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Abstract
As digital services increasingly rely on visual and touch-based inter-
action, users with visual or motor impairments are often excluded
from seamless access to information. Despite ongoing progress in
assistive technologies, accessibility gaps persist across public and
private contexts, limiting independent access to digital content.
To address this issue, we investigate the potential of TISCODE, a
sound-based system that employs Short Sound Messages (SSMs)
to retrieve digital content. These audio cues enable passive inter-
actions, allowing users to receive relevant information directly
on their smartphones without visual scanning or physical input.
TISCODE leverages generative AI to synthesize distinct audio mes-
sages and employs a dual-stage decoding pipeline to ensure reliable
classification across varying acoustic conditions. We evaluate the
application prototype across multiple smartphones and test environ-
ments: indoor, outdoor, and noisy. Preliminary results are promising
and support the system’s suitability for real-world deployment. TIS-
CODE represents a step toward inclusive, audio-driven interaction
paradigms within the Internet of Audio Things (IoAuT), contribut-
ing to digital equity and accessible design.

CCS Concepts
• Human-centered computing→ Accessibility technologies;
• Information systems → Multimedia information systems; Test
collections.
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1 Introduction
The development of digital technologies has significantly trans-
formed the ways in which individuals access information, use ser-
vices, and connect with each other. From communication platforms
to smart infrastructures and ubiquitous computing, these innova-
tions have increasingly become integral to daily life, enhancing
productivity, connectivity, and convenience [39]. However, while
the digital revolution has enabled unprecedented progress, it has
also deepened existing structural inequalities, creating a digital
divide between those who can fully benefit from technological ad-
vancements from those who remain marginalized. This divide is
not merely a matter of access to devices or Internet connectivity,
but extends deeply into the realm of accessibility, usability, and
equitable participation in digital environments [17].

In this context, the role of technology as a force for social good
has come under renewed scrutiny. Concepts such as Information
and Communication Technologies (ICT) for goodness and AI fair-
ness have emerged to emphasize the ethical responsibility of tech-
nologists and researchers to design systems that are inclusive by
default [15, 36]. These principles urge us to go beyond abstract
performance metrics and consider the societal impact of our de-
signs, particularly in addressing the needs of vulnerable popula-
tions, including people with disabilities. Despite advancements in
assistive technologies, many digital systems still fail to meet the
diverse requirements of users with sensory, cognitive, or motor
impairments [3]. The absence of inclusive design principles not
only impairs accessibility but also reinforces systemic exclusions
that manifest across education, employment, healthcare, and public
life.

A particularly under-addressed subset of population consists
of visually impaired or motion-impaired individuals, whose inter-
actions with digital content are often mediated through assistive
tools that are inconsistently supported or entirely absent in many
contexts. Despite growing efforts to promote digital inclusion, in-
dividuals with disabilities struggle to gain access to Internet. Ac-
cording to [38], only 35% of people with disabilities reported using
the Internet on daily basis, compared to 61% of those without im-
pairments. Moreover, for 62.5% of individuals with disabilities, the
cost of accessing ICT technologies is perceived as prohibitively
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high relative to their income, despite the potential of such tech-
nologies to significantly improve their daily lives [38]. Troubling
statistics have estimated that, due to the lack of technologies that
support independence, up to 30% of blind people do not travel in-
dependently outside their homes [10]. Even after accounting for
income, education, and employment status, people with disabilities
are, in fact, still less likely to access or use digital technologies,
due to additional barriers such as the high cost of assistive tools,
lack of accessible interfaces, and feelings of intimidation or low
digital confidence. Psychological studies have documented the cog-
nitive strain and emotional frustration experienced by these users
when navigating environments that lack affordances for non-visual
interaction [2, 19]. These studies further highlight the disconnect
between current technological capabilities and the real-world needs
of individuals who engage with digital systems differently from the
normative user model.

An illustrative example of this disconnect is the widespread use
of QR codes [34] and visually-oriented information displays in pub-
lic and commercial spaces. While QR codes offer a compact and
efficient mechanism for conveying digital content, their reliance
on visual scanning and precise motor coordination renders them
effectively inaccessible to many users with visual or motion impair-
ments [9, 32]. The exclusion is particularly evident in environments
such as transportation hubs, retail stores, and public service kiosks,
where access to timely information can be critical and where no
alternative modalities are offered [4, 27].

