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Abstract—Internet of things (IoT) applications require up-to-
date information about the system conditions. This can often
be provided from multiple alternative sources that sense the
environment, but act without centralized coordination. In this
paper, we consider a scenario where multiple sources can provide
information for a number of tasks of the IoT application, assuming
that the information content of multiple sources is generally
redundant, yet one single source is generally insufficient for all
tasks. In so doing, we seek for the minimization of the age of
federated information (AoFI), a metric describing the age of
information from multiple sources, considering that the epochs
of successful updates are only those where all tasks are covered.
At the same time, we would like to contain the number of active
sources for cost reasons. To this end, we tackle the problem
through a game-theoretic approach, where individual sources act
as players minimizing a linear combination of AoFI and activation
cost. We prove that this framework identifies efficient Nash
equilibria very close to the optimum performance. However, the
latter can only be achieved through centralized control, whereas
the former allows for distributed implementation, which is key in
IoT scenarios.

Index Terms—Distributed control, Internet of things, Game
theory, Age of information.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) has transformed
the development of real-time applications by allowing intercon-
nected devices to communicate and process data at unprece-
dented speeds. This advancement has enabled the creation of
smart home ecosystems, where devices such as thermostats and
security cameras can be monitored and controlled in real time
[1], [2]. Similarly, healthcare applications now utilize wearable
devices to track vital signs of patients, alerting healthcare
providers to any anomalies [3]. Furthermore, in smart cities,
AI-powered road cameras and urban sensors efficiently man-
age vehicular traffic and public services, resulting in a more
responsive and adaptive environment [4].

All these applications require up-to-date information to op-
erate coherently with the cyber-physical realm they belong to,
which requires proper management of the sensing units. How-
ever, continuous measurement is neither energetically sustain-
able nor always necessary as long as the information remains
sufficiently current. In the past decade, the evaluation of the
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timeliness of status updates using a metric known as the Age
of Information (AoI) has gained significant popularity [5]–[8].

AoI, defined in the seminal paper [9], is the time elapsed
since the last successful status update. The original scenario
considers a single link with one source and one receiver,
but in reality, the sensing paradigms for the aforementioned
applications are often many-to-many, making the data collection
process challenging [10]. What is worse, multiple sources are
often redundant in their content [11], needing careful selection
to avoid temporal redundancy of information, yet doing nothing
on its spatial redundancy instead.

The problem here is that, for most applications, just selecting
one source is not enough to provide the information required
by the whole set of tasks, but choosing all sources is definitely
redundant. To capture this point, we exploit the concept of age
of federated information (AoFI) that was originally introduced
in [12] for participatory ecosystems, where sources decide
independently about their activity during a specific evaluation
epoch. The evaluation of AoFI is akin to that of AoI but
considers a successful update to happen only in those epochs,
where a sufficient number of sources, intermediate between
only one and all of them, is active.

In the present paper, we expand this idea to consider a
bipartite graph of sources and tasks, where each source covers
only some of the tasks, and the successful update happens when
all tasks are successfully covered. For this scenario, we seek
distributed control of the individual activation of each source,
which again corresponds to the decision to send information
for a specific time epoch. To identify efficient decentralized
solutions, we employ an approach based on game theory [13].

Specifically, seeking distributed approaches that obtain low
AoFI would lead to the obvious Nash equilibrium (NE) where
all nodes are active. However, since we also strive to contain
the number of active sources, we show how the problem can
be framed as a game where individual players try to minimize
a global-local combination made of two components: a penalty
for the entire network (the AoFI) and an individual cost term.
This leads to implicitly penalizing solutions where the number
of active sources is excessive.

We prove that the best NEs of the game in pure strategies are
close to the optimal system performance. Conversely, mixed-
strategy NEs, which correspond to a fully agnostic distributed
implementation, perform far worse than the one achieved in



pure strategies, suggesting that there should be an equilibrium
selection procedure in place to favor the emergence of pure-
strategy NEs.

The remainder of this paper is organized as follows. In
Section II, we review related works. Section III presents the
system model and analysis. Numerical results are shown and
discussed in Section IV, and Section V concludes the paper.

II. RELATED WORK

The idea of applying game theory to problems of AoI
or other AoI-related metrics is not itself new and has been
successfully applied in many papers. However, these mostly
consider multiple sources as players with opposing objectives,
for example seeking to minimize their own AoI [6], [13], or
even adversaries that try to sabotage each other, as typical of
game-theoretic security investigations [8], [14]. To the best of
our knowledge, we are the first to apply game theory with
the different purpose to derive distributed policies that admit
implementation in the IoT. In other words, in our scenario,
the game-theoretic interaction is not motivated by competition
over a shared resource, but simply due to the (voluntary) lack
of run-time coordination between the nodes.

