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Abstract—This paper considers a sensor network for real-
time monitoring, where multiple sensors can act as equivalent
information sources for a common receiver. The sensing goal is
to achieve minimal freshness of status updates at the receiver’s
end, which is captured through the metric known as age of
information (Aol). A distributed uncoordinated management is
applied to the sensors, so that they send their reports indepen-
dently and according to a memoryless process. Thus, nodes share
the common objective of minimizing Aol but at the same time
they incur an individual transmission cost when sending their
updates. The goal of the analysis is to evaluate the intrinsic price
of anarchy of such a distributed management, even when the
nodes are in the best possible conditions, i.e., the information is
converging, free from errors and collisions, and fresher updates
always pre-empt older ones.

Index Terms—Age of Information; Queueing theory; Game
theory; Remote sensing; Wireless sensor networks.

I. INTRODUCTION

Age of information (Aol) [1] is a metric quantifying the
timeliness of status updates reported by a remote information
source to a receiver. It has gained popularity in the last decade
especially for real time applications, which heavily relies on
system controllers and actuators having up-to-date ambient
information [2]-[4].

Aol is defined as the time elapsed since the generation of the
most recent update, i.e., if the information source(s) send up-
dates to a collecting point at times 7y, T, ..., Ty, . . . , and these
are received at respective time instants rq, ro, . . ., then
the value §(t) of Aol at time ¢ is

3Ty e

ot)y=t—mj where: j = argmax{r; <t}. (1)

Synthetic quantities derived from 4(t), such as the average
Aol A = E[4(t)], offer interesting assessments of the system
performance. Sometimes, analogous values such as the Peak
Aol [5] and/or the Aol violation probability [6] are used to this
end as well. The purpose is to give an analytical description
of the information freshness, which is ultimately impacting
the system reactiveness. In many scenarios, like vehicular
networks [7], industrial Internet of things [8], and every time
a timely alerting is required, such as surveillance or medical
monitoring [9], this approach turns out to be actually more
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fitting than using classic indicators such as average throughput
or delay.

The literature offers evaluations of Aol-related quantities
through queueing theory, framing different systems as queues
with various disciplines and pre-emption rules [10]-[12]. The
analytical character of Aol formalization through queueing
theory makes it also particularly prone to an investigation
via game theory [13]-[15]. However, as argued later, these
approaches consider a game played by multiple agents, each
interested in their own individual Aol value. Naturally, this
leads to a non-cooperative game theoretic scenario with
constrained resources, which can be further exacerbated by
collisions [16] or, even in the absence of them, by buffer
congestions [17]-[19]. In other words, this is a typical tragedy
of the commons [20], where players are indirectly interested
in trumping over others to push their own content.

Conversely, this paper considers a converging source sce-
nario, where multiple nodes monitor and transmit equivalent
content, and there is a single Aol value that all nodes are
able to reset upon transmissions, even though they occur an
individual cost when doing so [21]. The goal is to illustrate the
intrinsic price of anarchy (PoA) of these distributed operations.
To this end, the focus is on the most optimistic case of an
M/M/1#* queue according to [22], without collisions among
nodes or queueing delays, and the only inefficiency is the
lack of coordination of the nodes. That is, they all want to
achieve a low value of the common Aol, but at the same time
minimizing their individual costs [23].

It is shown that there is indeed a PoA inherent to dis-
tributed transmission by multiple sources, which grows with
the number of nodes and the transmission costs, reaching an
asymptotic value of 1 + /¢, where ¢ is the shadow price
(i.e., the unit cost) of transmission, for a very large number
of sources. This is still a consequence of the tragedy of the
commons principle, and implies that real cooperation can be
achieved only through proper incentives offered to the sensing
sources for their service [24].

Beyond the analytical formalization, this result has also deep
implications in practical scenarios like mobile crowdsensing
or participatory federated learning [25], where the distributed
contribution to the global system knowledge by individual
nodes is actually not guaranteed and may require solutions to
ensure fairness [26]. Indeed, if nodes are driven by individual



objectives, status reporting may be stale due to the intrinsic
inefficiency of a distributed management [27], as confirmed
by the analysis presented here.

The rest of this paper is organized as follows. Section II
reviews the related literature. The system model is presented
in Section III, also formalizing the resulting N-player com-
plete information game, finding its Nash equilibrium, and the
PoA. Numerical results are shown in Section IV. Section V
concludes the paper.

II. RELATED WORK

A multi-variable objective function, whose variables can be
assumed to be controlled by different agents, calls for an
immediate application of game theory [16]. As such, even
seminal studies on multi-source Aol [13] already propose the
evaluation of a Nash equilibrium (NE), also arguing about its
Pareto inefficiency. That is, competition among greedy players
naturally lead to a worse outcome than an optimal allocation
requiring coordination. However, the underlying scenario in
these cases is that of a competition for accessing a shared
resources by multiple sources [20], each of them interested in
minimizing the age of their information.