Recent works have explored the use of acoustic signals to encode
digital content and enable short-range communication, highlighting
their potential for accessibility [28] and wireless networking [18],
though they remain untested in everyday applications.

In this paper, we present an experimental evaluation of a novel
framework based on short sound messages (SSMs), named TIS-
CODEs. These are brief sound cues designed to supplement or
replace visual digital content in contexts where visual interaction
is not feasible [7]. Each TISCODE, once generated, is paired with
a digital information entry in the database and made available to
the user, who can define when and where it should be transmitted.
The TISCODE app operates passively, requiring no user interac-
tion: when the corresponding SSM is emitted, the TISCODE app
autonomously detects and decodes it, generating a pointer to the
database in order to retrieve the associated content, which is then
immediately made available on the user’s smartphone. The linked
digital information can include photos, videos, audio files, or any
type of interactive multimedia content.

These SSMs can be transmitted and received not only by smart-
phones but also by a variety of IoT devices deployed in smart city
environments. Such systems fall within the scope of the Internet of
Audio Things (IoAuT) [37], a paradigm comprising devices capable
of emitting and decoding acoustic messages.

Our goal is to mitigate accessibility barriers and reduce the cog-
nitive and operational overhead typically required by assistive tech-
nologies, by embedding structured acoustic information into public
interfaces. This approach is informed by recent research in human-
computer interaction, accessible design, and auditory signal pro-
cessing, and aligns with broader objectives of promoting ICT for
social good and reducing the digital divide [15, 17].

Sound-based interaction is indeed often preferred because it
enables eyes-free and hands-free communication, making it highly
accessible for individuals with motor or visual impairments [21].
Unlike visual interfaces, auditory input and feedback can be used
in dynamic or mobile contexts, enhancing usability and safety.
Moreover, sound conveys emotional tone and urgency effectively,
enriching user experience and expressiveness.

To support this vision, we discuss the design principles, imple-
mentation challenges, and potential of integrating such systems
into everyday digital infrastructure. We present a performance eval-
uation of the current version of the TISCODE app, highlighting
application scenarios where it shows promising results compared
to traditional approaches relying on visual interfaces.

The remainder of this paper is organized as follows: Sec. 2 ex-
plores the various application scenarios of the TISCODE system,
with a particular focus on its potential benefits for individuals
with visual or motor impairments. Sec. 3 details the architecture of
the TISCODE system. Sec. 4 outlines the experimental setup and
methodology used for the performance evaluation. Sec. 5 presents
and analyzes the experimental results. Finally, we conclude in Sec. 6.

2 TISCODE applications
The TISCODE system introduces a transformative approach to
digital communication by leveraging the audio channel for the
unidirectional transmission of encoded information. This method
proves especially advantageous for individuals with visual or mo-
tor impairments, who often face significant barriers in interacting
with conventional technologies such as QR codes, touchscreens,
or location-based mobile notifications [24]. TISCODE eliminates
the need for physical manipulation or visual engagement, enabling
automatic, passive, and context-sensitive reception of information
directly to the user’s mobile device.

QR codes require users to visually locate and frame a printed
code within a camera interface—a task that is impractical or impos-
sible for blind or low-vision individuals. Similarly, motor-impaired
users may find it difficult to hold a device, open a scanning applica-
tion, and precisely align it with a code [26, 27]. TISCODE bypasses
these requirements entirely: once the application is installed and
configured with the user’s preferences, any nearby TISCODE audio
transmission is automatically decoded and presented on the smart-
phone. For blind users, this might mean receiving text-to-speech
outputs, while motor-impaired users may benefit from automatic
activation of assistive functions without any touch input.

This mechanism enables a diverse set of applications across
public, commercial, and private domains:

Cultural Accessibility: In museums or cultural heritage sites, TIS-
CODEs embedded in the background audio can trigger exhibit-
specific content. A blind visitor approaching a sculpture may re-
ceive a notification with descriptive audio with synthesized speech
describing the artwork and its context or high-contrast images (for
low-vision users). Crucially, no physical interaction is needed: ac-
cess to information is automatic, location-aware, and personalized.

