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Abstract—Digital twins for engineering, finance, and especially
personalized medicine often rely on time-series applications, such
as computing the similarity between temporal signals. Dynamic
Time Warping (DTW) remains the gold standard for robust
alignment under temporal distortions, but its quadratic time and
space complexity limits scalability and real-time usage. Existing
methods such as FastDTW, PruneDTW, and SoftDTW attempt to
address these issues, but often compromise on accuracy, differen-
tiability, or flexibility. We introduce BlockDTW, a differentiable
parallel approximation of DTW that divides time-series into non-
overlapping blocks and computes local alignments. This reduces
complexity to O(bN), enabling efficient training and inference.
BlockDTW achieves good approximation relative to DTW with
up to 8x speedup, as shown in three tasks: synthetic frequency-
varying sinusoids, Trace dataset prediction with an FFNN, and
EEG reconstruction using hvEEGNet. Results are comparable to
SoftDTW and PruneDTW, with significantly lower runtime.

Index Terms—Medical digital twins; Time series; Dynamic
time warping; Similarity search; EEG; Deep learning.

I. INTRODUCTION

The concept of a digital twin mirrors the human mind’s
creation of mental imagery, enabling experimentation and
early anomaly detection [1], [2]. In medicine, software rep-
resentations of patients can support personalized treatments
and timely interventions [3], [4]. Recent studies reviewed
human digital twins for healthcare [5], e.g., wearable ECG data
for real-time arrhythmia detection. Dynamic biometrics and
other physiological signals (EEG, ECG, glucose levels) can
be leveraged to build such twins, whose reliability depends on
assessing time-series similarity between the twin and the real
subject. Dynamic Time Warping (DTW) [6] is the reference
similarity measure, aligning time-series non-linearly to mini-
mize distance. However, its quadratic time complexity limits
scalability. Several methods address this, such as FastDTW [7],
PruneDTW [8], and SoftDTW [9], each trading off between
speed, accuracy, and differentiability. Yet, DTW’s sequential
dynamic programming [10] still hinders parallelization, which
could greatly accelerate GPU/TPU computation.

We propose BlockDTW, a parallel, differentiable DTW
designed to bridge traditional alignment and deep learn-
ing for scalable, real-time, end-to-end systems, especially
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in medicine [11]. It splits time-series into non-overlapping
blocks, computing and aggregating local alignments, reducing
complexity via block size b instead of series length N.
We tested it against SoftDTW and PruneDTW on synthetic
sinusoids, FFNN prediction, and multi-channel EEG recon-
struction with hvEEGNet [12], achieving comparable accuracy
with significant speed-ups and GPU-parallelization potential.

This paper is organized as follows. In Section II, we review
the background on DTW and the proposals made in the
literature for differentiability and/or scalability. Section III
details our proposed methods. We present numerical results
in Section IV and conclude in Section V.

II. DYNAMIC TIME WARPING
A. Foundational Work

Let us define x[i] and y[j] as two time-series with N and M
samples, respectively, ¢ = 1,2,...,N, and j = 1,2,..., M.
The problem is to compute a measure of their similarity (or,
their distance). A recent survey on the most commonly used
distance measures is available in [13]. Euclidean distance,
for example, is fundamental to compute the mean square
error (MSE) and its variants (root MSE, mean absolute error)
between x and y: these methods sum the (squared) difference
between corresponding time points, giving an aggregated mea-
sure of their time-to-time similarity. To note, this assumes that
the two time series have the same length (or, the last samples of
the longer sequence are discarded). Cross-correlation function,
on the other hand, quantifies the similarity between two time-
series as the integral of their point-wise product, at any given
shift in time of the second one w.r.t. the first. Cosine similarity
has also been employed to quantify adherence of one time-
series to another. However, it suffers from limitations for time-
series and is confined to specific domains (e.g., information
retrieval [14]). All the above measures turned out to be very
sensitive to small distortions or shifts of one time-series w.r.t.
the other.

Thus, in the 1970s the dynamic programming algorithm
called Dynamic Time Warping (DTW) was introduced [6]. The
idea to dynamically align two time-series was first conceptual-
ized in 1975 in [15], then brought to its modern version by [6],
and finally popularized by [16] for time-series analysis.