For example, [15] considers multiple sources as distributed
players driven by the minimization of their Aol value, but they
all pursue different individual objectives. This falls within the
game theoretic narrative that competition in a scenario without
any explicit trust (either coordination or a cartel, in networking
or economic terms, respectively) leads to a Pareto-inefficient
NE. In this same spirit, [17] proposes a game theoretic rate
control mechanism that limits the competition to improve
the efficiency of a distributed solution, and [7] accounts for
multiple Aol values of individual nodes when optimizing UAV-
aided vehicular edge computing, using game theory to shape
decision-making for efficient data freshness.

Virtually, all applications of game theory to Aol in the
literature explore this scenario when dealing with multiple
sources, i.e., each source is a player with individual Aol
minimization as the objective. Sometimes, advanced medium
access techniques are considered, to see whether collisions can
be resolved [16], or at least partially mitigated by improve-
ments over the collision resolution [4] or leveraging correlation
in the contents of multiple sources [18].

Simply put, all these papers can be seen as revisiting the
game theoretic framework of a tragedy of the commons, which
has been successfully applied to more standard metrics such as
throughput in [27]-[29], but using Aol as the main objective
instead. The comparative game theoretic analysis made in [3],
with the explicit objective of matching these two possible
objectives of throughput and Aol as network utilities, can be
seen as a confirmation of this analogy.

In a number of other papers, game theoretic approaches are
considered in an adversarial setup instead, that is, an Aol-
related cost may be present, but some nodes try to minimize
this function, while others are attackers trying to maximize it
[30]-[32]. While these papers also use game theory to derive
strategically optimal choices, the focus is clearly different and

mostly relates to the importance of increasing the costs for the
attacker; instead, as shown later, if the objective is to improve
the efficiency of a distributed management, the cost is to be
kept low.

The present paper takes instead a different approach of
focusing on a network where multiple flows have a single
converging Aol, which are all able to reset upon transmission
of an update. However, they all face individual costs when
doing so, therefore their individual preference is that some
other source does it. This is also reminiscent, but for entirely
different reasons, of game theoretic analysis of distributed
throughput maximization of converging flows where nodes
are subject to individual costs. However, as argued in [14],
the non-additive character of Aol makes it more interesting to
evaluate the resulting distributed management. In other words,
if the objective of throughput maximization is distributed
over multiple sources, each paying their own costs, one can
still expect an individual contribution that benefits the overall
network utility. Conversely, if the objective is to achieve
minimal Aol, all nodes are fully interchangeable and therefore
prefer to leave the burden to others. The characterization can
be therefore expected to be entirely different.

In this sense, it is worth mentioning that a similar analysis
was proposed in [21], where a scenario with two equivalent
sources with converging Aol is considered. However, that
paper has remarkable differences over the analysis presented
here. First of all, the number of sources is just limited to
two, whereas in this paper an arbitrary number N of sources
is considered. Moreover, the game that the sources play in
[21] concerns a slotted time, where the per-slot probability
of transmission gives the strategic choice of the agents, and
instantaneous processing time. The analysis presented here
considers instead a more general approach through queueing
theory [10], [11], [22], which allows to account for both the
generation rate of the sources and the processing time at the
receiver. In particular, the best scenario is considered where
newer content is always pre-emptive, but the analysis can
be promptly extended to other queueing formulations with
analogous results.

III. SYSTEM MODEL

Consider a network of N nodes, transmitting to a receiver
over a collision-free channel, following a memoryless process
with intensity A. Symmetry reasons impose to look for a
solution where all nodes use the same transmission rate A,
which would be the consequence of a distributed decision
process. It is worth mentioning that both the optimal solution
and the NE will follow this criterion, even though they obtain
it through different processes. That is, the optimal choice of A
can be seen as a centralized imposition made by the network,
following an obvious symmetry requirements of the nodes.
Conversely, the distributed assignment obtained at the NE
computes A as the best response to the other sources when
they also choose ), i.e., a fixed point or, as is often formalized
in game theory, a symmetric allocation without any desire for
unilateral deviation by any of the agents [16].



It is further assumed that transmissions incur a cost [14],
[28]. This can be motivated by several considerations, the first
but not exclusive one being energy reasons [19]. Yet, also from
a logical perspective, a scenario without any transmission cost
by the sources would simply imply that they can transmit
with arbitrarily high rate with no consequence [29]. Thus,
we assume that transmitters pay a cost proportional to their
rate, given by c), where c is a parameter, representing the
transmission price, i.e., the cost of transmitting with unit rate
A=1.

