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Abstract—Ensuring secure and efficient data transmission in
large-scale remote sensing is a critical challenge. We employ
game theory to model the strategic interaction between multiple
sensors, which independently optimize their data transmission,
and an attacker seeking to maximize disruption. Each agent
shapes its strategy through resource allocation constraints and
cost functions associated with transmission and attack efforts.
We seek to derive a Nash equilibrium that characterizes the
optimal strategies of both transmitters and attacker. By solving
Karush-Kuhn-Tucker (KKT) conditions, we obtain analytical
equilibrium solutions between transmission efficiency and attack
resilience. Our analysis highlights key trade-offs: increasing a
sensor transmission cost reduces its activity rate but makes it
a more attractive target for attacks, leading to a redistribution
of adversarial efforts. Conversely, higher attack costs discourage
malicious interference, prompting strategic adjustments in both
transmission and defense mechanisms. These findings provide in-
sights to enhance network resilience against strategic adversaries.

I. INTRODUCTION

Cyber-Physical Systems (CPS) depend heavily on efficient
data acquisition for effective monitoring, utilizing remote
sensing technologies like satellites, drones, and ground-based
sensors to gather large-scale data.[1], [2], [3]. However, the
vulnerability of these systems to cyber threats such as data
breaches and jamming necessitates robust security measures
to safeguard data integrity[4], [5].

A critical metric in CPS is the Age of Information (AoI) [6],
[7], [8], which quantifies the freshness of received updates.
Recognizing that AoI lacks consideration for data accuracy,
the Age of Incorrect Information (AoII)[9], [10] metric has
been introduced to evaluate both data freshness and accuracy.
High AoII levels can impair decision-making, underlining
the importance of minimizing AoII in maintaining system
reliability.

In complex CPS environments, data from multiple sources
is transmitted over shared channels, necessitating policies
that balance update frequencies to prevent network conges-
tion while ensuring data freshness[11]. Optimization of these
policies is essential for prioritizing critical information and
maximizing system efficiency[12].

Prior research has explored AoI in scenarios with multiple
competing sources. Initial studies [13] employed a game-
theoretic approach to model these interactions, identifying less

efficient Nash equilibriums compared to optimal strategies.
Subsequent research corrected earlier AoI formulations,[7],
[8], integrating more variables and extending the game-
theoretic framework to encompass strategic decisions by dif-
ferent agents.

While existing studies consider environments where multi-
ple sources aim to optimize their AoI by adjusting transmission
frequencies independently, they often focus on competitive
yet non-adversarial settings, emphasizing resource allocation
challenges among competing interests [14], [15]. Furthermore,
other research shifts focus to scenarios with redundant si-
multaneous updates from different sources providing identical
content, revealing systemic inefficiencies and management
complexities in distributed systems [16].

In recent research, innovative strategies to enhance CPS’
efficiency are explored. [17] introduces a collaborative frame-
work where nodes share correlated information to reduce
redundancy and enhance efficiency, deviating from traditional
game-theoretic approaches. Complementing this, [18] provides
a game-theoretic analysis on similar collaborative behaviors,
demonstrating significant reductions in inefficiencies typically
associated with decentralized systems. These studies under-
score the benefits of collaborative strategies in minimizing sys-
tem overhead and boosting performance in CPS environments.

In contrast to these approaches, our study specifically
addresses adversarial threats in CPS, particularly from enti-
ties like jammers. Previous research, such as [19], explored
power control games where an agent minimizes AoI while an
adversary aims to maximize it through targeted disruptions.
However, our work uniquely integrates the concept of AoII to
address both the timeliness and accuracy of information, which
is crucial for scenarios vulnerable to false data injection [10].

Moreover, while foundational game-theoretic studies such
as [20] and [21] focused on throughput objectives in network
communications, our research shifts the focus specifically
to the interplay between sensor updates and adversarial in-
terference. We utilize a game-theoretic framework to model
the strategic interactions between sensors and the adversary,
emphasizing the minimization of AoII through strategic trans-
mission adjustments. This approach diverges from traditional
metrics by incorporating transmission costs to curb excessive
actions, enabling the identification of optimal transmission



policies that mitigate adversarial impacts while maintaining
operational efficiency and security.

In this study, we investigate a scenario where multiple
sensors transmit updates to a remote station, contending with
interference from a malicious adversary that compromises
data by injecting false information[13], [22]. Sensors monitor
various aspects of a dynamic physical process, requiring
careful management of transmission rates to balance freshness
of information, channel capacity, and processing demands. Ad-
versarial interference exacerbates these challenges, escalating
the AoII and reducing system performance [19].

