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Abstract—For time-critical applications, the freshness of infor-
mation often goes hand in hand with confidentiality to ensure
the integrity of sensitive data. Quantum communications are
expected to provide secure exchanges of information thanks to
the principles of quantum mechanics, such as entanglement, to
protect against data breaches. In this paper, we analyze an
information update system, where communication between a
sender and receiver occurs through a quantum channel, and we
consider the presence of two malicious eavesdroppers. Quantum
communications already allow consent to identify compromised
data, but we show that the presence of multiple eavesdroppers
is even more thwarted by a property of quantum channels
known as monogamy of entanglement, which, in addition to
revealing whether data have been intercepted, prevents multiple
eavesdroppers from accessing the same content. Through a game-
theoretic analysis, we compute the Nash equilibria of multiple
eavesdroppers trying to minimize the age of information of
the intercepted data, and we show how their inherent anarchy
ensures a higher level of protection for the communication.

Index Terms—Age of information; Quantum communications;
Entanglement; Game theory.

I. INTRODUCTION

Real-time status updates are needed for several applications
in transportation and logistics, healthcare, finance and trading,
emergency services, smart home devices. For example, real-
time GPS updates allow companies to track shipments and op-
timize routes for more cost-effective and time-efficient delivery
[1], data transfer of medical parameters implies important
decision-making [2], and updates on stock prices and market
data allow traders and companies to execute informed and
immediate financial strategies [3].

An extremely critical aspect of real-time status updates is
data freshness. Delay, throughput, queue length, and several
other performance metrics do not fully capture the freshness
or timeliness of the data to be transmitted [4]. The concept of
Age of Information (Aol) is introduced to focus on this aspect.
In particular, consider a system where status updates are sent
from a source to a destination, taking a random time in the
overall processing. Aol at time ¢ is defined at the destination’s
side as [5]:

o(t)y=t—o(t) (1
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where o(t) represents the instant when the last data item
successfully processed before time ¢ was originally generated
at the destination. We assume that all status updates carry fresh
information and that the propagation time is instantaneous,
setting the delay to zero.

Security is an essential part of communication networks,
maintaining the confidentiality of the information transferred
between a transmitter and a receiver, or in general of all
involved parties. Although Aol does not directly affect the
security of transferred information, it has indirect impacts on
it. High Aol could potentially lead to poor decision-making
and open to security threats. In addition, an eavesdropper in the
communication network can anticipate the decision-making
of the receiver. Again, this would not affect the security in
the same sense as decryption and encryption would; however,
it would affect the operation of the system [6]-[9]. In the
presence of an eavesdropper, a transmitter can change the
actions to make sure that the Aol at the receiver’s side is as
minimal as possible. This leads us to consider a game theoretic
approach to such situations where one or more eavesdroppers
are present in the communication network [10]. We use game
theory to analyze the interaction between two eavesdroppers,
where we also consider monogamy of entanglement as prevent-
ing both eavesdroppers from intercepting the communication
at the same time. Unlike classical Aol-eavesdropping models,
our quantum approach leverages monogamy of entanglement
to prevent simultaneous interception, introducing inherent
security constraints absent in classical systems. We further
compute the resulting Nash equilibria (NEs) of this allocation,
discussing both how many they are, how efficient they are, and
to which parameters they depend upon. We discover a problem
that in general has 3 NE (not all of them being close to Pareto
efficiency), but sometimes only one. The latter case is better
controllable to avoid information leakages.

The remainder of this paper is organized as follows. Section
IT provides the background. Section III describes the system
and the proposed analysis, followed by numerical results in
Section IV. Finally, Section V concludes the paper.

OMonogamy of entanglement means that if two quantum systems are
maximally entangled, they cannot be similarly entangled with a third. This
restricts entanglement sharing and underpins the security of protocols like
BB84. A formal example is the Coffman-Kundu-Wootters bound [11], which
limits how bipartite entanglement can be distributed across three qubits.



II. BACKGROUND

We focus on a First Come First Served (FCFS) queue
with memoryless arrivals and services. This means that status
updates from a source are generated so that the interarrival
times X; are independent and identically distributed, following
an exponential pdf with parameter A, i.e., they all have the
same average E[X]| = 1/A. Similarly, they get service times
as independent identically distributed exponential random vari-
ables with E[Y] = 1/u. The system time is also exponentially
distributed with parameter p — A, as long as A < p.