The objective is to minimize the total system cost, defined
as the sum of the average Aol at the receiver’s side and
the transmission cost. Due to all nodes being symmetrical,
it is actually equivalent to minimize the total cost of one
single node, or that of the entire network, with a factor NV
(which is a constant) being the only difference between the
two computations.

Statistical moments of Aol can be found in several queue-
ing systems, and in particular the present analysis considers
the M/M/1* system as defined in [22], i.e., a single-server
FCFS queue with memoryless arrivals, memoryless processing
and pre-emption of newer updates. This is actually the best
possible scenario that avoids impairments due to buffering,
packet collisions, traffic split at multiple servers and so on.
However, the choice is not restrictive as the same analysis
can be applied to multiple queueing systems that received an
analytical characterization in the literature [10].

Without loss of generality, we take the service rate of the
queue as equal to 1. This means that for stability reasons we
require A < 1/N, since the total rate generated by the sources,
denoted by A is equal to INA thanks to the superposition
property of Poisson processes. This also implies that the
transmission price ¢ is the maximum value that is paid as
transmission cost, since the entire network pays cA. Moreover,
for the FCFS M/M/1* queueing system, the average Aol can
be written as [22] )

A= A +1 2)
and therefore the individual objective of each node can be
taken as the minimization of a cost K equal to

K:Aﬁ—c)\:%—f—l—kc)\. 3)

The total network utility can be taken as Ky, = NK. This
is just written for consistency in the notation, but symmetry
implies that it is equivalent to minimize K, or K.

Under this formalization, it is immediate to compute the
social optimum, i.e., the transmission rate A\* that minimizes

1
Koa=N|—<+1+c\]). 4
tot <N>\ +1l+4+c > “4)
Differentiating with respect to A and setting to zero, we get
1
e Te=0 )

thus obtaining A\ = 1/v/Nc¢. However, this holds true if A\* is
an inner point of [0,1/N], otherwise Ko, always decreases

with A and the minimum is attained at the extreme. Thus,
A* = max(N, M)_l.

Finding the NE would preliminary verify that the equilib-
rium point exists and is unique. This is however immediately
guaranteed by the structure of the cost function K, which
is convex (i.e., concave upwards). Incidentally, this property
holds for virtually all Aol expressions of different queueing
systems as shown in [22], and is therefore a more general
property. However, it is also possible to derive its expression
explicitly, although this requires a slightly different reasoning
than the direct optimization of (5), assuming instead that each
node chooses A to minimize its own cost, given that the other
nodes play Ag. Only afterwards, due to the aforementioned
symmetry conditions, it is imposed that A = \y. As such, the
total arrival rate A in (3) is rewritten, for the time being, as
A=(N—-1DX + A\

Taking the derivative of the individual cost and setting it to
7ero gives

1
_ =0. 6
(N = Dho+ A7 ¢ ©
Substituting A = A\ and labelling this value as AN gives
1
———=m3 tc=0, 7

(NANE)2

which either gives an admissible solution as A\N¥ = 1/N,/c,
or like before it implies that all sources select the upper
extreme A\ = 1/N. Thus, A\NE = [N max(1, /c)]~*

It is evident that these two expressions of ANF and \* do
not coincide, and in particular the descent of the generation
rate with the number of nodes N is much higher at the NE
than in an optimal management, being inversely proportional
to N and only VN, respectively; in other words, selfish nodes
are “lazier” at the NE and tend to send updates more rarely
than what is optimal to do.

To better highlight this trend, one can also consider the Price
of Anarchy (PoA), defined as:

PoA = ¢ 8)

where “NE” and “*” denote the Nash equilibrium and the
optimum. Also, since /N simplifies out, we can also consider
the ratio in individual terms (i.e., KN°/K*), and the terms
can be obtained by substituting the values for \NE and \*,
respectively, into (3). Thus,

Ve

FONE \£+61+W forc>N7 ©
24+ v otherwise
2 £ +1 fore>1
K*={"V z\g (10)
2+ N otherwise

This means that the NE is optimal only for low values of c.
Also, for large N

PoA = \/c+1, (1)
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Fig. 1. Cost K vs transmission price c.

which indicates that selfish behavior leads to inefficiencies
that grow with c. The usually adopted interpretation of the
PoA, which must be greater than or equal to 1, is indeed
that the excess value over a unit ratio is the extra cost that is
suffered due to lack of coordination. That is, a PoA of, e.g.,
1.25 signifies a 25% surplus cost [33]; thus, the result of (11)
means that an extra cost equal to /c is caused by the absence
of centralized control when the number of nodes is very large.

More precisely, there is an increasing trend for the PoA as
a function of ¢ and also when changing the number of sources
N, albeit in this latter case the value asymptotically saturates.
For growing c instead, the PoA grows unbounded, even though
sub-linearly.