Our aim is to identify and protect the most vulnerable
sensors to optimize resource allocation and enhance system
robustness against attacks. We apply a game-theoretic frame-
work to model the strategic interactions between sensors and
the adversary, focusing on minimizing AoII through strategic
transmission adjustments while the adversary attempts to max-
imize it [15], [20]. A non-zero-sum static game with complete
information is formulated, including transmission costs to curb
excessive actions. This model enables the identification of
optimal transmission policies that mitigate adversarial impacts
while maintaining operational efficiency and security.

II. SYSTEM MODEL

In this section, we present the mathematical framework
describing the dynamics of the system under consideration.
The system’s behavior is governed by the following equations:{

ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t)),

(1)

where x(t) ∈ Rn is the state vector, and y(t) ∈ Rm is the
output vector at time t.

Sensor information is transmitted to a remote station, such
as a supervisory control and data acquisition (SCADA) system,
at discrete intervals. This discrete communication enables
efficient data handling and timely decision-making. Each sen-
sor i = 1, . . . ,m transmits its output yi(t) at specific time
instances tki , where k indexes the sequence of measurements
for that sensor. The transmission intervals are modeled as

tki = tk−1
i + 1/pi, k = 1, 2, . . .

where 1/pi denotes the average transmission interval for
sensor i. This ensures that the networked control system can
continuously update inputs u(t) based on the most recent
sensor measurements.

Each sensor measures a dynamic quantity that evolves
over time. If the information acquisition rate is insufficient,
the available readings may become outdated. We define di
as the drift rate of sensor i, indicating that, on average, a
reading becomes outdated after 1/di seconds. Additionally,
the presence of a malicious agent capable of compromising
the communication is considered through a false data injection
attack, with the attack rate denoted as qi. In such case, the rate
at which sensor i readings become outdated is di + qi.

To quantify the penalty of outdated or incorrect information
from a sensor, we employ AoII, defined for sensor i as

δi(t) = ℓi(t) · gi(yi(t), yi(tu)),

where ℓi(t) is the time elapsed since the last update, and
gi(yi(t), yi(tu)) is an information penalty function capturing
the discrepancy between the actual system output yi(t) and
the last update yi(tu), which may be malicious or legitimate.
The penalty function gi(·) equals 1 if the discrepancy exceeds
a predefined threshold, and 0 otherwise. On average, gi(·) = 1
after 1

di+qi
seconds.

We take the system AoII as its average across all sensors

δ(t) =
1

m

m∑
i=1

δi(t), (2)

which is zero only when all sensors have AoII equal to 0.
Monitoring the freshness of information from each sensor is
crucial for making optimal control decisions.

To model the aging and updating process, we employ a
two-state Markov chain model. Each sensor can be in one of
two states: Right (Ri) or Wrong (Wi). The Ri state indicates
that the information from sensor i is accurate, while the Wi

state reflects outdated or incorrect information due to drift or
malicious updates.

Ri Wi

di + qi

pi

Fig. 1: Continuous-time Markov process illustrating transitions
between states for sensor i.

The overall system state S(t) is a tuple

S(t) = (S1(t), S2(t), . . . , Sm(t)),

where Si(t) denotes the state of sensor i at time t. Our
objective is to minimize the time the system spends outside
the desirable state:

S(t) = (R1, R2, . . . , Rm) = R,

where R signifies that all sensors are in the correct and timely
state. Given the assumption that at any time only one sensor’s
state can change, the system state evolves as a continuous
time Markov-Chain with 2m states. The analysis begins by
computing the average return time to the state R.

Let π be the steady-state probability vector of the Markov
chain, which satisfies πQ = 0,

∑
i πi = 1, where Q is the

transition rate matrix of the Markov chain. The average return
time to state R, denoted as TR, is expressed as

TR =
1

πR
.

For our scenario, the continuous time Markov chain can
be easily shown to be irreducible and recurrent [23], which
guarantees that the return time is well-defined and finite.