The concept is also presented in [12], which suggests AoFI
for data originating from various sources. However, that work
only addresses a single destination and oversimplifies infor-
mation redundancy by presuming that all nodes are identical
and provide uniform content. However, in this paper, the
presence of task-specific information from different sources is
represented using a bipartite graph structure, enabling a more
comprehensive description of practical scenarios.

We observe that the idea of AoFI is somehow intermediate
between the standard minimization of AoI as originally pro-
posed by [9] and the so-called “age of correlated information”
proposed by [15]. The former usually means that if multiple
sources are available, each one of them is equally good to
update the receiver. The latter is fundamentally the same
concept as AoFI; however, it specifically addresses situations
where all sources need to be active for a successful update.
This scenario can be considered as a particular instance in
AoFI analysis (e.g., if each source is dedicated to a unique
task). However, one can argue that AoFI offers a greater level
of flexibility between these two polar cases.

We note that [16] does a similar analysis for AoI reduction
in a multi-source context using bipartite graphs, but there the
graph structure is created as an auxiliary instrument for the
evaluation, and is not a preexisting input as in our case.

In general, there are several papers considering AoI from
multiple sources, but usually sharing the same medium [10],
[17], [18]. Thus, the problem is seen as the development of a
centralized scheduling strategy for medium usage among the
sources, one at a time. Our scenario is inherently different in
that we foresee simultaneous activation of multiple sources over
the same epoch, and we also seek distributed implementations,
due to our orientation towards IoT scenarios.

Fig. 1. Graphical representation of the scenario. Green sources are active and
red ones are inactive. pi is the probability source i is active.

III. SYSTEM MODEL

Consider a set N of N sources that can be activated
according to a probability vector p = [p0, . . . , pN−1], and a set
M of M tasks. Each source i is capable of solving only a subset
Ki ⊂ M with probability 1. Moreover, consider |Ki| = K to
be the same for each source i. This particular scenario can
be represented as a coverage problem on a directed bipartite
graph. An example is reported in Fig. 1 where we set N = 5,
M = 7 and K = 3. Note that the green nodes are active sources
with probability pi and completely cover the set M, while the
red nodes are inactive sources with probability 1 − pi and do
not contribute in any way to the coverage of the set of tasks.
Note that this is not the only possible solution as there are
multiple sources that can cover the same tasks and, therefore,
are exchangeable.

We consider the coverage of the task set M as the success
condition. To this end, we introduce a parameter α ∈ [0, 1]
that controls the coverage required to make the interaction end
in a success. Let y be the fraction of tasks covered by active
sources, if y ≥ α then the probability of success is exactly y,
otherwise it is 0. In the remainder of this paper, we will focus
on two values for α: we denote α = 0.7 and α = 1 as Soft
Coverage (SC) and Hard Coverage (HC), respectively, the latter
implying that success is achieved if and only if all tasks are
covered.

The collective goal for each source is to minimize a penalty
combining the expected AoFI and an individual cost term. AoFI
[12] is a metric that maximizes the freshness of information like
AoI and is computed as the time difference between the current
time instant t and the last successful update τi

δ(t) = t− τi , (1)

but it is best suited to collaborative scenarios as it considers
that some sources may refrain from collaborating. In these
scenarios, the expected AoFI can be written as [13]

E[δ] =
1

Psucc
− 1 . (2)

The probability of success Psucc is computed through the total
probability theorem by conditioning the probability of success



to the probability of having a binary activation pattern x =
[x0, . . . , xN−1] ∈ {0, 1}N

Psucc =
∑
x

P [succ|x] · P [x] . (3)

In this expression, conditional probability P [succ|x] is com-
puted by looking at the coverage achieved on M according
to the value of α (i.e., whether we seek for HC or SC). The
probability of the activation pattern x is computed as a product
rule, since all sources activate independently, as

P [x] =

N−1∏
i=0

pixi + (1− pi)(1− xi) (4)

Each source i incurs a cost each time it is activated. It is on
average a function of the source’s probability of activation

Ci = c · pi , (5)

where c is a cost factor that includes the energy of the
computation of the tasks and transmission of the results. We
also define the global penalty of probability vector p as

W = E[δ] +
N−1∑
i=0

Ci . (6)

An optimal allocation for the activation probability vector is a
solution to the following mixed integer optimization problem

min
p

W (7a)

s.t. 0 ≤ pi ≤ 1 (7b)
xi ∈ {0, 1} (7c)

It can be proven that the solution is in a vector of 0−1 choices,
i.e., p∗ ∈ {0, 1}N , where pattern x has the least number of
sources active to guarantee success.

