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Abstract—Virtual dynamic environments (VDEs) such as the
Metaverse and digital twins (DTs) require proper representation
of the interacting entities to map their characteristics within
the simulated or augmented space. Keeping these representations
accurate and up-to-date is crucial for seamless interaction and
system reliability. In this paper, we propose bidirectional age
of incorrect information (BAoII) to address this aspect. BAoII
quantifies the time-dependent penalty paid by an entity in a
VDE due to incorrect or outdated knowledge about itself and
the overall dynamically changing space. This extends the concept
of age of incorrect information for a bidirectional information
exchange, capturing that a VDE requires mutual awareness of the
entity’s own representation, measured in the virtual space, and
what the other entities share about their representations. Using
a continuous-time Markov chain model, we derive a closed-form
expression for long-term BAoII and identify a transmission cost
threshold for optimal update strategies. We describe a trade-
off between communication cost and information freshness and
validate our model through numerical simulations, demonstrating
the impact of BAoII on evaluating system performance and
highlighting its relevance for real-time collaboration in the
Metaverse and DTs.

Index Terms—Age of Information, Metaverse, Digital Twin,
Virtual Reality, Markov Chain

I. INTRODUCTION

The Metaverse is an advanced Virtual Dynamic Environ-
ment (VDE) that merges digital and physical entities through
the convergence of extended reality (XR), web technologies,
and the Internet. This has emerged as a key research trend,
driven by continuous advances in virtual/augmented reality
(VR/AR) and digital twins (DTs). VR/AR plays a fundamental
role in enabling long-duration immersive experiences, while
DTs serve as a crucial step toward the realization of persistent
and self-sustaining alternative realities [1].

The Metaverse depends on strict quality of service (QoS)
requirements. For instance, VR video streaming demands bit
rates up to 1 Gbps, while motion-to-photon (MTP) latency
must remain below 20 ms to ensure smooth interactions.
Furthermore, XR applications require real-time control of both
virtual and physical objects, which prompts for haptic feed-
back with end-to-end latency under 1 ms and 99.999% relia-
bility [2]. Meeting these demands on heterogeneous networks
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calls for a transformative architecture with significant com-
putational and communication capabilities. From the user’s
perspective, low latency is essential not only for immersive and
continuous experiences, but also to prevent sensory conflict,
a major cause of motion sickness [3]. Predictive algorithms
can help reduce perceived latency [4]–[6]. For DTs, low-
latency communication ensures real-time synchronization be-
tween physical and virtual entities, enabling accurate decision
making and seamless interaction in the Metaverse [7].

To measure the freshness of information in a dynamic
scenario, we can leverage age of information (AoI) [8], which
quantifies the time elapsed since the generation of the last
received data packet. A low AoI value ensures that the infor-
mation is up-to-date to support precise control and immersive
experiences in real time. Optimizing AoI is essential to reduce
lags and improve the reliability of short packet communica-
tions, enabling efficient and synchronized interactions between
the physical and virtual worlds. Originally introduced to assess
network performance, AoI is applied in various domains,
including the Internet of things [9], autonomous vehicles [10],
and remote control systems [11].

Over time, variations of AoI have been proposed to address
specific application needs. One notable extension is age of
incorrect information (AoII) [12], which considers not only
the timeliness of updates but also their accuracy. Unlike AoI,
which increases regardless of the accuracy of the information,
AoII penalizes only incorrect information over time, making it
more suitable for remote real-time estimation scenarios [13].

The use of age-related metrics in the Metaverse has not been
well investigated, with only a few studies [14]–[16], despite
its potential usefulness in ensuring the QoE and QoS required
for the full exploitation of VDEs. The challenge is that the
Metaverse involves a bidirectional exchange of information
(such as positions and actions), so AoII alone may not be
sufficient. To address this limitation, we propose a novel metric
for a pair of agents, which quantifies the time during which
either agent does not possess up-to-date information. Our
penalty grows larger with the time required to regain complete
and accurate knowledge about both agents.

