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Abstract—Federated learning has become the de facto standard
solution for decentralized training of machine learning models
across multiple clients. However, when the participation of the
clients is voluntary, the outcome can become unpredictable,
especially if the quality of the data varies among the clients. In
this work, we propose a game theoretic framework that models
federated learning with voluntary participation as a coalition
game. This framework determines stable client coalitions as
NEs and predicts possible final outcomes in terms of federated
model performance. We apply our proposed framework to public
datasets commonly used for benchmarking federated learning
solutions, empirically evaluating NEs. Our analysis investigates
when a grand coalition of all clients is an equilibrium, which
means that all clients have proper incentives to participate).
When more than 40% of the clients have high-quality data, the
grand coalition is an equilibrium approximately 90% of the time.
However, when the proportion of low-quality clients increases, the
number of cases where the full coalition is stable varies across
different models.

Index Terms—Federated learning; crowdsourcing; game the-
ory; Nash equilibrium.

I. INTRODUCTION

Federated learning (FL), introduced in [1] has become the
main reference approach for decentralized machine learning,
enabling multiple clients to collaboratively train a global
model without sharing raw data. FL is particularly relevant
in domains such as healthcare and finance [2]-[4], where data
cannot be centralized due to legal or ethical constraints. In
general, FL promises advantages in terms of privacy and data
confidentiality [5].

Although initially limited by technical and infrastructural
challenges, FL under voluntary client participation is be-
coming increasingly feasible due to the availability of open
source frameworks and cloud-based platforms that facilitate
collaboration [6]. However, client participation in FL is not
without cost. Clients must allocate computational resources
and bandwidth to communicate with the central aggregator.
This may outweigh the benefits of participating if the global
model does not outperform a locally trained model. This trade-
off creates an incentive structure, where clients strategically
decide whether to contribute their data to the global training
process [7].

In this work, we introduce a game-theoretic framework
that models federated learning under voluntary participation
as a coalition game [8]. Game theory provides a powerful
mathematical framework for analyzing strategic interactions
in multi-agent systems, making it particularly well suited for

studying coalition formation in federated learning, similar
to its applications in crowdsourcing and other decentralized
settings [9]. Our approach identifies stable client coalitions as
Nash equilibria (NEs) and predicts possible outcomes in terms
of the global model’s performance.

The intersection of FL and game theory has initially been
explored in many papers dealing with specific application
scenarios, for the definition of proper incentives for nodes to
participate in the FL system [10], with possible extensions to
age of information for real-time traffic [11], or drones sup-
porting an Internet-of-vehicle scenario [12]. From an abstract
standpoint, the main game theoretic reference is that of coali-
tional games, which is also explored by many contributions.
The foundation for this work can be related to [13], which
analyzes coalitions in federated learning. The stability and
optimality of coalitions was explored in a comparative fashion
in a subsequent work by the same authors [14].

In many related papers [15], [16], this theoretical back-
ground is exploited in a simplified way, assuming that the
so-called grand coalition is expected to form, i.e., all agents
are willing to contribute and participate in training the same
model, and whenever smaller coalitions are formed, they still
contribute to the same global model.

In [17], it is assumed that the coalitions train their own
unrelated FL. model, so that data are only exchanged within
the same coalition. However, our investigation still converges
to the main point of this analysis in that we investigate the
conditions for a grand coalition to be the preferred choice by
clients.

In contrast, [18] and [19] explore mechanisms for efficient
and stable coalition formation under dynamically changing
conditions. The former considers a network of drones and
proposed a hedonic coalition formation, whereas the latter is
based on evolutionary mechanisms for fog computing where
micro-providers are subject to variations on a fast timescale.

Unlike the aforementioned papers, who take a theoretical
stance to the coalitional game approach to be effective, or
define algorithms for coalition formation, we investigate a
more practical perspective of real datasets to assess whether
or not the coalition formation process is worth considering.
We aim to evaluate whether the grand coalition is forming in
practice and what is the role of data quality across the clients.