The algorithm operates in three main steps: (i) a cost
matrix A is created, associating its rows and columns to the



amplitude values of z(i) and y(j), respectively. (ii) Starting
from A(0,0), the value of each element is computed as

A(i, j) = 6(xli],y[j]) +min[A(i — 1,5 - 1),

+ A(Zu] - 1)) A(Z - 1;])]3
if 4,7 > 1, otherwise A(4,j) = 6(z(¢),y(j)), where §(-) is a
distance function. (iii) The final DTW score is the lower right

corner A(N, M) of the cost matrix. A pseudocode for this
procedure is reported in Algorithm 1.

(D

Algorithm 1 Full DTW Algorithm
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end for
end for
Return Ay as

Formally, DTW is computed as it follows:

min ((4, A(z,y))) 2

DTW(z,y) = mj

with A(z,y) as the distance matrix defined in Algorithm 1,
Anm C {0,1}V*M ag the set of binary alignment matri-
ces [9], i.e., the matrices that contain a path from the upper
left corner to the lower right corner, and (-, -) the inner product.
To create a path, —, |, ¢ steps are allowed, only. The overall
DTW score between time-series « and y is given by the output
of Algorithm 1.

This algorithm has been applied in many different domains
and it provided large advantages compared to other measures
of similarity, especially for its robustness to warping, dis-
tortion, and shift, enabling data analytics solutions to work
with real-world time-series [17]. Unfortunately, in its original
formulation (called Full DTW), DTW has both time and
space complexity of O(NM). As N~M, as a matter of fact
DTW scales as O(N?) in time and memory. Since its first
publication, many different versions have been proposed to
address computational efficiency, without excessively sacrific-
ing other important requirements such as accuracy, scalability,
differentiability, non-negativity, and real-time constraints for
applications like Brain-Computer Interface (BCI) [18].

B. State of the art in DTW computation

Here, we discuss previous DTW implementations aligned
with our objectives. FastDTW [19] is a linear-time and space
approximation of DTW, designed to scale by recursively
computing DTW on downsampled series and refining the path
within a constrained window. It achieves very good DTW
approximation with runtime reductions of several orders of
magnitude (complexity O(N)), but may miss optimal paths in

highly non-linear alignments. Despite widespread use, recent
works [7] question its real efficiency.

PruneDTW [8] accelerates exact DTW using Keogh’s lower
bound [20] to prune unlikely cells from the cost matrix. On
UCR datasets, it achieved very good DTW approximation
with up to 20x speedups, though its performance drops when
sequences are highly distorted.

Stochastic DTW [21] offers a probabilistic ensemble of
alignment paths, enabling uncertainty modelling (e.g., for
seismic data). While robust to noise, its reliance on sampling
increases computational cost, limiting real-time and deep
learning integration.

SoftDTW [9] is the most common differentiable DTW
approximation, reformulating DTW as a smooth loss by re-
placing the minimum in (2) with a soft-min operator. Given a
series of n numbers, [a1, ..., a,], the soft minimum operation
is defined as

min”(ay, ...,a,) = —vlogZe_“"/'V 3)

i=1
with 7 > 0 being a smoothing hyperparameter. The lower ~,
the closer (3) to the minimum. Then, Soft DTW is defined as

SDTW’Y(mvy) = min7(<A7 A(mvy»a Ae Anm) (4)

= —vlog Z e(AA (Y)Y (5)
A€An m

With SoftDTW, each sample of a time-series is compared
with every sample of the other. This means that the memory
usage and the number of computations scales as O(N?).

It has to be noted that SoftDTW can assume negative values
and it is not minimized when x = . This limitation has been
mitigated by a variation of SoftDTW called DTW divergence
(DTW-div) [22]. DTW-div is simply derived from any measure
of DTW by the following formula:

D, () = DTW, (2,) ~ 5 (DTW, (7, 2) + DTW, (y.))
(6)
DTW-div ensures non-negativity and minimization when the
two time-series are very similar, at the cost of higher com-
putation time w.r.t. a single DTW. Specifically, DTW-div is
affected by a factor 3, as DTW needs to be computed three
times (this could be overcome by parallel computation).