During the return period TR, each sensor undergoes multiple
update cycles. The number of cycles for sensor i is

Ni =
TR

1/(di + qi) + 1/pi
. (3)

The expected AoII over TR, denoted as ∆TR
i = E[δi(t)], is

computed for each sensor as

∆TR
i = Ni

(
1

2p2i

)
, (4)

resulting in an overall average AoII ∆ = E[δ(t)] as

∆ =
1/m

∑m
i=1 ∆

TR
i

TR
=

m∑
i=1

1/(2p2i )

1/(di + qi) + 1/pi
. (5)

The legitimate agent T seeks to minimize both the AoII ∆
and its own transmission costs, while the malicious agent M
aims to maximize ∆ and simultaneously reduce its injection
costs. The utility functions for T and M considering a single
sensor i are defined as:

ui
T(pi, qi) = −∆TR

i −Cipi, ui
M(pi, qi) = ∆TR

i −Kiqi. (6)

Defining p = [p1, . . . , pm]T , q = [q1, . . . , qm]T , C =
[C1, . . . , Cm] and K = [K1, . . . ,Km], we can express the
overall utility functions for T and M as:

uT(p, q) =

m∑
i=1

− 1

m
∆TR

i − Cipi = −∆− Cp,

uM(p, q) =

m∑
i=1

1

m
∆TR

i −Kiqi = ∆−Kq.

(7)

In this context, pi (for i = 1, . . . ,m) represents the trans-
mission rate for each sensor, while qi denotes the injection rate
for each transmission channel. These rates chosen indepen-
dently by the legitimate transmitter and the malicious agent,
respectively, without knowledge of each other’s decisions, as
both aim to maximize their respective utility functions.

The agents’ choices are constrained by the following re-
source limitations:

m∑
i=1

pi ≤ Pmax,

m∑
i=1

qi ≤ Qmax, (8)

as well as non-negativity conditions:

pi ≥ 0, qi ≥ 0, ∀i = 1, . . . ,m. (9)

Here, Pmax and Qmax are the maximum allowable total
transmission and injection rates, respectively. These con-
straints ensure that the total rate does not exceeds the system’s
allowable capacity, reflecting practical limitations in resource
allocation.

Under nominal conditions, i.e., with no malicious entities
compromising the communications, the transmitter can freely
select the transmission rate pi to minimize AoII, subject to
a transmission cost Ci for each sensor. The sensors share a
common total transmission budget Pmax, meaning an increase

in pi for one sensor reduces the available budget for others.
Thus, the sensors compete for this limited resource, and the
allocation of pi must be optimized to minimize ∆.

In the absence of attackers and assuming Pmax is large
enough to render the budget constraint inactive, the problem
simplifies to finding the optimal pi for each sensor indepen-
dently. The optimal pi is found by solving the fourth-degree
polynomial equation obtained from ∂uT (p)/∂pi = 0, i.e.,

2Cip
4
i + 4Cidip

3
i + 2Cid

2
i p

2
i − 2dipi − d2i = 0. (10)

for all i. This equation has a single positive real root, which
represents the optimal transmission rate:

pi =
1

6

−3d+
√
3
√
s+

3
√

d2
i

3 + 1
3s+

2
√
3di

Ci
√
s

Ci

 (11)

where: s = d2i +
d4iCi

r
+

r

Ci
, and:

r =

(
27d2iCi

2
+ d6iC

3
i +

3

2

√
3
√
d4iC

2
i (27+ 4d4iC

2
i )

)1
3

.

In this case, each sensor’s transmission rate is computed
independently, providing a direct relationship between the cost
parameter Ci and di and the optimal allocation strategy.

Fig. 2: Utility function ui
T (p) for a single sensor.

To better clarify, we consider a scenario with three sensors
that must select their transmission rate pi under nominal
conditions. Specifically, we analyze the utility function ui

T(pi)
as a function of pi for each sensor i = 1, 2, 3, considering
distinct drift rates and transmission costs. The drift rates are
given by di = [0.1, 1.0, 100], and the transmission costs
are Ci = [1, 3, 5], respectively. Fig. 2 shows that when
the drift rate di is higher, the utility function becomes less
sensitive to changes in pi, with the curve flattening for larger
values of di. This behavior indicates that the sensor’s utility
stabilizes and becomes less dependent on power allocation as
di grows. Conversely, a higher transmission cost Ci results
in a downward shift of the utility curve, with higher Ci

values leading to lower utility. This highlights that higher



transmission costs reduce the overall utility of the sensor,
emphasizing the importance of optimizing power allocation
to maintain system performance.

Fig. 3: Optimal pi rates in the absence of attackers.