Indeed, many references make strong assumptions about
the symmetry of data and the roles played by nodes, but
under the assumption of voluntary network participation, the



quality of data may be highly heterogeneous. As we show in
this work, the grand coalition is generally forming in realistic
scenarios, as long as the quality of the data from the sources is
relatively similar. However, when the network consists mostly
of nodes with low-quality data, the minority of sources whose
data are good are generally not willing to deteriorate their
model in a grand coalition. This possibly suggests interesting
developments in vetting the quality of data before having a
node join a coalition, to improve both stability of the resulting
coalition and overall accuracy of the trained model.

To validate our claim, we study publicly available datasets
commonly used to benchmark federated learning models. Our
empirical analysis reveals that when at least 40% of the clients
have high-quality data, every agent has a general incentive
to contribute, so that the grand coalition is achieved as a
Nash equilibrium in more than 90% of the cases. However,
as the proportion of low-quality data holders increases, the
stability of full participation becomes uncertain, depending on
the specific learning model employed.

The paper is organized as follows. In Section II, we in-
troduce the game theoretic model. Section III discusses the
datasets that we used to validate the model. Section IV shows
numerical results and Section V concludes the paper with a
discussion of the results and future directions.

Notation. We denote a dataset of n samples with
D={z;,y;}!",, where each sample z; € R™ is a vector
of m features and y; is a discrete label (since we focus on
classification datasets). The total number of clients is denoted
with NV and M < N is the size of coalitions.

Source code. Our results can be reproduced by using the
code available at the following Github repository:
https://github.com/abbaszal/FederatedLearningNE.

II. GAME THEORETIC FRAMEWORK

We model federated learning under voluntary participation
as a static coalition game with a finite set of players N,
where |N|=N. Each player can decide whether to join (1) or
not join (0) a coalition. The coalition structure is represented
using binary encoding, where a binary string indicates the
participation status of each player. For instance, the binary
string ‘0000000011” means that players 1 and 2 have opted to
join the coalition, while the others have not.

Utility Function

The utility of each player is based on the accuracy of the
client’s model. Specifically, we define the utility function as
follows:

o Let Ay(S) denote the global accuracy of the coalition
SCN.

o Let A; denote the local accuracy of player i € N' when
acting independently (i.e., without joining the coalition).

The utility function for each player i € N is defined as:

Ui(S)Z {Ag(S),

if 2€S (i.e., player joins the coalition)

if ¢S (i.e., player remains independent)

Furthermore, we assumed that if A (S) = A; player i
prefers not to join the coalition, as participation offers no
additional benefit. Notably, for simplicity, we neglect com-
munication costs in this model.

NEs in FL with voluntary participation

A Nash equilibrium in this game occurs when no client has
an incentive to unilaterally change their decision. For an NE
to hold, both of the following conditions must be satisfied:

o Clients outside the coalition should not have an incentive
to join, meaning their local accuracy satisfies A; >
Ay(S).

o Clients within the coalition should not have an incentive
to leave, which means they are not better off individually
(A4(S) > Ap.

If only one of these conditions holds, then the coalition is

not at equilibrium, as some clients will still have an incentive
to change their decision.

III. MODELS AND DATASETS
Datasets

We used two datasets that are widely adopted in federated
learning studies.

Spambase [20]: Spambase is a dataset for spam email
classification. It contains 4601 email instances, labeled as
either spam or non-spam. The dataset includes m = 57
numerical features extracted from email content, categorized
into three types: 48 word frequency features, 6 character
frequency features, and 3 capital run length features (the latter
quantify the use of capital letters, including average, longest
sequence, and total count).

