aerodynamic drag coefficient). We used the
data of IVECO Eurocargo [24], one of the most common
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Fig. 3. Map of the cities utilized as nodes in the real scenario for logistic
transport simulation.

trucks for logistics in Italy, and its consumption as fueled by
gasoline type 92 to compute the CF for each path. The values
were normalized with a min-max approach. Table I describes
the vehicle-related variables to compute CF.

III. GAME THEORETIC ANALYSIS

The scenario is modeled as a static game of complete
information, where the two outsourced companies, referred
to as players p; and po, must decide which road segments
their transporters should activate to achieve the delivery goal.

Each player p € {p1, p2} controls a subset of edges &'}, C
&, and their strategy involves deciding whether to activate
each edge in their subset. A strategy profile, denoted s =
(Spy s Spy ), specifies the choices of both players, where s, €
S, represents the set of all possible combinations of active
edges for player p. The size of the strategy space for each
player is |S,| = 21€"s | reflecting the binary choice for each
edge. If the activated edges of both players, combined with
the always-active edges owned by the large company, create
a valid path between the origin A and the destination B,
the goods are delivered, and the reward R is assigned. To
discourage deviations from the weighted shortest path, the
large company applies to the reward R the penalty deviation
coefficient 1y qsn, defined as:

dmin
(6)

TINash = >
dNash



TABLE I
REAL DATA VARIABLES
Symbol Full Name Value | Source
C Potential Carbon Emission Factor 18.9
K Carbon Conversion Factor 3.67
B Carbon Oxidation Rate 0.98 [21]
ngf Transmission Efficiency 0.85
N, Fuel Utilization Rate of the Engine 0.27

where d,,;,, is the length of the shortest weighted path, and
dnash 18 the length of the path resulting from the NE strategy
profile. This coefficient penalizes deviations from the globally
optimal path and it characterizes the efficiency of the NE
referred to path selection. The utility function w,, that player
p tries to maximize is:

{Zeves w;(6, 1, 7,€) + Nnash-R,  if delivered
Up = i &Sp )
0, otherwise

(N
where w; (6, p, 7,€) is the activation cost of edge e;.

If no valid path exists due to the absence of activated edges
required to complete the route, the delivery fails, resulting in
a utility function of zero for the players. This scenario is
referred to as a non-cooperation case, as both players follow
a selfish strategy that does not lead to task completion.

Each player p has complete knowledge of the graph and the
strategies available to all players, and decides simultaneously
and independently which edges to activate [25]. We compute
both pure- and mixed-strategy NEs. Our focus is on how
these outcomes deviate from the optimal centralized solution,
where players collaboratively activate edges forming the
weighted shortest path. Furthermore, we aim to evaluate
how player selfishness impacts the overall system welfare,
especially by increasing pollution levels.

The performance of the game-theoretic solution is evalu-
ated using PoA or PoS. PoA quantifies the inefficiency of
decentralized decision-making by measuring the worst-case
ratio between an NE cost and the global optimal cost [26]:

Cost of Social Optimum )
Cost of Worst NE

Conversely, PoS captures the best-case scenario, where
players achieve the most efficient NE:

PoA =

Cost of Social Optimum 9
Cost of Best NE ©)
The social optimum corresponds to the best Pareto effi-
cient outcome. This corresponds to selecting the minimum
weighted path, i.e. the path with the lowest CF. By analyzing
PoA and PoS, we evaluate the trade-off between centralized
and decentralized decision-making. A high PoA indicates
system inefficiency due to the selfish behavior of the players
[26], [27]. In this case, selfishness can lead to non-delivery
of goods, unequal distribution of workloads and high levels
of pollution due to the player choice of travel path with high
CF levels. A PoS close to 1 suggests that cooperation could
lead to near-optimal outcomes.

PoS =

Algorithm 1 Graph-based simulation for reward analysis
Require: R < List of rewards
Require: N <— Number of simulations
1: for each reward r € R do
2:  for each simulation n € {1,2,..., N} do
3 Create G = (V,E, W)
4: W+ F(b,p,7,8)
5: G « edge_dropout(G,0.25)
6:
7
8

&', E 9 + edge_partition(G,0.2)
S1, So « strategies_assignment(E'1,E'5)

U1 -.-UN,N —
payof f_calculation(Sy, Sa)

9: compute Nash equilibria and best Pareto effi-
cient strategy for current iteration

10: save data related to PoA, PoS, and nysp for

this iteration
11:  end for
12: end for

For simulations, we generate random sub-networks from
the same topology using Algorithm 1, which incorporates
randomness and variability. At the start of each simulation,
the graph G is modified by pruning uniformly at random 25%
of its edges, and subsets of edges £’ and £’ are assigned
to the two players. Each player selects a strategy s; from
their strategy space S;, aiming to maximize their utility w,.
If a path between A and B exists, the reward R, adjusted
by Nnash, 1S assigned. This game-theoretic framework, sup-
ported by the GDT, enables the prediction of player behavior
and the design of efficient reward mechanisms. To perform
simulations we leverage PyGambit [28], a Python library for
analyzing and solving game theory models. It interfaces with
the Gambit suite, a robust platform for game theory analysis.

IV. RESULTS

In this section, we present the simulation results obtained
using Algorithm 1 in both the synthetic and the real-world
data scenario.