This extension of AoII that includes information timeliness
and accuracy in a Metaverse context is called the bidirectional
age of incorrect information (BAoII). It not only accounts for
an entity’s update process, but also quantifies how frequently



an entity maintains accurate and up-to-date information about
both its own state and that of the other entity.

This work makes the following key contributions. First,
we show how BAoII can be suitable for different VDEs
with varying constraints. Moreover, we characterize BAoII
from a mathematical perspective, using a continuous-time
Markov chain (CTMC), and by providing examples of its
application. Finally, with the goal of minimizing BAoII to
ensure continuously updated communication, we evaluate how
measurement and transmission costs influence the decision-
making process of the involved entities. Specifically, we ana-
lyze a memoryless scenario in which an entity, upon measuring
its state, immediately decides whether to also transmit to the
other entity or not.

The remainder of this paper is organized as follows. Sec. II
explores Metaverse applications in which bidirectional com-
munication is crucial. Sec. III introduces BAoII and outlines
its relevance in VDEs. Sec. IV presents the mathematical
formulation and derivation of this metric. Sec. V discusses
the simulation results. Finally, we conclude in Sec. VI.

II. BIDIRECTIONAL APPLICATIONS

The Metaverse encompasses a wide range of immersive ap-
plications, demanding specific technical parameters to ensure
seamless user experiences. Key factors include frame rate,
latency, and data transmission rates, which vary significantly
depending on the interactivity and immersion of the appli-
cation [17]. We outline the technical requirements for three
distinct Metaverse applications, highlighting the central role
that bidirectional communications plays in each of them.

A. High-Immersion Applications

Medical and surgical applications in the Metaverse demand
extremely high performance to ensure precision and safety.
These applications include remote robotic-assisted surgeries,
real-time medical training, and immersive patient diagnostics.
Any perceptible lag in these environments can compromise
the effectiveness of training or, in extreme cases, jeopardize
patient safety. A frame rate of 90–144 fps is necessary to
provide smooth visual feedback [18]. MTP latency must
remain below 7–15 ms to avoid disruptive delays during real-
time interactions [19]. Tracking data for hand movements
and surgical tools typically ranges between 50–300 bytes per
update, transmitted at high frequencies (≥1.000 Hz) to ensure
accuracy [20]. Haptic feedback, essential for realistic simula-
tions of soft-tissue interactions or force-sensitive procedures,
requires larger packets to convey force and texture details
(200–1000 bytes) [21]. For high-resolution medical imaging
or augmented reality overlays, high-bitrate compressed video
can demand 50–400 Mbps to maintain diagnostic precision
[22].

In collaborative scenarios, bidirectional communication is
essential to synchronize actions and maintain shared aware-
ness. Evaluating latency and feedback consistency between
users ensures alignment under strict performance constraints.

B. Social VR and Multiplayer Gaming

Social interactions in the Metaverse rely on consistent
responsiveness and synchronized avatar movements to create a
natural and engaging environment. Applications include virtual
meetups, collaborative spaces, and multiplayer games. Frame
rates of 72—120 fps and latencies below 30-–50 ms support
lip-sync and gesture accuracy [23], [24]. The avatar tracking
data are relatively lightweight (100-–500 bytes per update)
but are transmitted frequently (30-–90 Hz) to ensure precise
movements. Spatial audio, a key component of immersion in
social VR, consumes 64–256 kbps per user. The bandwidth
per participant ranges from 10 to 100 Mbps, depending on the
complexity of the scene and the number of users [25].

Efficient peer-to-peer communication protocols can signif-
icantly reduce latency and bandwidth demands, improving
scalability for large-scale virtual events, while bidirectional
user communication ensures synchronized dialogues, joint
actions, and a heightened sense of presence.