HuGaDB [21]: The Human Gait Database (HuGaDB) is a
dataset designed for human gait analysis and activity recogni-
tion. It comprises continuous recordings of 12 distinct activ-
ities, including walking, running, sitting, standing, climbing
stairs, etc. Data were collected from 18 healthy adults (4
women, 14 men) with an average age of 23.67 years, using
a body sensor network. This network includes six wearable
inertial sensors (3-axis accelerometers and gyroscopes) and
two electromyography (EMG) sensors. Participants performed
sequences of activities in continuous trials, resulting in ap-
proximately 2,111,962 samples, totaling about 10 hours of
data. Each data file contains 39 columns: 36 for inertial sensor
data, 2 for EMG data, and 1 for activity IDs. Since the dataset
comprises multiple participants, its distribution presents an
inherent multi-modal nature, which makes it a more realistic
benchmark for federated learning applications [22].

Models

For the models, we utilized the federated version of two
traditional machine learning models.

Federated Logistic Regression (FedLR) [23]. Each client
trains a logistic regression classifier of the form y = 81z +
b;, B; € R™,b; € R in its local data set. Once local models



are trained by the clients, their parameters are aggregated by
the central server via federated averaging:

1 M 1 M
ﬂ:M;ﬂi, b:M;bi (1)

with M being the number of participating clients.

Federated Forest (FedFor) [24]. In this case, each client
trains a decision tree classifier on its local dataset. Since deci-
sion trees are non-parametric models, it is not possible to apply
federated averaging. Instead, the local models are collected
by the central server and their predictions are combined via
majority voting:

M
§ = argmax " I(y; = o), @)

c
=1

where y; represents the prediction of the ¢-th tree, and I is the
indicator function.

IV. NUMERICAL RESULTS

The following setup was used in our numerical experiments.
For Spambase, we took an 80/20 random split between training
and test data. The training data are further divided between
clients, while the test data are kept as a single dataset and
used to evaluate model performance. HuGaDB comes with
default training and test splits for each user, which we adopt.
The test data are grouped into a single dataset. However,
due to its size, training was generally very slow. Since our
experiments involve multiple training and coalition evaluation
runs, we reduced the dataset size by subsampling 350 training
samples for each client—matching the size of Spambase—and
resampling them in each run.

The preprocessing applied to the datasets is as follows.
Aside from the dataset-specific differences described above,
the same preprocessing steps were applied to both datasets.
As all features are numerical, standard scaling was applied
using parameters (mean and standard deviation of each feature)
computed from the training data of all users. These parameters
can be estimated by clients exchanging aggregated statistics
on their local datasets, as described in [1]. Labels were
numerically encoded.

The models were trained using the following hyperparame-
ter settings. For FedLR, the maximum number of iterations for
each local model was set to 100. For FedFor, the maximum
tree depth was limited to 100. These constraints were not the
result of hyperparameter tuning but were chosen to limit train-
ing runtime, which can become expensive when performing
multiple training and testing runs.

Each experimental run followed the same training protocol.
In each run, the local client models were trained only once.
This means that different coalitions were formed using the
same set of trained models within a single run. However, the
models were retrained between different runs, as the training
data were resampled each time.

NE Search

To find NEs, we employed an exhaustive search over all
non-empty and non-singleton coalitions, from 0000000011
(only the first two clients participate) to 1111111111 (grand
coalition). At the NE, no client has incentive to unilaterally
change their strategy. Therefore, to determine whether a coali-
tion is an equilibrium, all the possible deviations of the N
clients should be evaluated, as shown in Algorithm 1. If at
least one client has incentive to deviate from their current
strategy — meaning that doing so increases their accuracy —
then the algorithm returns false. Otherwise, it returns true.

Algorithm 1 ISNASHEQUILIBRIUM
Require: Coalition .S, global accuracies A, local accuracies
A;
for each client i =1,..., N do
if i € S then
if A; > A,(S) then
return false

if Aj(SU{i}) > A; then
return false

1:
2
3
4:
5: else
6
7
8: return true

Simulating clients with low-quality data

In our experiments, we study how participants with low-
quality data affect NEs. To achieve this, we explored all
configurations that involve the participation of all clients
(both good-quality and low-quality clients). We then computed
global model accuracies across different combinations, as well
as local client accuracies. Based on these computations, we
assessed the viability of stable (NE) coalitions for varying
numbers of low-quality clients. The results of this analysis
will be presented in the following.