Healthcare Environments: In hospitals or clinics, where naviga-
tion and orientation are often complex, TISCODEs can be used to
broadcast room-specific information such as appointment details,
check-in instructions, or route guidance. For a user with motor
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Figure 1: Examples of TISCODE applications: On the left, the
use of TISCODE in an urban context—near a public trans-
portation stop—to access real-time transit information. On
the right, its deployment in a hospital setting to provide guid-
ance on accessible routes within the facility.

disabilities, receiving these notifications without interacting with
touchscreens simplifies the care experience [13, 21]. In emergency
contexts, TISCODE-enabled public address systems can emit evac-
uation signals that instantly trigger multimedia safety instructions
on users’ smartphones, crucial for those who cannot rely on visual
signage or alarms.

Retail and Commercial Spaces: In shopping centers or stores, lo-
calized TISCODEs can inform about offers, product highlights, or
accessibility information (e.g., location of wheelchair-accessible fa-
cilities or elevators). A user with limited hand mobility may receive
promotional content or navigation hints without opening any app
or interacting with digital kiosks [27].

Urban Infrastructure: In recent years, the rising of smart cities has
led to a growing deployment of IoT sensors in urban environments,
collecting data related to traffic, pollution, and mobility [8]. These
data, once processed, can be transmitted using TISCODE signals
to enhance navigation and information access in outdoor settings,
as shown in Figure 1. For instance, at bus stops or intersections,
short jingle-like signals can trigger smartphone notifications that
announce bus arrivals, delays, or safety warnings. This approach is
particularly beneficial for visually impaired pedestrians, who may
be unable to read posted schedules or safely interact with mobile
interfaces while in motion [16]. With the support of TISCODE,
which is broadcast through nearby transmission devices at the stop,
users can receive schedule updates and interact with accessible
services via voice commands on their smartphones.

Educational Campuses: On university campuses, TISCODEs can
support students with disabilities by providing real-time updates
and location-specific information. For instance, a student may re-
ceive class schedule changes or accessible route suggestions upon
entering a building, triggered entirely by ambient audio cues.

Smart Homes and Assisted Living: In domestic environments, TIS-
CODEs can be embedded in audio systems to automate reminders
or alerts. A user with limited mobility may receive a multimedia
notification with medication schedules or front-door activity when-
ever a TISCODE is emitted from a speaker or appliance. This passive
signaling removes the need to operate complex interfaces or voice
assistants [22, 35].

Overall, TISCODE explores the use of sound as a communica-
tion channel to improve accessibility in everyday environments. Its
passive and non-intrusive approach aims to provide timely, location-
aware information without requiring vision or fine motor skills.
While still in development, the system represents a step toward
more inclusive and accessible interactions within digital ecosys-
tems.

3 TISCODE System
TISCODE is a novel patented technology [25] that leverages sound
as a medium for short-range data communication in the IoAuT. A
TISCODE is a sound message consisting in a fixed 1-second wake-
up jingle, the Opening Marker (OM), and a 3-second INFOCORE,
a sound that embed a pointer to digital content, which can be
retrieved upon detection by a smartphone.

In this work, we use the term detection to refer to the identi-
fication of the OM, classification to indicate the matching of the
INFOCORE with the sounds stored in the database, and recogni-
tion to denote the complete identification of the entire TISCODE,
leading to the correct retrieval of the digital information associated
with it.

The architecture of the TISCODE system comprises three key
components: OM detection (Sec. 3.1), generative AI-based INFO-
CORE creation (Sec. 3.2), and INFOCORE classification and infor-
mation retrieval (Sec. 3.3).

3.1 Opening Marker Detection
To enable passive operation, the TISCODE system includes an OM,
a brief wake-up jingle designed to activate the recording and de-
coding processes on a smartphone. OM detection is performed
using YAMNet [12, 23], fine-tuned to recognize the wake-up jingle
class. The OM is designed to be perceptually distinct and spectrally
disjoint from the payload, reducing false detections. Upon marker
detection, the app begins recording and captures the ensuing IN-
FOCORE segment for decoding.