C. Smart Cities and Digital Twins

Smart cities in the Metaverse rely on real-time DTs, i.e.,
virtual representations of urban systems [26]. These twins are
used to monitor infrastructure, simulate emergency responses,
optimize logistics, and manage energy consumption [27].
Their effectiveness depends on continuous bidirectional data
exchange between edge devices, centralized systems, and user
interfaces, ensuring aligned decision-making and shared real-
time context. Sensor data is typically transmitted at frequencies
ranging from 1 to 100 Hz, with packet sizes between 200
bytes (telemetry) and several Mbytes (video surveillance).
Most DTs must react in near real time to physical-world
changes, requiring latencies below 50 ms for general updates
and < 20 ms for time-critical decisions (e.g., autonomous
vehicle rerouting). Frame rates of 60–90 fps are sufficient
for interactive urban visualization in VR/AR environments.
Depending on the complexity of the scene, the bandwidth
requirements can range from 10 to 100 Mbps.

III. PROPOSED METRIC: BAOII

The concept of AoII, introduced in [12], quantifies the time
elapsed since the knowledge of an entity has become incorrect
due to a drift, that is, a state change or a delayed update. When
a new measurement or update restores the correct information,
AoII resets to zero; otherwise, it continues to grow.

Inspired by this approach, we observe that in VDEs (e.g.:
Metaverse, Social VR) drifts can occur when information
about oneself or about another entity becomes outdated or
incorrect. Motivated by these scenarios, where bidirectional
interaction is required, we introduce BAoII, which captures
the mutual freshness of knowledge between entities.

We consider a system composed of two entities, such as
sensors, DTs, or network nodes, that interact bidirectionally.
Each entity can perform a self-measurement to monitor its
own state and transmit this information to the other. For
BAoII to reset for an entity, it must have two key pieces
of information: (i) knowledge of its own condition and (ii)



awareness of the condition of the other entity. Information is
treated as binary, either correct or incorrect. Any change in the
condition of an entity, such as movement, state transitions, or
interactions, causes the information to drift, making its state
incorrect until observed. To maintain accurate self-awareness,
an entity must continuously monitor and update its own state.
If no measurement occurs, outdated information may lead to
wrong system control.

However, knowledge of the other entity depends on re-
ceiving updated information through communication. Conse-
quently, the global information state of the system is influenced
by both self-measurements and transmissions between entities.
The goal is to quantify global knowledge of the system,
ensuring synchronization and consistency for all participants.

We focus on a VDE scenario involving two interacting
entities. Each entity is associated with a process that evolves
over time: X1(t) for entity 1 and X2(t) for entity 2. These
processes are not directly accessible to the entities themselves.
To gain knowledge about their own states, each entity performs
a self-observation (measurement) process. We denote these
self-sampled estimates as X̂1(t) and X̂2(t), respectively.

Entities can also share their knowledge with each other.
Specifically, entity 1 can acquire knowledge about the other
by receiving the information that entity 2 transmits about itself
through the process X̃1(t); symmetrically, entity 2 can know
entity 1 through X̃2(t).

We consider a discrete time axis, normalized to the time
slot duration. We define two binary processes Ŷi(t) and Ỹi(t)
to reflect the correctness of the knowledge held by each entity
i ∈ {1, 2} at time t:

Ŷi(t) = Xi(t)⊕ X̂i(t) (self-knowledge)

Ỹi(t) = X3−i(t)⊕ X̃i(t) (knowledge of the other).

Here, ⊕ denotes the bitwise XOR operation, and index 3−i
denotes the other entity (it is equal to 2 when i=1 and vice
versa). All these processes take values in {0,1}, denoting
correct knowledge (i.e., no mismatch with the actual state),
and error, respectively.

Each entity decides when to inform the other about its
sampling process by adopting a transmission policy that aims
to minimize the average of a particular penalty function. For a
single entity, the objective is to achieve complete knowledge
by accurately knowing its own state, the state of the other
entity, and ensuring that the other entity also has correct
information about its state.