To analyze how clients with low-quality data affect the
NEs, we simulate their presence in a coalition through data
corruption techniques, which are applied to some of the
clients’ local datasets. We call the clients whose data have
been perturbed as “low-quality clients” (LQC). The corruption
techniques involve perturbing entries with noise or entirely
removing some values. More specifically, we choose a fraction
p of the samples (z;) to be perturbed. Of that fraction, a subset
qp is perturbed with Gaussian noise A (0, 02). The remaining
(1 —q)p samples have features replaced by null values (NaN).

Labels (y;) are also perturbed by randomly flipping them
to other classes with fixed probability r. This label corruption
process is given by:

:()' _ Yi,
P =

We first examine whether coalitions form NEs, which is ver-
ified by Algorithm 1, with a particular focus on the frequency
of specific coalitions appearing as equilibria. We considered

with probability 1 — r, 3)
with probability 7.

Results



all four possible combinations of datasets and models, which
leads to every plot or table entry being repeated four times. In
particular, we are clearly interested in determining the features
of the grand coalition in this sense.

Table I reports the occurrence of the grand coalition (as
opposed to other coalitions) among the equilibria, and also
quantifies their global accuracy for a network without LQCs.
As a general trend, one can remark that the grand coalition
is an equilibrium in the vast majority of cases, and it also
generally achieves high accuracy.

Although this property generally holds, there are specific
differences that are worth noting. First of all, the accuracy
of HuGaDB is generally lower than that of Spambase. This
happens because HuGaDB is a multiclass dataset, which is
naturally more challenging than Spambase that only aims
at binary classification. Of all the four combinations, it is
interesting to notice how the FedFor-Spambase pair frequently
results in scenarios where at least another coalition is an
equilibrium in addition to the grand coalition. However, none
of them has more than 4 occurrences.

This leads us to extend the analysis to the presence of a
varying number of LQCs, which is done in the following
figures.

TABLE I
NES OCCURRENCES ON 100 TRIALS

NE # times  Glob. accuracy (std)

0.7552 (0.0306)

FedFor HuGaDB Grand coalition 99

Other coalitions 15 0.4432 (0.0665)
FedLR HuGaDB Grand coalition 100  0.6641 (0.0093)
Other coalitions 30 0.4592 (0.0148)
FedFor Spambase  Grand coalition 99  0.9203 (0.0085)
Other coalitions 90  0.7532 (0.0859)
FedLR Spambase  Grand coalition 95  0.9277 (0.0036)
Other coalitions 7 0.9153 (0.0079)

NE for varying LOC

The corruption parameters for the LQC were set as p = 0.8,
q = 0.5, and r = 0.2. The noise standard deviation ¢ was
varied to assess the impact of different noise levels on the
NE.

Fig. 1 reports 4 plots for all possible combinations of
datasets and methods, and shows the occurrence of the most
frequently encountered NE. The labels above each bar display
the mean global accuracy of the NE over all occurrences. It
can be seen that FedFor substantially limits the frequency of
coalitions not involving participation by all nodes. Conversely,
FedLR Spambase has relatively higher occurrences of these
coalitions, even surpassing the grand coalition if there are
many LQCs. The frequency of the grand coalition appears
to decrease generally in the number of LQCs.

Fig. 2 instead shows specifically the frequency of the grand
coalition as an equilibrium, versus the number of LQCs. Here,
we also consider a different value of o. It can be seen that
this frequency generally decreases when the number of LQC
increases, but always raises again when the number of LQC is
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Fig. 1. Top 5 NEs (by frequency) for varying numbers of low-quality clients.
Labels are the mean global accuracy across all occurrences.

so high that it approaches the totality of the network, which is
quite natural, since the situation returns to being symmetrical.

More in general, the grand coalition tends to remain the
most frequent NE under various conditions with varying num-
bers of low-quality clients. However, we observed a decrease
in its frequency as the number of low-quality clients increased,
which is expected.