This event-driven approach minimizes energy consumption and
supports autonomous operation, making it suitable for real-time,
context-aware applications in smart environments.

3.2 Generative AI for TISCODE
TISCODE system leverages generative AI to create distinct, infor-
mation carrying INFOCOREs. As detailed in [7], it employs Music-
Gen [5], a transformer-based autoregressive model developed by
Meta, to synthesize audio clips with high perceptual diversity. Each
clip is generated from a structured prompt that defines musical
attributes such as genre, instrument, tempo, key, and mood. This
structured variability ensures that each audio jingle is unique and
easily distinguishable [7].

To encode information within each INFOCORE, a total of 28
audio features are extracted. This set includes 25 low- and mid-level
sound descriptors computed using traditional audio analysis tools
such as Librosa [20]. The remaining three features are inferred
using deep CNN-based models: CREPE [14] for key estimation
and wav2vec [30] for genre and instrumentation. All features are
subsequently quantized andmapped into binary bitmaps, producing
a unique digital identifier for each INFOCORE.
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Figure 2: TISCODE system

Thanks to the use of generative AI and bitmap-based encod-
ing, INFOCOREs can be dynamically synthesized on demand while
ensuring a high degree of dissimilarity, both musically and compu-
tationally, across generated samples.

3.3 INFOCORE Classification
Once the TISCODE app detects the OM, it activates the microphone
in active listening mode for three seconds to record the INFOCORE.
The recorded clip is then sent to the server for decoding and classi-
fication.

During classification, the system re-extracts the same audio fea-
tures used during INFOCORE generation and compares them to the
stored bitmaps. Hamming distance minimization is applied for error
correction [7]. In parallel, the classification algorithm performs fre-
quency peak analysis via Short-Time Fourier Transform (STFT). It
selects the top 10 frequency peaks per 0.5-second window and ana-
lyzes their temporal relationships. This spectral fingerprinting acts
as a secondary verification mechanism to improve classification
accuracy [11].

This dual-approach—bitmap decoding augmented by spectral
analysis, ensures high recognition accuracy even in noisy envi-
ronments and across different smartphone models with varying
microphone responses [7].

4 Experiments
The TISCODE system has been analyzed and evaluated through a
series of experiments conducted on five different mobile phones,
each equipped with the TISCODE application. The goal is to vali-
date the system’s effectiveness as a real-time information retrieval
solution based on SSMs.

The evaluation focuses on measuring the application’s perfor-
mances in accurately detecting and decoding the audio signals to
retrieve the correct associated information. Furthermore, the ex-
periments aim to identify the system’s strengths, limitations, and
potential bottlenecks, in order to guide future improvements.

This section is organized as follows: Subsec. 4.1 describes the
experimental setup, including the devices, signal types, and eval-
uation metrics. Subsec. 4.2 presents a series of test scenarios and

Table 1: Specifications of the mobile devices used for TIS-
CODE evaluation.

Device Release Date Release price

Samsung Galaxy A03 November 2021 159 €
Motorola Moto E7 November 2020 119 €
Oppo A54s October 2021 229 €
Huawei Honor 9X October 2019 269 €
Samsung Galaxy A55 March 2024 439 €

case studies, each designed to assess the system under different
environmental and operational conditions.

4.1 Set Up
The experimental setup consists of two fixed emitters and five
receiving devices, used throughout all test sessions.

TISCODEs are reproduced using a 2025MacBookAir 13", equipped
with the Apple M4 chip. The receiving devices are five Android
smartphones, each running the TISCODE application to record and
decode the transmitted sound messages.

The selected smartphones represent a range of low- to mid-tier
models, chosen to evaluate system performances across different
hardware and software configurations. Specifically, the devices used
are: Samsung Galaxy A03, Motorola Moto E7, Oppo A54s, Huawei
Honor 9X, and Samsung Galaxy A55. Their release dates and prices
are reported in Table 1. This diversity allows for a fair assessment of
how the system performs with varying microphone quality, audio
hardware, and processing capabilities, and supports the evaluation
of the solution’s robustness and scalability.

The sound signals used in this evaluation are taken from the
dataset available in [6], filtered to include only TISCODEs with IDs
from 101 to 200.