An entity’s knowledge of the other must reflect the latest
measurement the other entity has performed and shared. In
fact, an entity cannot directly measure the condition of another;
it relies on the other entity to collect and transmit the necessary
information. An entity does not gain a direct benefit from
transmitting its measurement information to the other. From its
perspective, system knowledge is achieved when it accurately
knows its own state through self-measurement and the state
of the other entity through the measurement and transmission
of the latter. Since transmission does not add information to
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Fig. 1. Bidirectional knowledge between two entities.

the sender, it is not required for its BAoII to reset. However,
global system knowledge is only achieved when both entities
measure and transmit, ensuring full synchronization.

The system information state is defined as a sequence
of these four binary values: Ŷ1(t), Ỹ1(t), Ŷ2(t), Ỹ2(t) ∀t,
hereafter represented as a sequence of four bits inside square
brackets (e.g.: [1,0,1,1]). If we consider entity 1 and one of
the first three information values is not correctly updated, a
penalty is paid:

∆(1)
err(t) = (Ŷ1(t) ∨ Ŷ2(t) ∨ Ỹ1(t)) · f (1)(t) (1)

where f (1)(t) is an increasing time penalty function, paid for
not knowing the correct status of the process for a certain
period of time. To connect with AoI and AoII [10], [12],
this penalty increases linearly over time as long as the entity
remains in an erroneous state:

f (1)(t) = t− σ(1)(t) (2)

σ(1)(t) = max
{
t′ ≤ t : Ŷ1(t

′) = Ŷ2(t
′) = Ỹ1(t

′) = 0
}
.

Since we want to measure the time between the occurrence
of an error and the return of an entity to a correct knowledge
condition, what we want to study is the time elapsed until the
return to [0,0,0,0] or [0,0,0,1] (if we are considering entity
1). Fig. 1 graphically represents the different knowledge states
of the two entities and the process leading to complete correct
bidirectional knowledge, where both entities have accurate
information about themselves and each other.



TABLE I
CTMC STATES DESCRIPTIONS

State name State coding Entity 1 State Description Entity 2 State Description

O [0,0,0,0] Complete correct information state Complete correct information state
Φ [0,0,0,1] Complete correct information state Correct on own condition. Error on Entity 1 condition
A [1,0,0,1] Error on own condition. Correct on Entity 2 condition Correct on own condition. Error on Entity 1 condition
B [0,1,1,0] Correct on own condition. Error on Entity 2 condition Correct on own condition. Error on Entity 1 condition
Γ [0,1,1,1] Correct on own condition. Error on Entity 2 condition Complete error information state
F [0,1,0,1] Correct on own condition. Error on Entity 2 condition. Correct on own condition. Error on Entity 1 condition.
Ψ [1,1,0,1] Error on own condition. Error on Entity 2 condition. Correct on own condition. Error on Entity 1 condition.
Θ [0,1,0,0] Correct on own condition. Error on Entity 2 condition Complete correct information state
E [1,1,1,1] Complete error information state Complete error information state

O
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Γ
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F

E

d
(1− p)m1

pm1

(1− p)m2

pm2

Fig. 2. CTMC for BAoII computation. O and Φ are the two states in which
BAoII resets to zero for Entity 1.

IV. SYSTEM OVERVIEW

We model the system as a CTMC with 9 states, determined
by 4 information values. The number of states follows from
this remark: if Ŷi = 1, i.e. entity i ∈ {1, 2} has incorrect
information about itself, the other entity j = 3−i must also
have Ỹj = 1, i.e. incorrect information about i. Thus, states
[1,*,*,0] and [*,0,1,*] cannot exist. Then, drift can corrupt
Ŷi, which in turn affects Ỹj , but drift cannot occur directly on
Ỹi or Ỹj .