A. Game Theoretic Model

The interaction between sources can be represented as a static
game of complete information G = {N ,A,U} where N is the
set of sources, i.e., the players, A ∈ {0, 1}N is the set of the
actions of the players, which are binary values that correspond
to stay inactive and active as 0 and 1, respectively, and U is the
set of individual objectives. The latter correspond to minimizing
a global-local penalty, combining the AoFI and the individual
cost sustained by the node when active as in (5)

Pi = E[δ] + Ci . (8)

With this formulation, game G admits a solution in normal form
[13], found by computing the payoff tensor Ai for each source.
This is a N -dimensional tensor that contains the payoff for each
player depending on its action and the ones taken by all the
other players. We can collect all the payoff tensors in a vector
A = [A0, . . . , AN−1].

In general, game G admits multiple NEs in pure and mixed
strategies. We can easily enumerate all the ones in pure strate-
gies in polynomial time and exponential space [19]. We note

Algorithm 1 Indifference Equation
Input Ai: payoff tensor for player i; p: array of probabil-
ities of length N
Output cond: Evaluation of the indifference equation

1: procedure INDIFFERENCEEQ(Ai, p)
2: cond← 0
3: pmod ← p∖ pi ▷ Remove element i from p
4: for j ∈ {0, 1} do
5: v ← Ai[. . . , j, . . .] ▷ Get payoffs for action j of

player i
6: for k ∈ {length(pmod)− 1, . . . , 0} do

7: v ← v.reshape
(⌊

v.size

2

⌋
, 2

)
8: v ← v ×

[
1− pk
pk

]
▷ Matrix product

9: end for
10: assert v is a scalar after the cycle
11: cond← cond+ v · (−1)j
12: end for
13: return cond
14: end procedure

Algorithm 2 Find mixed NE
Input N : number of players in the game;
A = [A0, . . . , AN−1]: Array of payoff tensors for
each player; θ: threshold for numerical solution
Output p∗: optimal array of probabilities

1: conditions← [] ▷ Empty list of conditions
2: bounds← [(0, 1)] ∗N ▷ Each element in p∗ is a

probability
3: p0← INITP0(N) ▷ Starting value for p0
4: for i, Ai ∈ENUM(payoffs) do
5: conditions[i]← INDIFFERENCEEQ(Ai, p)
6: end for
7: p∗, cost←LEASTSQUARES(conditions, p0, bounds)
8: if cost > θ then
9: p∗ ← NaN ▷ There is no solution in considered

domain
10: end if
11: return p∗

that the game has N > 2 players with exactly 2 actions, which
implies that an exhaustive search requires 2N evaluations.
However, to the best of our knowledge, there is no algorithm
in the literature to solve these types of problems for mixed-
strategy NEs [20]. For this reason, we propose a heuristic
algorithm that uses the extensive-form payoff tensor vector A
to compute a mixed NE strategy if it exists.

This approach consists of two phases. First, we compute
the indifference equations for the actions of each player. An
indifference equation for a pair of actions is found by equating
the expected payoff obtained by player i when choosing one
of its actions when all other players mix their actions with
probability pj , j ̸= i. The main loop of the procedure extracts
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Fig. 2. Number of active nodes as a function of the out degree K. (a) uses HC and (b) uses SC as success criterion, N = 10 sources, M = 20 tasks, c = 1.

the payoffs of player i for each of its actions and multiplies
them by the probability of all the other players will play the
sequence of actions that lead to that outcome starting from the
least significant bit in the index inside the tensor when player
i is removed.

We can iterate the solution of the system of equations until
the expected payoff for the two actions available to each player
falls within a numerical threshold. The pseudocode for this
procedure is reported in Alg. 1.

Moreover, we also need to compute mixed NEs, which are
found as solutions of the system of N indifference equations.
There are many possible algorithms to solve nonlinear systems
of equations, but we choose to use least squares algorithm with
trust region reflective method [21] reformulating the system of
equations as a minimization problem. With this procedure, we
are sure to satisfy the constraints on the system variables, i.e.
the probability for each node to be active, and we also compute
how far the result is with respect to the optimal solution.
Therefore, we consider a solution to be good enough if the
sum of the squared residuals of optimization is smaller than
a threshold θ that can be tuned to be arbitrarily small. The
pseudocode for this procedure is reported in Alg. 2.

We further compute the Price of Anarchy (PoA) and Price of
Stability (PoS) to evaluate the performance of the distributed
solutions. PoA is computed as the global welfare cost of the
worst NE over the welfare of the best centralized optimal
solution [22]

PoA =
maxs∈NEWs

mins∈T Ws
. (9)

Similarly, the PoS is the global welfare cost of the best NE
over the welfare of the best centralized optimal solution [23]

PoS =
mins∈NEWs

mins∈T Ws
. (10)

By definition PoS ≤ PoA and if the best NE solution is the
same as the optimal one, then PoS = 1.