Fig. 3 demonstrates that as Pmax increases, the values of
pi stabilize. This behavior suggests that when Pmax is large
enough, the system effectively operates without a total power
constraint, resembling the water-filling problem described
in [24].

III. GAME-THEORETIC ANALYSIS

The interaction between the transmitter T and the adversary
M is formalized as a game G = (P,A,U), where P is the set
of players, A denotes their possible actions, and U corresponds
to their utility functions. In this context, the set of players P
consists of the transmitter T and the adversary M.

The set of actions A captures the strategic choices available
to each player. The transmitter T selects transmission rates
pi ≥ 0, for i = 1, . . . ,m, while the adversary M chooses
injection rates q ≥ 0, for the same set of sensors. Although
the game involves multiple sensors, we assume that a single
legitimate agent (the transmitter) coordinates the transmission
across all sensors, while a single malicious agent (the adver-
sary) organizes the distributed attack on these sensors.

The utility functions, U = {uT, uM}, define the payoffs
for both players. The transmitter’s utility uT(p, q) reflects its
aim to minimize the AoII while considering its transmission
costs. Conversely, the adversary’s utility uM(p, q) represents
its objective to maximize the AoII while minimizing its
injection costs.

This interaction is modeled as a static game, where both
players simultaneously select their strategies without knowl-
edge of the other’s decisions. The goal is to determine the Nash
Equilibrium (NE), a state where neither player can improve
their utility by unilaterally changing their strategy.

The utility functions for the transmitter T and the adversary
M are defined as follows:

argmax
p

uT(p, q) = −∆(p, q)− CT p

subject to:
m∑
i=1

pi ≤ Pmax, pi ≥ 0, i = 1, . . . ,m. (12)

argmax
q

uM(p, q) = ∆(p, q)−KT q

subject to:
m∑
i=1

qi ≤ Qmax, qi ≥ 0, i = 1, . . . ,m. (13)

Game theory usually aims at finding stable operating points
as Nash Equilibria (NEs). An NE represents a state where
no player can unilaterally improve their utility by altering
their strategy, given the strategies of the others. It can be
shown that this game admits a unique Nash equilibrium, which
follows directly from continuity and monotonicity of the utility
functions. A formal proof is omitted for the sake of brevity.

The associated Lagrangian functions for the transmitter and
the adversary are

LT (p, λT ) = ∆(p, q) + CT p− λT

(
Pmax −

m∑
i=1

pi

)
, (14)

LM (q, λM ) = ∆(p, q)−KT q + λM

(
Qmax −

m∑
i=1

qi

)
. (15)

To determine the NE, we compute the first-order optimality
conditions by taking the partial derivatives with respect to pi
and qi and solving the stationary equations:

−∂∆(p, q)

∂pi
= Ci + λT ,

∂∆(p, q)

∂qi
= Ki − λM . (16)

For sensor i = 1, . . . ,m, the equilibrium conditions yield

pi =
(
2(Ki + λM + Ci + λT )

)−0.5
, (17)

qi = −di − pi +
(
2(Ki + λM )

)−0.5
. (18)

The complementary slackness conditions must hold:

λT

(
Pmax −

m∑
i=1

pi

)
= 0, λM

(
Qmax −

m∑
i=1

qi

)
= 0. (19)

If the rate constraint is active, i.e.,
∑m

i=1 pi = Pmax, then
λT > 0. Otherwise, if

∑m
i=1 pi < Pmax, then λT = 0. The

same reasoning applies to the adversary’s constraint and λM .
When both constraints are binding, the Lagrange multipliers

satisfy the following equations:

LλT
:Pmax −

m∑
i=1

(2(Ki+λM+Ci+λT ))
−0.5 = 0, (20)

LλM
:Pmax +Qmax +

m∑
i=1

[
di−(2(Ki+λM ))−0.5

]
= 0. (21)

By solving this system for λT and λM , we obtain the
equilibrium values of the Lagrange multipliers. These are then
substituted into (17) and (18), yielding the optimal resource
allocation for the transmitter and the adversary.

Fig. 4 illustrate the behavior of the function LλM
with

respect to λM under different parameter settings. In both
subplots, the function exhibits a strictly increasing and concave
shape, ensuring that if a solution exists, it is unique and
corresponds to the single point where LλM

= 0.
In Fig. 5, the function starts from a given value at λM = 0

and increases monotonically. However, depending on the fixed
parameters, the function may not cross zero, implying the ab-
sence of a solution. Specifically, if the function takes positive
values for small λM , no intersection with the horizontal axis
occurs, and thus no valid solution exists.