Fig. 2 illustrates the full CTMC state space and all possible
transitions. The states are defined as described in Tab. I. We
analyze the system from the perspective of entity 1, but, due to
its memoryless and symmetric properties, the model equally
applies to entity 2. The system starts in state O, indicating
complete knowledge for both entities, or Φ, representing
complete knowledge for entity 1 but not for 2. From these
states, the system can transition to an error state due to drift,
which can corrupt Ŷ1, resulting in A, or Ŷ2, yielding B or
Γ. Subsequently, additional drift may occur, or entities may
attempt to improve their knowledge by measuring their own
state, transmitting their state to the other entity, or performing
both actions simultaneously.

We define transition matrix Q = {qhn}hn, where each
element qhn represents the transition rate from state h to
state n with h ̸= n. The diagonal elements are defined as
qhh = −

∑
n̸=h qhn. In a CTMC, the transition rates define

the parameters of the exponential distribution that govern the
waiting times in each state.

We introduce some parameters to describe the possible
transitions. Entity i can make a measurement on itself to
determine its X̂i value, occurring at rate m. The transmission
of this value to the other entity occurs at a rate λ, which
is proportional to the measurement rate. We set λ = pm,
where p ∈ [0, 1] is a probability that represents the fraction of
times the entity transmits its measured value instantaneously.
Consequently, with rate (1−p)m, measurements occur without
being transmitted.

As p grows, measurement and transmission occur together
more frequently, reducing the rate of non-transmitted measure-
ments. This ensures that an entity obtains correct information
about its own state (Ŷi=0) while updating the other entity’s
knowledge about its state, making it correct (Ỹj=0).

In Fig. 3, we can observe an example of BAoII behavior
and how it differs from AoII as the system transitions through
various states. After a drift occurs at time t1, both penalty
functions begin to increase. At t2, however, a measurement and
transmission by entity 1 take place simultaneously, bringing
the BAoII back to a fully correct state. At the same time, the
AoII resets to zero due to the update. Then, a drift occurs at t3
and also at t4. Entity 1 performs a measurement at t5, where
the AoII resets while BAoII continues to rise, as it must wait
until t6, when both a measurement and a transmission from
entity 2 occur. Only then does the system return to one of the
correct information states, Φ in this case.

With the transition rates defined in the matrix Q, we proceed
to compute the cycle time T of the CTMC. We define T as
the expected reset time for the fully correct knowledge states
O and Φ, treated as reset states, starting from the first error
states. These first error states -— in our case, A, B, and Γ —-
are reached after a drift causes the system to deviate from the
correct knowledge states.

This formulation leverages renewal theory by interpreting
each return to a correct knowledge state as the renewal point
of a stochastic cycle, enabling the computation of long-term
averages over repeated error-recovery processes.
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Fig. 3. Comparison of BAoII and AoII in the bi-entity system following
a sequence of state transitions in the CTMC. Markers t1 − t6 indicate key
events such as drifts, measurements, and transmissions.

Theorem 1. Given the cyclic return time T , the mean long-
term BAoII is the average area of the triangle below the BAoII
penalty. Thus, it can be expressed as:

∆BAoII =
T
2

=
2p+ 1

4pm
(3)

Proof. See the Appendix.

Each transition has an associated cost: km for a measure-
ment and kλ for a transmission. If both actions occur within
the same transition, the total cost is km + kλ. However,
a holding cost is associated with each state, corresponding
to measurement and transmission actions performed without
initiating a state transition. Thus, we define the average long-
term cost for an entity as

K = km ·m+ kλ · pm (4)

which accounts for the cost of individual measurements and
measurements immediately followed by a transmission. Al-
though BAoII should ideally remain close to zero, this would
require frequent measurements and high transmission rates,
which would lead to significant costs. Thus, a trade-off be-
tween cost and information accuracy must be established. The
total cost associated with BAoII, including both the penalty
for incorrect information and the total cost of actions, is

C = ∆BAoII +K (5)

where the first term represents the BAoII penalty, which
increases with the time needed to restore full system knowl-
edge. Minimizing BAoII requires frequent measurements and
transmissions, leading to higher costs. Thus, the problem
reduces to optimizing C, that is,

C =
2p+ 1

4pm
+ (km + pkλ)m (6)

Given the trade-off between transmission costs and the
BAoII penalty, it is essential to investigate optimal transmis-
sion policies under different cost constraints. Our goal is to
identify a cost threshold below which the optimal strategy is
to always transmit immediately after each measurement. From
this observation, we get this theorem.