To ensure experimental consistency, all five smartphones are
placed under identical conditions relative to the sound source, as
shown in Figure 3. Each device is positioned on a flat, non-reflective
surface, equidistant from the speaker, and oriented with the mi-
crophone facing the sound source. This setup is chosen to isolate
the influence of hardware and signal processing characteristics on
decoding performance, ensuring that differences in recognition
accuracy are attributable to the devices themselves rather than to
environmental variables.

The experimental setup is static, meaning neither the sound
source nor the receiving devices are in motion during the tests. Ini-
tially, the phones are placed at a fixed distance of 0.5 meters from
the speaker. In subsequent test sets, the distance is progressively
increased to evaluate the system’s range performance. Regarding
audio levels, we consistently adopt four emission thresholds: 25%,
50%, 75%, and 100% of the MacBook Air’s output volume. To quan-
tify the acoustic intensity, we use the Sound Meter [29] application
installed on each smartphone to measure the sound pressure level
(SPL) at 0.5 meters. The SPL values are then averaged across all
devices for each volume setting, resulting in approximately 44 dB,
47 dB, 53 dB, and 55 dB, respectively.

To simulate different acoustic environments, background noise
and music were played through the second emitter, a Xiaomi Redmi
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Figure 3: Experimental setup with a MacBook as the TIS-
CODE emitter, five smartphones as receivers, and an addi-
tional smartphone generating background noise to simulate
interference.

Note 9 Pro smartphone, positioned 0.3 meters above the receivers
and at the same distance from the TISCODE source as the smart-
phones. The Xiaomi’s volume was set to 40% for music and 60% for
other ambient noise.

To ensure reproducibility and isolate the impact of environmen-
tal noise, we define a test configuration as a fixed combination of
TISCODE playback volume and distance between the source and the
smartphone. Each scenario corresponds to a specific background
noise condition and is evaluated under one or more configurations.

For each configuration, we randomly select a set of 10 TISCODE
signals, which are transmitted once per scenario. The same set is
reused across scenarios sharing the same configuration, allowing
for consistent comparison of system performance under different
acoustic environments.

In its current version, the application can either detect the OM
or fail. After the OM detection, the system proceeds to classify
the INFOCORE, which can be correctly identified or result in a
false positive. Detection results are computed as the number of
detected OMs over the total number of emitted TISCODEs. Then,
we calculate the correct classification rate as the ratio between the
number of correctly classified (i.e. not result in a false positive)
TISCODEs among those detected. If the OM of a TISCODE is not
detected or the TISCODE is misclassified, the test is not repeated.

4.2 Test Scenarios
We structured the experimental evaluation into five scenarios: in-
door and outdoor environments without artificial background noise;
the third one includes the presence of background music; the fourth
and fifth scenarios involve artificially added environmental sounds,
simulating an urban setting and a hospital scenario, respectively.
These controlled settings are designed to assess the robustness
and reliability of the TISCODE system under different acoustic
conditions, reflecting both ideal and real-world use cases.

The indoor environment corresponds to tests conducted in a
quiet, enclosed room with negligible ambient noise. This setting
enables precise measurement of system performance in near-ideal

conditions and serves as a baseline reference. Conversely, the out-
door environment consists of tests carried out in a private residen-
tial garden, where natural and unpredictable background noises are
occasionally present, such as wind, birds, traffic, pedestrians, and
dogs. In these two contexts, background music will then be added,
defining the third category, in order to assess the robustness of the
application in the presence of musical interference.

The fourth and fifth scenarios introduce two real-world case
studies designed to simulate environments where access to digital
information is often limited for individuals with disabilities or spe-
cial needs: the urban transportation scenario and the healthcare
scenario.

Urban transportation scenario: In this scenario, we used back-
ground noise from urban transportation environments, such as
traffic sounds, people conversing along the street [1] and atmo-
spheric phenomena (rain, wind, thunderstorm) [33], to simulate
a realistic context, such as a bus, metro, or tram stop. Visually
impaired users often face difficulties accessing public transport
schedules and real-time arrival information [16].