We will evaluate the average Age of Information (Aol),
denoted as A = E[dt], where (t) represents the Aol, as
defined in (1). In the context of the First-Come-First-Served
(FCFS) system, it can be shown [5] that:

E[X?
A=) (E[XT] + [2]> . 2)
From (2), we get the average Aol of an M/M/1 system as:
1 1 2
A:(1++p>, 3)
% p 1—p

where load factor p = A/ is less than or equal to 1.

This model allows for adjustments to the arrival rate A and
the service rate p to optimize the system. Note that values
close to 0 minimize packet delays, while values close to 1
maximize throughput. Since the service rate 4 in (3) is just a
scaling factor, we can assume g = 1, without loss of generality
[12]. Then, (3) can be rewritten as:

1 A2
A*1+A+1—A' “4)

The introduction of an eavesdropper into a communication
network can lead to significant security concerns. If the infor-
mation that has been intercepted by an eavesdropper can also
reach the receiver, then there would be no need for additional
strategies for the transmission of data since we consider the
case where the goal of the transmitter is only to make sure that
Aol at the receiver’s side is minimal. Therefore, the transmitter
can try to send status updates as quickly or timely as possible
to ensure the freshness of the information at the receiver’s side.
However, situations including an eavesdropper in a communi-
cation network are usually modeled as a partially degraded
wiretap channel. In such models, intercepted information is
lost and therefore the existence of an eavesdropper directly
affects the Aol at the receiver and leads to changes in strategies
for the transmission of the data [6].

A way to improve the confidentiality of the information
exchange would be to resort to quantum communications
[13], e.g., leveraging entanglement. This can be described as
a phenomenon of quantum mechanics, where the states of
several particles become intertwined. In this case, the state of
a single particle cannot be described independently of others,
even when the particles are separated by large distances.

Quantum entanglement significantly affects computing and
communication. Since the entangled particles are intertwined,

this connection forms the basis for quantum teleportation and
quantum key distribution. The main idea is based on the
superposition principle of quantum mechanics, which allows
a quantum system to be in multiple quantum states at the
same time, however, until it has been measured. Entangled
particles can be represented by a combined quantum state so
that the measurement of one particle affects the state of the
other particle at the same time.

Entanglement has various practical applications [14]-[16];
in particular, it can obtain communication protocols that are
highly secure and, in fact, theoretically unbreakable. Another
core principle of quantum mechanics is monogamy of entan-
glement, which limits the number of systems to which a given
quantum system can be entangled to [17]. This has a direct
impact on quantum communication security, especially when
multiple eavesdroppers are present in a system. In a secure
quantum communication system, two particles cannot inde-
pendently entangle with a third party, as they are maximally
entangled with each other.

Even though the monogamy of entanglement can be mathe-
matically described by using specific quantum values, we are
here only interested in its impact on Aol. In general, quan-
tum information can be disturbed by environmental factors,
potentially leading to loss of coherence and information.

However, a challenge is the presence of eavesdroppers,
which can affect Aol [12]. An eavesdropper attempting to
intercept the quantum information can be detected by the
legitimate parties, providing an indication of a potential se-
curity breach. The interplay between ensuring the freshness
of information (decreasing Aol) and maintaining security and
integrity of the channel is critical for quantum communication.

Typically, the impact of the monogamy of entanglement is
studied through game theory, a branch of mathematics that
investigates situations in which multiple parties involved seek
to optimize their own gains, and the choices made by each
player influence the decisions and gains of the others [18].

In game theory, multiple players seek to maximize their
own payoff. This makes it possible to model the competition
of different parties to achieve a selfish goal, which is especially
interesting to reflect strategic planning [12]. Game theory
has been widely used over the past few years to prove the
results in intrusion detection, the security of self-organizing
networks, and the physical layer and media access control
(MAC) [19], [20]. Moreover, a similar analysis with two
senders is considered in [21], as opposed to the case of two
eavesdroppers of the present paper. However, that paper does
not exploit any aspect of quantum communications, different
from what we do here. As we will show, the monogamy of
entanglement offers further protection against wiretapping.