Theorem 2. There exists a threshold value k◦λ such that,
for any transmission cost kλ < k◦λ, the optimal transmission
policy minimizing the total cost C is to always transmit after
every measurement, i.e., p∗ = 1. This threshold is found as

k◦λ =
1

4m2
(7)

Proof. To determine whether p = 1 minimizes the total cost C,
we take the partial derivative of C with respect to p, set it equal
to zero and evaluate the condition under which p = 1 satisfies
the optimality criterion. Solving the resulting expression for kλ
yields the threshold value k◦λ. To confirm that this corresponds
to a minimum, we evaluate the second derivative of C with
respect to p and observe that it is strictly positive for all p > 0
and m > 0, ensuring that p = 1 is a local minimum.

V. RESULTS

We present numerical results based on the mathematical
analysis of the CTMC model. Furthermore, we demonstrate
the applicability of BAoII for evaluating the performance of
real-world VDE scenarios.

From (3), we observe that, after algebraic simplification,
the value of ∆BAoII is independent of the drift d and depends
only on the measurement rate m and the probability p.
Consequently, in Fig. 4 we show how ∆BAoII varies with
the rate m for different values of p. To minimize ∆BAoII,
the optimal strategy is to increase m and set p = 1. This
guarantees that all measurements are promptly transmitted to
the other entity, enabling the system to quickly attain a fully
correct state.

However, as shown in (5), minimizing ∆BAoII must be
balanced against the associated measurement and transmission
costs. Thus, we consider a high-immersion VDE in which
the costs are modeled as proportional to the packet size (in
Mbytes), with time measured in seconds and the measurement
rate in Hz. We assume that the packets required to update
the user state originate from controller inputs, which facilitate
movement in the virtual environment, or from haptic feedback.
These packets are assumed to have a maximum size of 500
bytes. For transmission, we account for packets that also carry
user position tracking data, which are necessary for visual
updates and typically have an average size of 1 kbytes.

Fig. 5 shows the total cost C of this scenario. We can see
that p = 1 minimizes C for rates up to approximately 20 Hz,
corresponding to an average latency of 50 ms. However, as the
rate increases, p = 1 becomes less efficient due to the larger
transmission cost. In such cases, tolerating a higher BAoII
becomes preferable, as it allows updates to be transmitted less
frequently, reducing transmission costs.

Next, we assume that the transmission cost and the mea-
surement cost are linearly related [23], kλ = η · km, where η
represents the cost ratio, we can rewrite (7) as follows:

k◦m =
1

4ηm2
. (8)

Thus, we analyze how transmission costs and measurement
rates affect the optimal value of p. We take kλ = 2km [25]
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and compute the partial derivative of ∆BAoII with respect to p.
We then analyze the resulting optimal value p∗ in different
configurations of cost and transmission rate, as shown in
Fig. 6. As transmission costs kλ and measurement rate m
increase, the cost interval over which p = 1 remains optimal
becomes progressively narrower. In particular, for m = 0.1,
the policy with p = 1 remains optimal even with high
transmission costs. This is due to the relatively low number
of transmissions and measurements that occur in a unit time.
However, this behavior holds only within a certain cost range;
for significantly higher costs, even a low m would no longer
sustain p = 1 as the optimal policy. These results highlight
the importance of evaluating both the cost constraints and the
desired transmission rate when designing systems for different
application scenarios.

Conversely, Fig. 7 illustrates how the optimal measurement
rate m varies with cost for different values of p. For p = 1, the
optimal values of m are the lowest among all configurations,
while for p = 0.1, significantly higher values of m become
feasible. However, frequent measurements coupled with in-
frequent transmissions do not effectively minimize ∆BAoII,
see also Fig. 4. Nonetheless, this strategy allows systems to
tolerate higher costs, albeit with an increased ∆BAoII.