Healthcare scenario: Healthcare scenario mimics a hospital wait-
ing area or entrance, where ambient noise is often composed of med-
ical equipment beeps, announcements, and human voices [31]. In
such contexts contactless and sound-based solution like TISCODE
could deliver location-specific instructions or guidance without
requiring visual interaction or manual input.

The goal of these experiments is to measure the detection and
classification accuracy of TISCODE system. These findings may
guide future deployment strategies, including the positioning of
fixed TISCODE emitters in public spaces or institutions to maxi-
mize accessibility and reduce the impact of the digital divide for
vulnerable user groups.

5 Results
This section presents the performance evaluation of the TISCODE
application (April 2025 release), focusing on two key aspects: the
detection accuracy of the OM and the classification accuracy of the
INFOCORE. Tests were conducted across the described scenarios
to assess the system’s limitations, strengths, and robustness under
varying acoustic conditions.

We first examine results from indoor and outdoor tests without
background noise (Sec. 5.1), followed by experiments involving
ambient music (Sec. 5.2). We then evaluate the system in two real-
world scenarios, i.e. urban transportation and healthcare (Sec. 5.3),
and conclude with a comparative analysis across all test conditions
(Sec. 5.4).

5.1 Indoor and Outdoor Performances
Table 2 reports results from indoor tests, with the TISCODE emitted
at a fixed distance of 0.5 meters from the smartphone microphone.
When the output volume of the laptop is set to 75% or higher, all
devices achieve 100% OM detection. At 50%, most devices maintain
perfect accuracy, with the exception of the Galaxy A03, which drops
to 90%. However, when the volume is reduced to 25%, performance
degrades significantly. Both the Galaxy A03 and the Honor 9X fail
to detect the TISCODE entirely (0% detection), while the Moto E7
exhibits only a slight drop in performance, reaching a 90% detection
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rate. Similar trends are observed in outdoor conditions (Table 5),
where the lowest performance occurs again at 25% volume. Mi-
nor degradations are also observed at intermediate volume levels
(50–75%), but detection remains above 50% when the volume is set
to 50%.

When the volume is fixed and distance increases, as shown in
Table 3 (indoor tests), we observe that, except for the Galaxy A03, all
devices maintain a detection rate above 70% at 1.5 meters and never
fall below 60% at 2 meters. Samsung devices tend to perform less
reliably, with the Galaxy A55 being the only device to report false
positives. In outdoor conditions (Table 6) performance generally
declines slightly across all models, yet the Moto E7 consistently
achieves OM detection rates above 70%, demonstrating superior
robustness.

From these preliminary analyses, it is evident that the appli-
cation yields satisfactory results, particularly at distances below
1.5 meters and with playback volumes above 50%. However, the
overall performance is significantly influenced by the quality of
the smartphone microphones, and the detection of the OM signal
currently represents a bottleneck within the system.

5.2 Effects of Background Music
We evaluate recognition performances in the presence of ambient
sounds and music. Table 4 presents a comparative analysis in an
indoor setting, with and without background music, at a fixed
distance of 0.5 meters from the sound source emitting the TISCODE
at 50% volume. The results show that for the Moto E7 and the Oppo
A54s, the only noticeable performance degradation occurs in the
classification of the INFOCORE, likely due to interference from the
music signal. In contrast, the Galaxy A03 and Honor 9X exhibit
a significant drop in OM detection performance under the same
conditions.

We can observe a similar, though slightly more pronounced,
trend in the outdoor scenario with background music, as shown in
Table 7. Despite the increased difficulty in detecting the OM, the
overall classification accuracy remains comparable to the results
obtained in the outdoor scenario without music, albeit with slightly
reduced detection rates.

5.3 Urban and Healthcare Scenarios
We simulated two complex acoustic environments: an urban traffic
scenario and an indoor hospital setting. For the urban environment,
we consider multiple combinations of typical background noise
sources, including vehicular traffic, weather-related sounds, and
human speech.

Table 8 shows that the presence of speech significantly affects
the detection of the OM, whereas traffic noise more critically im-
pacts the classification accuracy of the INFOCORE signal. When
analyzing the impact of traffic and weather noise at a distance of 0.5
meters, detection of the OM remains reliable even at 50% volume.
However, at a distance of 1 meter, the TISCODE volume needs to
be increased to at least 75% to improve classification performance,
yet in only 2 out of 5 cases does it exceed a 60% classification rate.

