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Abstract—Cyber-physical systems result from the integration
of digital technologies into everyday material entities to enable
an interaction between computational and physical components.
This study extends an existing framework of information fresh-
ness optimization, which focused on monitoring and timely re-
porting of events, to multiple sensing/transmission opportunities
in the observation window. We present an analytical framework
for joint staleness minimization for an event with known distri-
bution, as commonly encountered in real-world applications like
industrial IoT and healthcare, deriving the closed-form solutions
for optimal reporting times t1 and t2. This creates a foundation
for cyber-physical systems requiring timely monitoring of events
under limitation preventing persistent monitoring.

Index Terms—Internet of Things; Age of Information; Optimal
scheduling; Event detection.

I. INTRODUCTION

In recent years, mobile devices and real-time applications
have significantly amplified the demand for timely data up-
dates across numerous domains [1]. Services such as news
feeds, weather alerts, traffic notifications, email messages,
stock prices, social media, and mobile advertisements heavily
rely on up-to-date content. In parallel, real-time updates are
essential for cyber-physical control systems, including sensor-
based environmental monitoring [2], autonomous vehicles [3],
and biomedical platforms [4]. This dependence on timely in-
formation is driven by an ever-increasing need for immediacy
across a variety of applications and systems [5], [6].

Meeting this need is non-trivial, as practical constraints such
as restricted bandwidth and limited energy resources, as well
as unpredictable delays in real-world networks pose significant
challenges. This calls for adaptive, intelligent decision-making
mechanisms capable of dynamically scheduling observations
and data transmissions based on probabilistic knowledge about
the occurrence of events, rather than assuming continuous data
generation [7]. As such, the strategic timing of information
updates becomes a crucial design concern, particularly when-
ever events are rare but impactful, and any delay or failure in
detecting such events can result in severe consequences [8].

To quantify the freshness of status updates in network
systems, the seminal reference [9] introduced age of infor-
mation (AoI) as a performance metric defined as the time
between the generation of the most recent update at the source
and its eventual reception at the destination point [10], [11].
Since then, AoI has emerged in the literature in multiple

contributions due to its analytical approach to assess real-time
performance and has become a key performance indicator in
environments involving sporadic sensing, real-time decision-
making, and machine-to-machine (M2M) communication [12].

Originally proposed for a monitoring node that transmits
time-stamped status updates to a far-away destination, AoI is
a good way to summarize in one indicator both frequency and
delay of updates. Depending on the application, one may want
to consider a minimization of average or peak AoI, as well
as more refined and application-specific metrics such as age
violation probability [13]. Additionally, other metrics can be
combined such as energy consumptions or transmission costs,
and correlation among multiple sources [14]–[16].

However, most research focusing on AoI assumes a contin-
uous data generation model. In contrast, many real-world sys-
tems operate under context-aware and event-driven paradigms,
where data are not constantly available but instead generated
sporadically and must be transmitted selectively and efficiently
[17]. In such scenarios, solely targeting a low average AoI may
not yield efficient outcomes, particularly when events occur
infrequently.

As a response to these challenges, this study introduces an
optimization framework aimed at monitoring an event taking
place at a random time x that is known to happen within a
bounded time window [0, 1]. Building upon a previous model
developed in [18] for a single observation, our work extends
the analysis to handle two optimal monitoring times t1 and t2
that minimize expected penalties derived from the AoI metric.
For the sake of analytical tractability, we take a triangular
distribution for x, with a tunable parameter a corresponding
to the peak of the triangle (hence, the statistical mode of
the distribution). We are able to identify how the results
of the single observation extend to a multiple observation
case, namely by combining a split of the interval for a
complete monitoring and saturation effects around the border.
Especially, when event more frequently happens at the end of
the window, the optimal penalty is lower, coherently with the
value of AoI staying contained.

The rest of this paper is organized as follows. In Section
II, we review related work. Section III presents the system
model and solves it analytically. We present numerical results
in Section IV and we conclude in Section V.
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II. RELATED WORK

The concept of AoI was introduced in pioneering papers like
[9] and further elaborated by many follow-ups (see [19] for a
detailed review) to describe the timeliness of real-time status
reporting in sensing applications, specifically for vehicular
networks. Over the last years, it has become increasingly
popular in light of the increasing popularity of real-time ap-
plications for smart environment and cyber-physical systems.
In particular, it has found application in industrial IoT [20],
mission-critical systems [21], eHealth [4], [22], and smart
agriculture [23].

This marks a converging trend of distributed multi-agent
systems towards time-sensitive communications, which is one
of the main pillars of next generation communication systems
[1]. As such, AoI becomes critical as a way to represent, and
possibly minimize, information staleness and ensuring timely
delivery. As a side note, this is also a fertile ground for the
application of game theory, which fundamentally relies on the
coexistence of multiple objectives and multiple agents in the
same system; in this spirit, coexisting sources of information
may compete when resources are limited [24] or just their
absence of coordination may result in inefficiencies [25].

At the same time, the widespread adoption of digital twins
as a virtual counterpart of cyber-physical systems, requires
a tight synchronization, and AoI is often adopted as way
to represent it [26]. This reflects to many authors evaluating
AoI in the context of semantic communications [27], possibly
leading to further extensions of the metric itself such as age
of task information (AoTI) proposed in [28].

However, in this paper we take a slightly different per-
spective, by focusing not just on the value itself of AoI,
but rather on how timely measurements of a critical event
are made possible by an AoI-inspired framework. Thus, our
approach concerns more the practical collection of data to-
wards AoI minimization, rather than assuming it for granted
and optimizing other network aspects, i.e., upper layers and/or
coordination among agents. Indeed, there exist studies where
the concept of information freshness is approached by also
considering practical details on the message exchange. For
example, in [16] it is discussed how preserving accurate
timestamps is crucial, along that different transport layer
protocols and congestion control mechanisms influence AoI
performance.