IV. NUMERICAL RESULTS

In this section, we report the numerical solutions to the
model’s equation defined in Sec. III. For all the following
graphs, we have fixed the number of sources N = 10 and

the number of tasks M = 20 while varying the out degree of
the sources K and the cost factor c in (5). Recall that for the
SC success condition α = 0.7. Furthermore, we fix θ = 0.05
in the heuristic algorithm to compute the mNE.

Fig. 2 reports the number of active nodes for different types
of solutions as a function of the out degree K of the sources
for a cost factor c = 1. In all plots, the number of active nodes
for the mNE is not shown since they are always N whenever
the mNE exists. In Fig. 2a, which reports the number of active
nodes in the HC criterion, we can see that there is a threshold
K∗ = 5 at which we start obtaining solutions, which means that
K∗ is the minimum out degree to guarantee full coverage of the
task setM. We start obtaining NEs in pure strategies at K = 6.
It is important to note that not all NEs have the same number of
active nodes and therefore have the same performance in terms
of global welfare W . As the out degree of sources increases,
all NEs in pure strategies converge towards the optimum. We
can make similar remarks in Fig. 2b, where the SC criterion is
shown. In this particular case, the threshold K∗ = 2 is also the
beginning of the emergence of pure-strategy NEs.

In Fig. 3 and Fig. 4 we display the activation probability
pi for each node i at the mNE with the HC and SC criterion,
respectively, when the out degree K is 12 for Figs. 3a- 4a and
17 for Figs. 3b- 4b as a function of cost c. As stated in the
previous paragraph, for HC the mNE starts to emerge much
later than SC. Moreover, the activation pattern for the sources
is significantly influenced by the topology of the connections
as can be inferred by the wide confidence intervals that include
one standard deviation above and below the mean of multiple
runs on different topologies. This effect is less relevant when
the out degree is increased as it is more likely that different
subsets of sources can cover all tasks and fewer essential
sources need to be active more than others. This phenomenon
is practically non-existent for SC. In this scenario, all sources
have similar behaviors as successes can occur even if not all
the tasks in M are covered. Also, increasing the out degree of
sources only reduces their activation probability, but does not
determine the shutdown of one of them.

In Fig. 5 we show the PoA computed as the quotient between
the global welfare of the mNE and the optimal solution. For
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Fig. 3. Mean activation rate for each source with 1 standard deviation confidence at mixed strategy Nash Equilibrium. HC is used as a success criterion, N = 10
sources,M = 20 tasks. (a) has K = 12 and (b) has K = 17.
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Fig. 4. Mean activation rate for each source with 1 standard deviation confidence for each source at mixed strategy Nash Equilibrium. SC with α = 0.7 is
used as a success criterion, N = 10 sources,M = 20 tasks. (a) has K = 12 and (b) has K = 17.

the HC case in Fig. 5a the PoA does not follow a monotonic
behavior when increasing the out degree K, instead the better
performance for cost c < 8 is obtained by K = 10. However,
PoA values are really high, as a PoA of 3 indicates that an
optimal centralized activation strategy would be 3 times more
efficient. For SC in Fig. 5b the performance is even worse,
as for some values of c and K the PoA is even above 4.
This indicates that the reduction of activation probability is
not enough to counterbalance the fact that, at the optimum,
as K increases, there are fewer and fewer sources active, thus
drastically improving global welfare.

Fig. 6 shows the PoS computed as the ratio between the
global welfare of the best NE in pure strategies and the optimal
allocation. For HC in Fig. 6a the PoS is not very far from
1 for K = 6 and, increasing the out degree, it reaches the
optimal value. Similarly, for SC in Fig. 6b the PoS is always
1, which means that there exists a NE in pure strategies that
reaches the global centralized optimum. This result suggests
that equilibrium selection is required to ensure that sources
prefer pure strategies instead of mixed ones [24].

V. CONCLUSIONS

We analyzed the distributed minimization of AoFI for inde-
pendent sources covering multiple tasks. We computed the NEs
in pure strategies and developed an algorithm to find the ones
in mixed strategies under parametric success conditions. We
computed the PoA and PoS by comparing the global welfare
obtained by distributed solutions and centralized optimization.
We showed that distributed solutions in pure strategies are close
to optimum, whereas mixed strategies solutions are inefficient
from a global perspective. This result suggests the need for
an equilibrium selection mechanism to force the distributed
choice of a pure strategy NE. This would achieve near-optimal
performance through independent decisions by the sources.
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