Our empirical results show that the frequency of the grand
coalition decreases with the number of low quality clients, and
the trend becomes generally more pronounced if the standard
deviation of the noise increases. This means that, for higher
noise, i.e., when LQCs become worse, high-quality clients
are less willing to join in a grand coalition. This trend is
consistently confirmed across both datasets and models when
the standard deviation of the noise is high enough. A notable
exception is FedLR-Spambase, where the frequency is already
lower than 100% when LQCs are a large fraction of the
participants, even in the presence of low noise. Still, also in
this case the occurrences of the grand coalition are reduced
when the noise increases.

In general, the grand coalition is likely to form if the number
of LQCs is limited, but starts to break when the fraction of
LQCs becomes significant (more than half of the nodes). In
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Fig. 2. Occurrences of the grand coalition equilibrium with varying LQC.

this case, high-quality clients become less and less likely to
join the grand coalition because it does not provide benefits
compared to other coalitions. However, this decision is also
influenced by the performance of the training model. When a
model performed well, high-quality clients were more willing
to participate.

In fact, clients are unable to make a perfect prediction about
the outcome of each coalition. However, they may estimate the
contribution of others based on their local accuracy. A typical
way to represent the individual contribution of a client in a
coalition is represented by the Shapley value [25], which is
computed for client ¢ in coalition S as

o= ¥ |EEEEEE (a9 -a s\
SCN :
€S

The formula computes the average marginal contribution of @
to the accuracy, considering differences in the predictions of
the model with and without ¢ combined over the possibilities
of forming S [26].

The experimental results show, for all four scenarios, a
generally good level of correlation between local accuracy
and the Shapley value of the client, as seen in Fig. 3. Clients
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Fig. 3. Local accuracy versus Shapley value for each client.

with poor global test performance consistently received low
Shapley values, demonstrating that weak models or low-
quality data contribute minimally. Although a client’s highest
local accuracy did not always yield the highest Shapley value,
potentially due to over-specialization, we can conclude that
local accuracy generally proved to be a reliable predictor of
Shapley values.

V. CONCLUSIONS
Summary of Findings

The grand coalition frequently emerged as an equilibrium,
indicating that full participation benefits collaborative learning
and incentivizes even high-quality clients. In the HuGaDB
dataset, alternative equilibria appeared. When excluding the
grand coalition (‘1111111111°), FedLR typically led to a
mix of high- and low-quality clients, whereas FedFor mostly
resulted in NEs with predominantly low-quality clients.

Our analysis shows that grand coalitions are frequently (~
90% of the times) an equilibrium when more than 40% of the
clients have high-quality data. This means that all clients have
an incentive to participate in normal conditions [10]. When a
portion of the clients have low-quality data, the frequency of
the grand coalition as an NE is reduced, reaching its minimum
when N —1 clients own low-quality data.



Limitations

Our current model is subject to a number of limitations
and challenges. First, the assumption of complete information
may not reflect the clients’ knowledge, and uncertainty should
be incorporated into the model. This can be achieved by
expanding the analysis to lotteries or Bayesian games [27].
These frameworks do not assume that clients know the exact
value of their utility function, which implies knowing A,.
Instead, clients are assumed to estimate an expected value
of their utility based on a prior distribution. Additionally,
experiments on more realistic neural network models were
unfeasible due to the complexity of NE search, which requires
to evaluate all the possible coalitions.

Practical insights

In cases where the grand coalition is an equilibrium, clients
have an inherent incentive to participate in FL. Analyzing the
likelihood of this equilibrium can affect the design of incentive
mechanisms for FL [28]. For example, in cases where the
grand coalition occurs with certainty, clients do not need
further rewards. Conversely, when the grand coalition is less
likely, appropriate rewards can be estimated via a PoA-based
analysis [29].

Future Work

Future research could extend these experiments to larger
and more diverse data sets and validate the findings using ad-
ditional models. Further studies could also extend the analysis
to neural networks by evaluating approximate NEs, and, for
example, using Monte Carlo simulations.
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