Finally, we remark that our analysis assumes ideal quantum
communication, practical implementations must contend with
physical limitations such as channel noise, quantum decoher-
ence, and hardware imperfections, potentially impacting the
Aol and security guarantees. Still, our analysis presents the
first foundation result in this sense.



III. SYSTEM MODEL

We consider a transmitter sending periodic information to
a legitimate receiver. We denote the transmitter as Alice and
the receiver as Bob, and model this scenario using an FCFS
M/M/1 queue [7], making the assumption that the receiver is
passive. Transmissions occur at rate A and are served with rate
p=1.

We introduce two eavesdroppers, referred to as Eve and
Frank, whose objective is to intercept the information sent
from Alice to Bob. However, Eve and Frank act as independent
players and do not cooperate in their attempts. The behavior
of the eavesdroppers is modeled as follows: we assume that
each can randomly intercept every package sent by Alice.
We model this as an independently identically distributed
Bernoulli process with parameter 3; € [0, 1]. Specifically,
B1, P2 € [0,1] represent the parameters associated with Eve
and Frank, respectively [6].

We consider Bob to be a passive player, while Alice, Eve,
and Frank are active. Therefore, there are three M/M/1 queues:
one at Bob’s end, one at Eve’s end, and one at Frank’s end.
Due to the nature of the quantum channel, interception by
either Eve or Frank prevents successful reception by Bob.
If no interception occurs, the information reaches Bob with
probability (1 — 51)(1 — B2). If Eve attempts to intercept
the information while Frank does not, the information is
successfully intercepted by Eve with probability 5;(1 — 52).
Similarly, if Frank attempts to intercept the information while
Eve does not, the information is successfully intercepted by
Frank with probability S2(1 — S1).

A different scenario arises when both Eve and Frank attempt
to intercept the same information. Due to the monogamy of
entanglement, we focus on two main and highly informative
scenarios, as others can be derived from those presented here.

In the simpler case, we assume that when both Eve and
Frank attempt to intercept the same information, the informa-
tion is lost. The flow of updates generated by Alice splits into
three memoryless flows with rates Ag, Ag, and Ap, with

A =X1-p1)(1-p2) (5)
Mg =ABi(1 - B2) (6)
Ap = AB2(1—p1). (7

Alternatively, we can consider a scenario, in which both
Eve and Frank attempt to intercept the same information,
resulting in a probability p; € [0,1] that Eve intercepts the
information and a complementary probability po = 1 —p; that
Frank intercepts the information. Due to the symmetry of the
eavesdroppers [10], it is reasonable to assume p; = p2 = %

Now, the flow of updates generated by Alice again splits into
three memoryless flows with rates Ag, Ag, and Ap, where

A = A1 —B1)(1 - B2) (3

aw =81 5a) + 222 ©
AF:A[ﬂz(l—ﬁl)ﬁfﬂ (10)

Upon inspecting the equations for Ap, Ag, and Ap, it
becomes evident that the scenario in which neither Eve nor
Frank can retrieve the information is a special case of the
latter, which occurs when we set both probabilities p; and po
equal to 0. Consequently, our focus will be on the broader
scenario as it provides more informative insights.

Before we delve into the case where we have two eaves-
droppers, we note down below equations (11) and (12), for the
average age of information values at Bob’s and Eve’s sides,
respectively [5]. We observe that, in fact, (11) is the same
equation as (4) where A is replaced by (1 — S)A. This is
expected since (1 — $)A represents the probability that Eve
does not intercept and Bob receives the information.

L. —B)°\2
T—Ar " 1-(1-H)A
1 B2\2
Ag(A =14+ —

Once we introduce a second eavesdropper, Frank, we have to
adjust the average Aol values for each side and define the
average Aol at Frank’s side, which is similar to the value at
Eve’s side. To do so, we replace A in (4) with (8) for Bob’s
side, with (9) for Eve’s side, and with (10) for Frank’s side.
We get the following average Aol values:

1

Ap(AB) =1+ (11)
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B(\, B1, B2) + TEEA ) (13)
L (=5)° (15N
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By simplifying (14), we get
\2[B,_B1B2]?
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Instead, Ap follows the same expression as Ap with 8; and
B2 swapped.