In [26], the authors proposed the Optimal Transport Warp-
ing (OTW) algorithm which showed linear time and space
complexity and differentiability. Also, the authors claimed the
algorithm is parallelized. However, performance was tested on
different datasets w.r.t. this work (a simpler synthetic dataset
including triangle or square signals with some amount of
time shift, plus white noise) and different tasks (specifically,
classification via deep learning and 1-nearest neighbour clus-
tering, and hierarchical clustering), making it difficult to fairly
compare the two works.

A very recent article introduced TimePoint [27], an al-
gorithm whose alignment strategy relies on discrete rules
(keypoint extraction and matching). While promising, this
method does not allow differentiation or backpropagation.



TABLE I
STATE OF THE ART AND BLOCKDTW

Method Time Space Approx Diff.
Full DTW [6] O(N?) O(N?) Baseline No
FastDTW [19] O(N) O(N) Very good | No
PrunedDTW [8] O(kN) O(N?) | Very good *

Stochastic DTW [23] | O(kN?) | O(kN?) Good No
SoftDTW [9] O(N?) O(N?) Good Yes
SmoothDTW [24] O(N?) O(N?) Good ok
DecDTW [25] O(N?) O(N?) | Very good | #*¥*
OTW [26] O(N) O(N) Good Yes
TimePoint [27] o(LLHt | oL Good No
BlockDTW O(BN)TT | O(BN)Tt Good Yes

m

Fig. 1. Constraints for DTW computation for (left) SoftDTW and (right)
BlockDTW. In line with [19], a constraint represents an abstraction strategy
(i.e., a way to decrease resolution in favor of a lightweight computation).

*only if min is replaced with softmin; **model-dependent; ***implicit differ-
entiation (computationally heavier than native differentiation); 'L << N s
L' << M number of keypoints in the two time-series; TTO(b) in case of
parallel implementation.

Table I reports a list of the most relevant and recent algorithms
for DTW computation. They are compared based on their time
and space complexity, approximation quality w.r.t. the Full
DTW (assuming DTW gives the best distance path between
the time-series, i.e., distance measurement accuracy), and
differentiability. We included other methods, not discussed
here due to space constraints.

In line with [19], we adopt an abstraction strategy, where
DTW is computed on a reduced representation of the data. We
call this solution BlockDTW, and we show how it is compu-
tationally efficient (O(N)), accurate, differentiable, scalable,
and feasible for real-time scenarios such as BCI.

III. METHODS
A. BlockDTW

To reduce memory consumption and computations to ob-
tain DTW, we propose to divide the two signals into non-
overlapping blocks and compute the SoftDTW (or, the Soft-
DTW divergence), between corresponding blocks, i.e., the first
block of a signal with the first block of the other. This is
repeated for the second block and the following ones as well.
Formally, if we consider two time-series of the same length NV
and choose block size b, then each time-series is divided into
I—J\)f blocks. Then, a DTW measure is obtained from each block
(via SoftDTW), providing N/b independent measures, which
are summed. Given N/b SoftDTW computations on a pair of
b-long segments (i.e., each one with complexity of O((%)z),
the overall complexity results in O(bN). A depiction of our
abstraction strategy is shown in Fig. 1.

An implementation is shown in Algorithm 2. Note that if
mod(N,b) =0 (i.e., b divides N without remainder) then the
else branch in the algorithm is unnecessary.

A formal definition of the final score Ap is given by

k=[N/b]

Ap = Z SoftDTW (x 1, , yr, ) @
k=1

with Ij; being the indices of the k-th block, and xj, ,yr, the
sample of the two time-series to compare for block k.