IV. NUMERICAL RESULTS

This section shows some evaluations of the formulas derived
in the previous section, most notably how the transmission
price ¢ and the number of sources /N impact the system
management either at the optimal point or the NE. It is worth
noting that the results shown correspond to intrinsic trends in
the management of real time traffic, due to the characterization
through the simplest possible queueing scenarios, but most
considerations still applies, at least qualitatively, if different
formulas for Aol are used (see [22] for a quick compendium)
following from differences in the queueing systems considered
and/or preemption rules.

Fig. 1 displays the individual cost versus the transmission
price ¢, for different values of the number N of sources. It
is shown that the cost suffered by nodes increases with c,
but the growth is less than linear. This is a consequence of
the cost being a combination between the transmission cost,
which is linear in ¢, and the network’s Aol. Thus, when ¢
increases, the nodes trade the frequency of their more costly
transmissions with the increased Aol due to more sporadic
updates. Moreover, when N increases, the individual costs
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become lower as the nodes can leverage their redundancy and
transmit less often. While this decrease is considerable at the
optimum, it is less so at the NE, due to the aforementioned
principle that nodes tend to transmit considerably less often,
thus a larger number of users causes higher inefficiency of Aol
(i.e., the average Aol decreases but less than what it could).

This trend is analogously shown by Fig. 2, where N is
instead the independent variable. A large N is virtually able to
obtain an optimal network management with low cost, where
all values of c converge towards the minimum value of 1,
but this does not hold at the NE, whose cost descent in N is
much slower. This seriously questions the ability of distributed
network management without any form of coordination to
obtain low Aol values.

A synthetic representation is captured by the PoA evaluation
versus c¢ displayed in Fig. 3. The asymptotic trend of the
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Fig. 4. Aol ratio (NE vs optimum) vs transmission price c.

PoA growing like 1 + /c is only visible when the number
of sources is high. For low values of N, instead, the PoA is
limited. However, this does not denote an efficient distributed
management, but rather it is just telling that both the optimum
and NE allocation have high costs, since there are not enough
sources to improve the Aol value. Either way, this result
implies that an efficient distributed management for real time
applications is difficult and requires some form of limited
coordination to avoid the Aol to increase [5], [17].

Finally, Fig. 4 shows the ratio of just the Aol values between
the minimum-cost choice and the NE. In other words, the
curves displayed represent the ratio between the values of
A in (2) when X is assigned to ANF and \*, respectively.
Notably, the average Aol itself is never optimized by either of
the approaches (the goal function being the cost K).

For low transmission price values, i.e., ¢ < 1, the nodes
adopt an optimal transmission pattern; as a result, both PoA
and Aol ratio are equal to 1. This outcome is kinda expected
and just implies that, when the cost for transmission is low
enough, the nodes seek to minimize the common Aol value,
which is their shared objective, and this holds true both in the
optimal management and at the NE. Within 1 < ¢ < N, the
NE changes but the optimal allocation does not, which causes
the Aol ratio to grow very fast when c is increasing. This
happens because the NV sources at the NE choose a generation
rate lower than 1/N, which would still be the optimal choice.

When ¢ > N instead, also the optimal rate A\* decreases
and becomes less than 1/N, so that the curves detach from
the common trend to achieve a milder increase. Since for high
¢ values we get \* = 1/(y/cN) and A\NF = 1/(v/¢N), and
being A =1+ 1/(N)), we get an asymptotic increase with
a slope equal to v/N. At any rate, this confirms that the per-
formance of the distributed management is even worse when
looking at the Aol value alone, and this further degradation can
be once again attributed to the selfish behavior of the nodes,

representing an intrinsic loss of efficiency just due to the lack
of coordination and the individual costs, even though the Aol
value is common to all nodes [21], [28].

V. CONCLUSIONS

A game theoretic analysis of Aol in systems with multiple
converging sources with individual transmission costs was
presented. A distributed choice of the transmission rates,
corresponding to a NE of the game, was compared with the
optimal (centralized) management, computing the resulting
PoA, which is shown to be increasing in the unit price of the
transmissions. This also happens when the number of sources
increases, albeit to a limited extent, due to the lack of voluntary
participation of the nodes if they incur an individual cost [26].

As a takeaway of the analysis, it is shown that an entirely
distributed network management is therefore inefficient and
some form of cooperation among the nodes must be introduced
to take full advantage of the diversity of multiple information
sources [20], [24].

Even though the analysis considers a specific case of an
FCFS M/M/1* queue, meant as the best case of queueing
system without any collision among the sources and full
pre-emption by more recent data, similar considerations are
expected to hold for other scenarios, in light of the similar
convexity of the Aol curves. As such, the conclusions still
apply from the general perspective of achieving information
freshness in distributed network scenarios [15].
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