Now, since $; and 32 must be equal for symmetry at the
NE [10], we take 51 = B2 = B and further simplify (13) and
(15) as follows.

. 1 (1-5)"»
As(nB) =1+ TR (16)
. . 2 X(B)e-B)
Ae(F) = Ar(B) =4 e o)

To avoid an unrealistic effect where both Alice and two
eavesdroppers increase their activity as much as they like,
we assume that all players are subject to a cost directly
proportional to their action value [6]. Thus, the players’



utilities take the following forms in (17), (18) and (19), where
c is the cost assigned to Alice, k; to Eve and k5 to Frank.

ua(X B Bo) = [Ap(N B, Ba)] —eh (17
up (X, B, B2) = [AE()\ﬁhﬁz)rl — ki1 (18)
up (X, B1,B2) = [Ar ()\,51752)]71 — ko (19)

Once again, since 8; = 2 = /3 due to the symmetry of
the NE, we can simplify the utility functions. Additionally,
we assume that costs are also equal for Eve and Frank for the
same reason. Thus, we take k1 = ko = k.

ua(\B) = [As(0B)] T —ex (20)
ug (N B) = [AE()\,B)}_l —kf 1)
up(\B) = [Ap(X\B)] T — kB (22)

Note that, up(\,B) = up(),B) since Ap(\,B) =
AF()\7B). Now, we look at the NEs of the game. For this,
we write down the best response (BR) functions for each side.
In (23) and (24), \*(3) represents the best response of Alice
to the choices of Eve and Frank, while 3* (X) represents the
best responses of Eve and Frank to the choice of Alice.

A" (B) = argmax U ()\,3) (23)
A€[0,00)
B* ()\) = argmax ug ()\,B) = argmax upg ()\,B). (24)
Beo,1] Befo,1]

Finally, we analyze the price of anarchy (PoA) within our
model. The sum of utilities of Alice, Eve, and Frank is taken
as a criterion for social welfare [6]. Then, we define the price
of anarchy (PoA) as below in (25), where A, 5,, represents
the worst possible NE, while )\, BO is the social optimum
[1]. The social optimum can be regarded as the outcome with
maximum welfare. It has been shown in [6] that a first NE
corresponds to achieving the social optimum, and the PoA is
1 if the system admits only one NE. In general,

ua (o, Bo) +ur(Xo, Bo) + ur(Xo, Bo)
uA ()\UH Bw) +ug (/\wa ﬁw) +up (/\wa Bw) '
I'V. NUMERICAL RESULTS

PoA =

(25)

We show numerical evaluations based on the theoretical
computations of the previous section. Fig. 1 illustrates the
best responses of Alice and the two eavesdroppers for varying
values of \ and 3, when costs ¢ and k are equal to 0. We
obtain only one NE at the intersection of the best responses.
If we consider the best response for Alice, it makes sense to
increase the value of \ as B increases, since there is no cost
for either side. However, ~this increase stops, and the value
becomes stationary after 8 increases beyond a certain limit.
The reason is that Alice does not want status updates to be lost
due to losing the entanglement on the quantum channel, which
would directly impact the Aol on Bob’s side. On the other
hand, if we consider the best response curve for eavesdroppers,
B can be increased as much as the eavesdroppers would like
without any consequence.
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Fig. 1. Best response curves of Alice and two eavesdroppers varying under
different 8 and A values, where costs ¢ and k are equal to 0.

c=k=0.02
2
<1 -
\
;
o -
0 05 1 -
3 3 3
c=k=0.08 c=Fk=0.10 c=Fk=0.12
2 2 2
<1 = <1 <1
Ay 1 N
U
ol o= — ob———
0 05 1 0 0.5 1 0 05 1
j 3 j
c=k=0.14 c=Fk=0.16 c=Fk=0.18
2 - 2 2 .
Ay AY N
“ N .
=<1 AN =<1 Ny <1 \
1]
0 0t ol—
0 0.5 1 0 0.5 1 0 0.5 1

] ] ]
Fig. 2. Best responses of Alice and two eavesdroppers under different 3 and
A values, where costs ¢ and k values are different for each subgraph.