Algorithm 2 BlockDTW Algorithm

zeRN, yeRY
A =0
for (k=0; k <|N/bl; k=k+1)do
if k < |N/b] — 1 then
I, = [kb, kb+1,..., (k+1)b — 1]
else
I = [kbykb+1,...,N]
end if
x = x[Ig]
Yk = y[Lx]
Ap = Apg+ SOftDTW(:L’k,yk)
end for
Return Ap

B. Implementation

Our implementation of BlockDTW takes advantage from the
most effective (to the best of our knowledge) implementation
of SoftDTW. Currently, SoftDTW has not been implemented
in the Pytorch framework. Based on some preliminary empir-
ical tests, we adopted the implementation of the open-source
package by [28], available on GitHub. Unfortunately, this
implementation via CUDA [28] is limited to input sequences
of up to 1024 samples due to GPU constraints. Our Block-
DTW method overcomes this by processing longer signals
in segmented blocks of up to 1024 samples. Importantly,
most electrophysiological signals—such as EEG, ECG or
EMG—are sampled at 250 Hz, 500 Hz, or 1000 Hz. At
these sampling rates, 1024 samples correspond to segments
lasting approximately 4, 2, or 1 s, respectively. These durations
align with or even exceed the typical segment lengths used
in real-world applications (e.g., 0.125-2 s commonly seen
in electrophysiology [29]). Moreover, longer segments may
become non-stationary or redundant when the lowest frequen-
cies of interest are around 0.5-1 Hz, making our block-based
approach both practical and effective.

Our implementation of BlockDTW is
GitHub [30].

available on

IV. RESULTS AND DISCUSSION

We show the promising performance of BlockDTW, in
terms of accuracy w.r.t. SoftDTW and PruneDTW, its ef-
fectiveness as loss function for high-fidelity reconstruction



of multi-channel time-series recordings of brain activity
(through electroencephalography), and its computational ef-
ficiency w.r.t. parameter b.

In the first case study, we generated a sinusoidal time-series
with fundamental frequency f; and amplitude A;, and com-
puted its similarity w.r.t. a second sinusoid with amplitude As
but variable frequency (f2). We computed the similarity using
SoftDTW, PruneDTW (with two different levels of pruning,
namely bandwidth values at 5 and 10), and BlockDTW with
b = 100 and 150. Fig. 2 presents two examples with the
fundamental frequency set to 1 Hz and 17 Hz, respectively.
We can observe (Fig. 2(a)) that when the two sinusoids are
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Fig. 2. Case study no.l (variable-frequency sinusoids). Comparison between
similarity measurements provided by SoftDTW, PruneDTW (with bandwidth
set to 5 and 10), and BlockDTW (with b = 100, 150). (a) Fundamental
frequency at 1 Hz. (b) Fundamental frequency at 17 Hz.

the same (e.g., fo = f1), then all computations of DTW return
a zero value. As soon as the frequency difference between
the two curves increases, then SoftDTW increases smoothly,
while BlockDTW approximates SoftDTW depending on the
value of b. More specifically, the smaller b, the more sensitive
it is to local variations between the two sinusoids and may
eventually return a higher value compared to SoftDTW. On
the other hand, in this case, PruneDTW provides a very poor
approximation, no matter what value f, takes. Interestingly,
we also tested the case of fundamental frequency at 17 Hz (see
Fig. 2(b)), and observed that all curves start at the origin (i.e.,
when the sinusoids are the same) and then all of them stably
increase. As expected, SoftDTW has a smoother pattern, as

its algorithm requires averaging all possible paths in the cost
matrix. PruneDTW shows much better performance compared
to the previous case, especially for the bandwidth value set
to 10 and larger f; values. On the other hand, BlockDTW is
approaching SoftDTW with a periodicity that depends on the
relationship between the sampling frequency, the block size
and the frequency of the sinusoid.

In the second study, we predicted the last 100 samples of
time-series included in four different public datasets, specif-
ically: Trace inside the tslearn library [31], derived from
nuclear power plants, and the Wafer, Wine, and Ham included
in the benchmark UCR Archive [32].

We trained a feedforward neural network (FFNN) with
2 hidden layers, each one provided with 256 neurons. The
hidden layers use a SELU activation function and batch nor-
malization. No activation is applied to the output. For training,
we used stochastic gradient descent with a learning rate of
0.001 for 60 epochs. No learning rate scheduler was used.
One FFNN model was obtained for each distance measure: a
first model was trained using SoftDTW, a second FFNN by
using BlockDTW, and a third one by using PruneDTW. For
both SoftDTW and BlockDTW, we set v = 1 (default value).
For BlockDTW, we used a block size of b = 30 samples. For
PruneDTW, we set the bandwidth value to 10. Predictions are
compared in Fig. 3. All algorithms (SoftDTW, PruneDTW, and
BlockDTW) provided similar results, showing that BlockDTW
can achieve the same high accuracy in the prediction task w.r.t.
the state of the art. Slightly different behaviour is observed,
depending on the specific type of waveform. However, a sys-
tematic comparison deserves a dedicated investigation, which
is left for a future work.