Now, consider a generic η to study the maximum km that
can be imposed in a given scenario to achieve a desired
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measurement rate. In contrast, we can determine the maximum
achievable measurement rate given a specific cost model.

In Fig. 8, we illustrate the maximum measurement cost
that can be tolerated to support a given measurement rate
m under various values of η. To contextualize the impact of
these constraints, we analyze two distinct types of VDEs with
markedly different requirements, as described in Sec. II.

The first scenario involves highly immersive collaboration
or real-time online interaction [15], [19], where updates are
required within the range of 10 to 100 milliseconds [20],
corresponding to measurement rates 10Hz ≤ m ≤ 100Hz. In
this case, the maximum allowable costs are considerably lower
as frequent transmissions are essential. These systems typically
rely on less reliable but faster communication protocols. The
acceptable cost range in such contexts varies from a maximum
of 101 to a minimum of 10−7.

In the second scenario, we consider communicating DTs for
logistics [27], where updates are typically required every 10 to
100 seconds. These applications generally operate over more
reliable communication protocols with higher transmission
costs [26]. Depending on the application-specific value of η,
the maximum allowable measurement cost ranges from 105 to
10−1, reflecting scenarios where transmission is significantly
more expensive than measurement.
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VI. CONCLUSIONS

We introduced BAoII, a metric related to age of incorrect
information that extends status freshness and accuracy to
bidirectional exchanges, to assess mutual awareness of agents
in dynamic systems like the Metaverse and VR. Through
a CTMC analysis, we demonstrated that minimizing BAoII
requires a careful balance between the measurement frequency
m and the probability p of transmitting the measurement. We
proved that a persistent transmission policy (p = 1) minimizes
BAoII and we found the cost threshold under which this
strategy minimizes the total cost C. This threshold can be
used in various VDEs to bridge system cost models with
performance requirements. Specifically, it enables either the
estimation of achievable measurement rates given cost con-
straints or, conversely, the derivation of cost settings required
to sustain a desired measurement rate. This makes our analysis
valuable for adaptive system design under resource limitations.

BAoII can be a valuable tool for real-time collaboration,
with future applications including energy harvesting sensor
systems [11] and semantic communications [9]. Future works
may also involve extending the analysis to more complex
multi-entity systems for large-scale VDE, addressing cyberse-
curity challenges in scenarios with untrusted entities [13], and
employing game-theoretic approaches to evaluate the impact
of entities selfish behavior on the system.
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APPENDIX

This is a detailed derivation of the calculations that led to
the formulation of ∆BAoII in Theorem 1.

We start by assuming that the CTMC is ergodic, which
allows us to compute the probability that entity 1 is in one
of the two fully accurate information states, namely O and Φ.
Let S = {O,Φ,A,B,Γ,E, F,Ψ,Θ} be the set of all states,
and let Q ∈ R9×9 be the transition matrix, where each entry
represents a transition rate of the CTMC depicted in Fig. 2.
The steady-state condition for all states is given by πQ = 0,
where π = (πi) with i ∈ S is the stationary distribution
vector and 0 denotes a zero vector of size 9. The normalization
condition is

∑
s∈S πs = 1.

For each state n, the sum of the transition rates weighted
by their respective probabilities must be zero:∑

h∈S

πnqnh = 0 ∀n ∈ S. (9)

Solving this system yields the steady-state probabilities π.
Among them, in particular, we need the following steady-state
probabilities.

πΦ =
dm1m2(1−p)2p

(d+m1(1−p)p)(d+m2(1−p)p)(d+m1−m1p2)
(10)

πO =
m1m2(1−p)2p2

(d+m1(1−p)p)(d+m2(1−p)p)
. (11)

We define the conditioned probabilities of starting in states O
and Φ as PO and PΦ, respectively:

PO =
πO

πO + πΦ
PΦ =

πΦ

πO + πΦ
. (12)

To compute the time spent in erroneous states, we treat O
and Φ as reset states. Then, we determine the expected time
required to enter the reset state.