Fig. 2 depicts 9 graphs similar to Fig. 1, with different ¢
and k values. The case ¢ = I;:~: 0 provides one NE, whereas
the cases where 0.01 < ¢ = Zc < 0.13 have three. Moreover,
starting from the case ¢ = k = 0.14 and onward, we still
obtain one NE. In Fig. 2, we illustrate different cases of ¢ and
k spanning from 0.02 to 0.18. In the following graphs, we
will see that the plots show up to three NEs.

It is interesting to examine the behavior of Aol as a function
of unit prices ¢ and k. Figs. 3-5 illustrate this behavior at
the first, second, and third NE, respectively. Fig. 3 shows
that while the unit price k increases, the average Aol of
the eavesdroppers in the first NE increases. This is expected
since a higher cost would lead to lower activity by the
eavesdroppers, consequently increasing their Aol. On the other
hand, the average Aol of the transmitter decreases while the
unit price k increases. Yet, since increasing unit price k leads
to an increase in the average Aol of eavesdroppers, it also leads
to increased activity on the transmitter’s side, which reduces
the Aol on Bob’s side.

We observe a slightly different behavior in Fig. 4, which
shows the second NE. Here, increasing the unit price k
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Fig. 4. Average Aol vs. unit price E, for ¢ = 0.04, ¢ = 0.08 and ¢ = 0.12
at second Nash equilibrium.

leads to an increase in Aol on Bob’s side. This is also true
for the eavesdroppers, albeit on a limited scale. The reason
lies in the inefficiency of the extra NEs beyond the first
[6], and is even more evident in Fig. 5 showing the third
NE. In this figure, Aol values decrease as the unit price k
increases. For further demonstration, consider Fig. 6, showing
the relationship between total utility and unit price kfore=0,
c = 0.04, ¢ = 0.08, and ¢ = 0.12 at the first, second, and
third NEs. Solid lines describe the relationship between the
total utility and the unit price of the eavesdroppers k at the
first NE, while dashed and dotted lines describe the second
and third equilibria, respectively. Thus, it is clear that the total
utility is always higher in the first NE compared to second and
third. Fig. 6 also shows that while the unit price k increases,
the total utility decreases.

Now, we show how the eavesdropping probability B and
the transmission rate A at the NEs change for different unit
prices. Figs. 7 and 8 show B and ), respectively, versus the
unit price k for ¢ = 0, c = 0.04, ¢c = 0.08, and ¢ = 0.12
at first, second, and third Nash equilibria. Both values of /3’
and X decrease as the unit price k increases. It is important to
note that almost everywhere in Fig. 7, § values are higher for
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increasing ¢ values. This means that eavesdroppers increase
their activity because they anticipate that the transmitter will
send data less frequently. On the other hand, in Fig. 8 it is
shown that higher ¢ values result in lower A values. This also
makes sense since the transmitter would decrease the rate of
action if the imposed cost increases.

Finally, we plot the PoA vs. unit price k for various values
of ¢, as shown in Fig. 9. The PoA computed in (25) quantifies
the inefficiency of a system as the ratio between utilities at
the worst possible NE and the social optimum. Here, it can be
seen that regardless of c, the PoA increases with the unit price
k. We conclude by stating that for relatively lower values of
¢ and k, PoA can be very high [6].

V. CONCLUSIONS

We considered a sender and a designated receiver commu-
nicating through a quantum channel and two eavesdroppers
trying to intercept the information and minimize the average
Aol of leaked data. We defined a static game of complete
information, deriving the average Aol for the involved parties.
We identified 3 different NEs for the values of cost ¢ and
eavesdropping rate B between 0.01 and 0.14, while there is
one NE in the other cases.
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This current research can be used as a basis for multiple de-
velopments in order to enhance our understanding of security
in quantum communication channels. For example, monogamy
of entanglement can be even more useful in the presence of
more than 2 eavesdroppers, prompting a side investigation
on whether multiple eavesdroppers adopt symmetric behavior
or not [22]. Other possible extensions include games where
the players have partial information on each other or the
channels modify their characteristics over time. In this sense,
future work may explore dynamic or incomplete information
settings, where the strategies evolve over time or players lack
full knowledge of others’ actions or utilities. Such extensions
would require the use of Bayesian games or reinforcement
learning [8], [23], further enhancing the applicability of this
model to more realistic scenarios.
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