Finally, in the third case study, we accurately reconstruct
multi-channel EEG recordings, as derived from a popular
public EEG dataset called BCI competition IV dataset 2a
(sampling frequency of 250 Hz) [33]. We employed our re-
cent model called hvEEGNet [12], based on a hierarchical
variational autoencoder architecture [34], and engineered to be
specific for high-fidelity reconstruction of multi-channel brain
recordings. In our previous work [12], we employed SoftDTW
to train the model, achieving very high performance in all the
time-series included in the dataset. In Fig. 4, we show an
example of how BlockDTW allows for a satisfactory recon-
struction. We set b = 125 samples, corresponding to 0.5 s, i.e.,
the minimum time interval containing significant information
about brain dynamics related to the task accomplished by the
participants of the study [29]. As expected, the quality of the
output is lower compared to the training based on SoftDTW
(actually, DTW-div), but much faster.

A. Computational efficiency

We compare SoftDTW and BlockDTW in terms of com-
putational time with variable input lengths and block sizes.
Note that we tested them on two different hardware setups:
an Intel(R) Core(TM) i7-8700 CPU@3.20GHz, and an In-
tel(R) Core(TM) i7-10750H CPU@2.60GHz. The software
setup was the same in both cases: Linux Operating System
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(Ubuntu), provided with 16 GB RAM. Repeated measures
were collected in the same configuration (i.e., hardware setup,
input length, block size) and then averaged to increase the
statistical robustness. From Fig. 5, we observe that SoftDTW
rapidly increases in input length (as expected due to quadratic
scaling). On the other hand, BlockDTW generally performs
better, depending on the specific hardware and the block size.
As expected, the largest advantage is obtained when the block
size is large and the input is long. For example, with two
1000 sample-long time-series as input, SoftDTW takes 40 ms
to compute their similarity, while BlockDTW with b = 50 only
5 ms, reaching an 8x time saving, as seen in Fig. 5(a). Note
that PruneDTW is expected to have similar computational
efficiency as BlockDTW, then we refer to a future extended
work to expand the comparison.

V. CONCLUSIONS

With the growing role of digital twins in healthcare, es-
pecially for real-time monitoring and personalized treatment,
efficient and accurate comparison of physiological time-series
is essential. In this work, we presented BlockDTW, a dif-
ferentiable and efficient variant of SoftDTW for computing
DTW distances robust to shifts, warpings, and distortions
common in real-world data. BlockDTW significantly speeds
up DTW computation while preserving accuracy. It is also
differentiable and potentially parallelizable — key features for
deploying digital twins based on dynamic biometric data like
EEG or ECG. We demonstrated its effectiveness in three tasks:
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Case study no.3: EEG reconstruction via hvEEGNet model. The latter was trained with (a) SoftDTW or (b) BlockDTW, respectively.

aligning synthetic sinusoids, forecasting the Trace dataset and
three different datasets of the benchmark UCR Archive with an
FFNN, and reconstructing EEG signals using our hvEEGNet
model. Future work will explore the application of BlockDTW
to further tasks including nearest-neighbour search, hierarchi-
cal clustering, and anomaly detection. Also, we will compare it
as a loss function for the hvEEGNet model w.r.t. other state of
the art methods (e.g., PruneDTW). We also plan to implement
a fully parallelized version of BlockDTW to further leverage
GPU architectures. Finally, our approach will be compared
to artificial neural networks-based alignment methods, such
as TAP [35], which employs lightweight CNNs to directly
predict alignment, and to stochastic or uncertainty-aware DTW
variants like Stochastic DTW [21] and uDTW [36], which
incorporate uncertainty into the alignment process.
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