Transitions away from O and Φ into incomplete correctness
states occur only through drift. Specifically:

• From O, drift can lead to states A or B.
• From Φ, drift can result in transitions to A or Γ.

Thus, A, B, and Γ are the first erroneous states, representing
the first states of incorrect information that can be reached
from O and Φ. We aim to compute the transition probabilities
to these states and, subsequently, determine the system’s
expected reset time from each of them.

We define conditional transition probabilities sh,n, repre-
senting the probability of transitioning to state h given that
the process starts in state n, as:

sh,n =
qhn∑
l ̸=0 qhl

(13)

where l represents the other transition rates present in the
corresponding row of the transition rate matrix Q for the initial
state considered. Next, we define the system’s average reset
time, representing the average duration of a CTMC cycle, as
the expected time to return to either O or Φ after reaching one
of the first three erroneous states A, B, or Γ:

T = PO(sO,A · τA +sO,B · τB)+PΦ(sΦ,A · τA +sΦ,Γ · τΓ) (14)

where τ represents the average reset time starting from a
given state. The reset times τA, τB, and τΓ are calculated using
a system of equations derived from the conditional transition
probabilities described in (13). The system of equations for
the reset times is as follows:

τA =
2

d+m1
+

d

d+m1
τE

τΓ =
1

m2 + d+ pm1
+

(1− p)m2

m2 + d+ pm1
τF

+
d

m2 + d+ pm1
τE +

pm1

m2 + d+ pm1
τB

τE =
pm1

m1 +m2
τB +

(1− p)m1

m1 +m2
τΓ

+
pm2

m1 +m2
τA +

(1− p)m2

m1 +m2
τΨ

τF =
pm1

pm1 + pm2 + 2d
τΘ +

1

pm1 + pm2 + 2d

+
d

pm1 + pm2 + 2d
τΓ +

d

pm1 + pm2 + 2d
τΨ

τΨ =
pm1

m1 + d+ pm2
τΘ +

(1− p)m1

pm1 + pm2 + 2d
τF

+
d

pm1 + pm2 + 2d
τE +

pm2

pm1 + pm2 + 2d
τA

τB =
1

m2 + d
+

(1− p)m2

m2 + d
τΘ +

d

m2 + d
τE

τΘ =
1

pm2 + 2d
+

d

pm2 + 2d
τB +

d

pm2 + 2d
τΨ

(15)

This system of equations allows us to compute the indi-
vidual reset times for each state. By solving this system, we
obtain the following expressions for the reset times:

τΘ =
2pdm2 + pm1m2 + dm1 +m2

1

pm1m2(pm2 + 2d+m1)
(16)

τF =
2pdm2 + pm1m2 + dm1 +m2

1

pm1m2(pm2 + 2d+m1)
(17)

τB =
2pdm2 + pm1m2 + dm1 +m2

1

pm1m2(pm2 + 2d+m1)
(18)

τΓ =
2pdm2 + pm1m2 + dm1 +m2

1

pm1m2(pm2 + 2d+m1)
(19)

τA =
2p2m2

2 + 2pdm2 + 2pm1m2 + dm1

pm1m2(pm2 + 2d+m1)
(20)

τΨ =
2p2m2

2 + 2pdm2 + dm1 +m2
1

pm1m2(pm2 + 2d+m1)
(21)

τE =
2p2m2

2 + 2pdm2 + dm1 +m2
1

pm1m2(pm2 + 2d+m1)
. (22)

Substituting these results for the individual reset times into
(14), we obtain:

T =
1

m1
+

1

2pm2
. (23)

In particular, if m1 = m2, we obtain:

T =
1

m
+

1

2pm
. (24)