Fig. 4 illustrates the variation of PoA and PoS as the
reward R increases. For very low values of R, the third-party
companies p; and po are likely to opt out of collaboration,
as the costs associated with completing the routes would out-
weigh the potential profit. In such scenarios, dyqsp — 400,
indicating that no valid path exists between the origin and
destination, leading to failed transportation and the reward R
not being assigned. To ensure that at least 95% of times the
delivery occurs, the reward R must guarantee that the utility
uy, for each player p in the cooperative strategy exceeds their
utility in the non-cooperative case. The utility function u,, is
defined in (7), and collaboration occurs if u, > 0. This leads
to the following condition:

R> Zej €sp Wy (57 M, T, f) .
TINash

Since the edge weights w; are normalized within [0, 1],

the sum ) w; is distributed over [0, |sp|], where |sp|

(10)

e;jEsp
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Fig. 4. Variation of the Price of Anarchy and Price of Stability as a function of the reward R. Higher rewards reduce inefficiency (PoA) and stabilize the
system, with PoS converging to near-optimal levels. Error bars represent the variability across simulations.
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Fig. 5. nnash trend versus Reward. 1y, sp indicates how closely the emissions of the actual path align with the ideal emission levels of the minimum

path calculated using Dijkstra’s algorithm.

represents the number of edges in s,. The condition for R
can thus be rewritten as:

0.95 - |sp|
TINash ’
In the given scenario, the graph initially consists of 18

edges, but each edge has a 25% probability of being re-

moved. Remaining edges are assigned to players with a

20% probability, resulting in an expected number of edges

controlled by each player of approximately E|sp|] ~ 3.

Assuming 7Nygsp > 0.75, the minimum reward required to

ensure 95% collaboration is R = 4. Therefore, in Fig 4 and

Fig. 5 we highlight R = 4, as the 95% cooperation thresh-

old. The randomness introduced with Algorithm 1 influence

PoA, which is sensitive to worst-case NE. To mitigate the

impact of variability, we performed 50 simulations for each

selected value of R. However, for values below the threshold,
collaboration often does not occur and we excluded these

cases from the calculation of PoA and PoS. This results in a

higher confidence interval, particularly noticeable in Fig. 4-a.

Nevertheless, it is important to show the performance level

achieved in these rare cases where delivery occurs.

In Fig. 4, we observe a general decreasing trend for both

PoA and PoS as R increases. In the worst-case scenario,

R > max
pE{p1,p2}

Y

offering a reward lower than 4 can lead to a degradation in
social welfare of over 80% compared to the social optimum.
For R < 4, both PoA and PoS are very high, whereas, with a
reward of 4 < R < 5, PoS is limited to 1.1 and although PoA
remains high, it does not exceed 40% system degradation.

Further increasing the reward we achieve a minimum PoA
of 1.08, representing an 8% deterioration. At the same time
PoS reach its minimum at 1.02. We observe that with real
data, in Fig. 4-b, PoA performance is slightly better for very
low rewards. However, the overall trend remains comparable
to the adopted simulations, aside from some fluctuations due
to edge dropout, which is also applied in this scenario.

Fig. 5 illustrates the relationship between system effi-
ciency, quantified by 7ngsn, and the reward R. We can
observe how the maximum, minimum, and average Mnqsh
vary as the reward changes, always averaged over 50 it-
erations for each R. As the reward increases, the system
efficiency improves, reflecting players’ increased alignment
with optimal routing strategies. Initially, for low values of R,
efficiency starts at approximately 0.91, indicating significant
deviations from the optimal path. However, as ‘R rises, play-
ers’ strategies become more efficient, and 745, approaches
a mean value of 0.99, both in simulations and real data, with



the worst NE at 0.96 and 0.97 respectively. This improvement
stabilizes around R > 15, where further increases in the
reward yield little additional benefit.

For very low values below the cooperation threshold, the
results are not satisfactory, as the minimum and maximum
NNash are far from optimal, leading to problems related
to equilibrium selection [19]. Conversely, for R > 5, the
worst NE efficiency is above 0.9 for synthetic data and
above 0.95 for real world data, with a high likelihood to
get Nngsh very close to 1. However, with rewards below
the cooperation threshold, the range is dominated by very
low values, leading to significant inefficiency. Since nngsh
represent the deviation from the minimum weighted path,
an increase in its value corresponds to a reduction in the
CF and, consequently, CO, emissions. Specifically, for low
reward values (R < 4), emissions can increase by up to 14%
in the simulations scenario (Fig. 5-a) and up to 8% in real
data scenario (Fig. 5-b). However, these excess emissions
decrease over time, with the worst-case scenarios showing a
maximum deterioration of only 4%. These decreasing trends
are a further validation for the use of GDTs in 3PL logistic
scenarios.

V. CONCLUSIONS

This study highlights the potential of GDTs in 3PL systems
to reduce resource consumption and carbon emissions via
the integration of real-time data and predictive analytics. We
quantified system inefficiencies introduced by the misalign-
ment of environmental objectives and profit-driven strategies
of 3PL operators employing a game-theoretic framework.

PoA and PoS evaluation provided insights into the trade-
offs between centralized and decentralized decision-making
[16]. While the PoA may be significant, the PoS is generally
very low, which suggests that it is possible to achieve an
efficient distributed management through proper equilibrium
selection [14]. Thus, incentivizing collaboration through ap-
propriate rewards can significantly mitigate inefficiencies and
align individual strategies with global sustainability goals.

Our findings underscore the importance of using GDTs
not only for dynamic route planning, but also as a tool for
fostering collaboration among stakeholders in decentralized
supply chains. Future research should explore the scalability
of these methods in larger and more complex networks while
considering additional factors such as scheduling problems
[14] and DT privacy preserving [27], [29].
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