When substituting traffic noise with human speech, the overall
performance decreases further. Specifically, two devices, the Galaxy
A03 and the Honor 9X, achieve only 40% and 30% recognition,

respectively, at a 1-meter distance with the TISCODE volume set to
75%. In contrast, the remaining three devices consistently exceed a
60% recognition rate under the same conditions.

In the hospital scenario (Table 9), detection of the OM drops
below 40% only whenwe set the volume to 50% at a 1-meter distance.
In all other conditions, OM detection remains above 60%, with
classification rates reached up a minimum of 89%.

5.4 Comparative Analysis
Figure 4 summarizes the overall system performances, averaging
results across all smartphones and test conditions. Background
music emerges as the most challenging scenario, particularly for
OM detection. Since TISCODE is inherently designed as a short
musical sequence, the presence of additional background music can
interfere with accurate recognition. However, such a scenario is
less likely to occur in real-world use cases, as TISCODE is intended
for environments where loud background music is uncommon.

Across all conditions, average OM detection never falls below
54%, while INFOCORE classification remains above 82.75%. Notably,
in Figure 5, the Moto E7 outperforms all other devices despite its
low cost, with detection rates never below 85% and classification
accuracy only dropping under background music conditions.

Figure 6 presents overall recognition performance in noisy envi-
ronments at a 1-meter distance from the TISCODE source emitting
at 50% volume. In this configuration, TISCODEs are correctly de-
tected and classified in 72% of the cases. Focusing specifically on
INFOCORE classification (Figure 7), the correct recognition rate in-
creases to 90%, with only 10% of cases resulting in misclassification,
as shown in Figure 7.
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Table 2: Indoor scenario: Average detection and correct classification rates for each device. The distance is fixed at 0.5m and the
intensity varies (25%, 50%, 75%, 100%).

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Intensity Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

25% 0% 0% 90% 100% 50% 100% 0% 0% 20% 100%
50% 90% 100% 100% 100% 100% 100% 100% 100% 100% 100%
75% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 3: Indoor scenario: Average detection and correct classification rates for each device. The intensity is fixed at 50% and the
distance varies (0.5m, 1m, 1.5m, 2m).

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Distance [m] Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

0.5 100% 100% 100% 100% 100% 100% 90% 100% 100% 100%
1.0 100% 100% 100% 100% 100% 100% 100% 90% 100% 100%
1.5 50% 100% 90% 100% 100% 100% 70% 100% 90% 100%
2.0 50% 100% 100% 100% 60% 100% 100% 100% 60% 66.66%

Table 4: Indoor scenario: Comparison between detection and correct classification rates with and without music under the
same conditions. Distance is fixed at 0.5m and intensity at 50%.

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Music Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

× 100% 100% 100% 100% 100% 100% 90% 100% 100% 100%
✓ 50% 60% 100% 80% 100% 90% 10% 100% 70% 85.72%

Table 5: Outdoor scenario: Average detection and correct classification rates for each device. The distance is fixed at 0.5m and
the intensity varies (25%, 50%, 75%, 100%).

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Intensity Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

25% 0% 0% 40% 100% 70% 85.72% 20% 100% 10% 100%
50% 50% 100% 100% 80% 100% 100% 60% 83.33% 60% 83.33%
75% 90% 100% 100% 100% 100% 100% 100% 80% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 6: Outdoor scenario: Average detection and correct classification rates for each device. The intensity is fixed at 50% and
the distance varies (0.5m, 1m, 1.5m, 2m).

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Distance [m] Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

0.5 80% 75% 100% 90% 100% 80% 40% 75% 100% 90%
1.0 20% 100% 90% 77.77% 70% 85.71% 30% 33.33% 50% 100%
1.5 0% 0% 70% 71.42% 80% 50% 10% 100% 80% 50%
2.0 20% 100% 90% 77.77% 10% 0% 50% 60% 100% 80%

Table 7: Outdoor scenario: Comparison between detection and correct classification rates with and without music under the
same conditions. Distance is fixed at 0.5m and intensity at 50%.