Fig. 4: LλT
when varying λM and Ci.

Fig. 5: LλM
at varying x = Pmax +Qmax +

∑m
i=1 di and Ki.

IV. NUMERICAL RESULTS

We consider a system of three sensors, each defined by spe-
cific parameters that govern their performance and interactions
within the system. This section presents the results for key use
cases that illustrate the primary scenarios of interest.

A. Scenario 1: Baseline Case

The first scenario represents a fundamental use case where
the resource limitation constraint is inactive. This serves as
a reference scenario, allowing us to observe the system’s
behavior in the absence of external limitations. The parameters
for this case are summarized in Table I.

To ensure that the constraints do not influence the results,
the values of Pmax and Qmax are set sufficiently large.

TABLE I: Parameters and output in Scenario 1.

di Ci Ki pi qi
Sensor 1 0.3 0.3 0.1 1.118 0.818
Sensor 2 0.6 0.6 0.2 0.791 0.190
Sensor 3 0.9 0.9 0.3 0.645 0

Fig. 6: Transmission and injection rates when C2 increases.

The results for this scenario have been analyzed analytically
in [10], but they can also be computed using Eq. 17 and Eq. 18,
under the assumption that λM = λT = 0.

Since the sensors operate independently of one another,
the optimization problem for each sensor is solved separately.
Each sensor determines its optimal transmission rate (pi) and
the attacker’s injection rate (qi) based on its unique parameters
(di, Ci, and Ki). This case provides a clear benchmark
to compare how different parameter modifications affect the
system’s dynamics in the subsequent scenarios.

B. Scenario 2: Single Sensor Becomes a Preferred Target for
the Attacker

In this scenario, we analyze the effect of increasing the
transmission cost C2 for Sensor 2, while keeping all other
parameters unchanged, as listed in Table I.

As shown in Fig. 6, an increase in the transmission cost
C2 leads to a decrease in Sensor 2’s transmission rate. This
reduction makes Sensor 2 a more attractive target for the
attacker, as it becomes easier to compromise. In response,
the attacker reallocates its efforts, increasing its injection rate
towards Sensor 2 while reducing its focus on the other sensors.

At the same time, the transmitter compensates for the
reduced transmission from Sensor 2 by increasing the trans-
mission rates of the other sensors. This balancing effect
illustrates the strategic interplay between the attacker and the
transmitter: as the cost of transmission for a particular sensor
increases, both agents adjust their strategies accordingly. The
attacker shifts its focus toward the weaker target, while the
transmitter reallocates its resources to maintain overall system
performance.

C. Scenario 3: Strengthening the Defense of a Single Sensor

In this scenario, we investigate the impact of increasing
the attack cost K1 for Sensor 1. The other parameters re-
main unchanged. As depicted in Fig. 7, an increase in K1

makes attacking Sensor 1 more expensive for the adversary.
Consequently, the attacker reduces its injection rate for this
sensor. The transmitter follows a similar pattern, decreasing



Fig. 7: Transmission and injection rates when K1 increases.

its transmission rate to avoid unnecessary energy expenditure
on a less threatened sensor.

This shift leads to an increase in the transmission rates of the
other sensors, as the transmitter reallocates resources to where
they are most needed. Similarly, the attacker, facing higher
costs to compromise Sensor 1, redirects its efforts toward
other sensors that remain more vulnerable. This scenario
highlights how increasing the cost of attack for a single sensor
can effectively deter adversarial actions, redistributing attack
efforts to other parts of the system.

V. CONCLUSIONS

This paper investigates the strategic game between trans-
mitters and attackers within a multi-sensor system, focusing
on how variations in transmission and attack costs affect
their equilibrium strategies. Our analysis reveals that higher
transmission costs make sensors more vulnerable to attacks,
prompting a strategic redistribution of efforts within the sys-
tem. Conversely, an increase in attack costs deters aggression
towards these sensors, compelling attackers to modify their
strategies, while transmitters adjust their defenses accordingly.

The findings suggest methods for enhancing the resilience
of multi-sensor networks by strategically manipulating cost
parameters to reduce vulnerabilities. The proposed framework
has potential applications in areas such as network security
and resource allocation in distributed systems. Future work
will aim to adapt this strategic framework to dynamic settings,
integrating adaptive learning and resource constraints to better
counter adversarial threats.
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