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Music Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

× 80% 75% 100% 90% 100% 80% 40% 75% 100% 90%
✓ 30% 66.66% 80% 75% 80% 87.5% 0% 0% 20% 100%
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Table 8: Urban traffic scenario: comparison between detection and correct classification rates in an urban sound scenario with
traffic, weather noises and background voices

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Traffic Weather Voices Distance [m] Intensity Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

✓ ✓ × 0.5 50% 100% 80% 100% 70% 90% 88.89% 70% 57,14% 100% 80%
✓ ✓ × 0.5 75% 100% 90% 100% 90% 100% 100% 90% 77.77% 100% 100%
✓ ✓ × 1 50% 0% 0% 80% 87.5% 10% 100% 30% 66.67% 60% 83.33%
✓ ✓ × 1 75% 100% 80% 100% 70% 100% 90% 70% 57.14% 100% 80%

× ✓ ✓ 0.5 50% 100% 90% 100% 90% 90% 100% 10% 100% 70% 100%
× ✓ ✓ 0.5 75% 100% 100% 100% 100% 100% 90% 30% 100% 100% 100%
× ✓ ✓ 1 50% 0% 0% 0% 0% 10% 100% 0% 0% 0% 0%
× ✓ ✓ 1 75% 40% 100% 100% 90% 60% 100% 30% 100% 80% 100%

Table 9: Healthcare scenario: comparison between detection and correct classification rates in an hospital sound scenario.

Samsung Galaxy A03 Motorola Moto E7 Oppo A54s Huawei Honor 9X Samsung A55

Distance [m] Intensity Detection Classification Detection Classification Detection Classification Detection Classification Detection Classification

0.5 50% 90% 100% 100% 90% 90% 88.89% 10% 100% 100% 100%
0.5 75% 100% 100% 100% 100% 90% 100% 30% 100% 100% 100%
1 50% 10% 100% 40% 75% 10% 0% 20% 50% 20% 50%
1 75% 60% 100% 100% 100% 100% 100% 70% 100% 100% 100%

72%

20%
8%

Detected and Classified
Not Detected
False Positive

Figure 6: Average full recognition rates of TISCODE at a
1-meter distance and 50% volume under background noise
conditions.

90%
10%

Correct Classification
False Positive

Figure 7: Average INFOCORE correct classification rates un-
der various background noise conditions at a 1-meter dis-
tance and 50% playback volume.

6 Conclusion and Future Works
This work introduced and evaluated TISCODE, a sound-based sys-
tem leveraging SSMs to facilitate equitable access to digital content,
particularly for individuals with visual or motor impairments. Our
experimental results, conducted across diverse environments and
smartphone models, demonstrate that the TISCODE application
can reliably classify sound messages and retrieve relevant digital
content with considerable accuracy. By enabling passive, eyes-free,
and hands-free interaction with digital information, TISCODE con-
tributes to reducing cognitive and operational barriers often faced

by users with disabilities. Its integration into public infrastructure
and smart environments holds promise for bridging the digital
divide and fostering accessible-by-design digital ecosystems. The
application is still at the prototype stage and is not yet publicly avail-
able for download. All tests conducted so far have involved sighted
individuals without disabilities. Once the application reaches amore
mature stage, further evaluations will be necessary to assess the
Quality of Experience for the target user groups, particularly those
the system is intended to assist in reducing the digital divide.

Throughout the experiments, the main performance bottleneck
identified was the detection of the OM, which consistently showed
lower detection rates compared to the subsequent INFOCORE clas-
sification.

Future work will focus on improving the robustness of OM detec-
tion and enhancing the system’s scalability to ensure practicality,
adaptability, and real-world impact. Additionally, efforts will be
directed toward defining a confidence threshold for INFOCORE
classification. It is critical that the content delivered to the user
corresponds exactly to the predefined information, especially in
assistive contexts, to prevent confusion or distress. We will there-
fore explore a threshold mechanism that classifies uncertain or
low-confidence TISCODE instances as “unrecognized” prioritizing
safety and reliability over incorrect delivery—particularly in noisy
environments.

By reshaping the way digital information is accessed and experi-
enced, TISCODE paves the way for more inclusive, human-centered
interaction paradigms, reinforcing the role of sound as a universal
interface.
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