In [13], the probability of peak-age violations and delay vi-
olations are analyzed in point-to-point communication systems
utilizing short information packets, with an evaluation of how
parameters like frame size and undetected error probability
influence data freshness. In [17], it is argued that sporadic
generation of data, as typical of many sensing systems, can
lead to a generally different optimization of AoI as opposed
to the more standard scenario of generate-at-will that is
considered in the literature [11].

On the one hand, this may lead to statistical inference
approaches to estimate the actual AoI from the statistics of
the underyling process, which is the idea behind some recent

contributions [29], [30]. On the other hand, this implies to
carefully select the observation instant for a system whenever
persistent monitoring is too expensive especially since the
precise temporal location of the relevant events, albeit confined
to a certain horizon, is not known with certainty.

For this reason, in this paper we expand upon the work of
[18], which proposed an optimal AoI-driven monitoring of an
event whose precise instant is not certain, but it is known that it
falls within a given finite window and according to a certain
probability density function. For the sake of simplicity, that
paper considered only one observation, whereas we expand the
analysis to the case of multiple observations (we consider two
observations in practice, but the design is easily generalizable
to more points). This can be seen as an extension along the
lines of assuming sporadic event generation and/or anomaly
reporting, and we show how an optimized decision mechanism
achieves a vanishing additional penalty to AoI when reporting
updates about an event whose actual timing is uncertain.

III. SYSTEM MODEL

In this study, we examine a time-sensitive event monitoring
problem in a cyber-physical system. We assume that a relevant
event of interest takes place at a random time x, which is
known to be confined within an observation window, which is
taken with a normalized length as [0, 1]. The system seeks to
detect the event occurring at time x by making observations
pre-established time instants. In our analysis, we consider two
observation instants t1 and t2, thereby satisfying 0 < t1 <
t2 ≤ 1. The exact order between x, t1, and t2 is unknown
and will be discussed later as depending on its realization, the
system suffers a different AoI-based penalty.

As a further assumption, we follow [18] in assuming that the
occurrence time of the event x is modeled using a triangular
probability distribution with mode equal to a, where a ∈
(0, 1). This assumption is made both for the sake of analytical
tractability but also because it reflects situations where it is
known where a random event is more likely to happen. In par-
ticular, we consider a triangular distribution around a specific
central point, a scenario frequently encountered in industrial
and healthcare systems [17]. We also remark that, according
to [23], a Gaussian distribution can be equivalently used, but
at the price of losing a concise closed-form expression and
necessarily requiring numerical solutions.

Thus, the probability density function (pdf) of x is defined
as follows:

f(x) =


2x
a , 0 ≤ x ≤ a
2(1−x)
1−a , a < x ≤ 1

0, otherwise
(1)

The system attempts to detect the event at one of the two
observation times depending on when it occurs:

• If x ≤ t1: the event is detected at time t1 (early
detection).

• If t1 < x ≤ t2: the event is detected at time t2 (mid
detection).



• If x > t2: the event is detected at the end of the window,
i.e., at time 1 (late detection).

The cost of delayed detection is quantified using a penalty
function based on the square of the detection delay, to mimic
an AoI-based penalty [19]. These expressions represent the
instantaneous penalty incurred for a given realization of x,
depending on which region it falls into.

To account for the randomness of x, the expected penalty
over the time interval is calculated by integrating the penalty
over the pdf f(x). This results in the following total expected
cost function:

E[P (t1, t2)]=

∫ t1

0

(t1 − x)2

2
f(x)dx (2)

+

∫ t2

t1

(t2 − x)2

2
f(x)dx+

∫ 1

t2

(1− x)2f(x)dx

This function represents the average cost of using observa-
tion times t1 and t2 to detect an event randomly occurring
within the interval [0, 1]. It captures the trade-off between
early resource consumption (checking too soon) and potential
penalties from delayed detection (checking too late).

By minimizing this expected cost with respect to t1 and t2,
we aim to find the optimal observation instants that provide
the best freshness-efficiency trade-off under a given triangular
distribution. This model is aligned with task-aware concepts
such as AoTI [28].

IV. ANALYTICAL FRAMEWORK

Building upon the system model introduced in the previ-
ous section, we now formalize the analytical framework for
evaluating and minimizing the expected penalty associated
with two-stage event monitoring under a triangular event
distribution.

The goal is to minimize the expected total penalty
E[P (t1, t2)] as a function of the sampling times t1 and t2,
where 0 < t1 < t2 ≤ 1. The expectation is taken over
the random variable x, the event occurrence time, the event
occurrence time, drawn from a triangular distribution peaking
at.

Following the AoI-based penalty framework [18], the ex-
pected penalty P (t1, t2) is computed as a function of t1 and
t2, with the following closed-form solution.

Case A: t1 ≤ t2 ≤ a:

P (t1, t2) =
1

12a

[
− 2t41 + 8t31 − 6t21 + 2t42 − 8t32 + 6t22

+ a3 − 3a2 + 3a
]

Case B: t1 ≤ a ≤ t2:

P (t1, t2) =
1

12a(1− a)

[
(1−a)(−2t41+8t31−6t21+a3−3a2+3a)

+ a(−2t42 + 8t32 + 6at22 − 18t22 − 4a2t2 + 12t2 + a3 − 3)
]

Fig. 1. Illustration of the penalty minimization point through fmincon for
different values of a.

Case C: a ≤ t1 ≤ t2:

P (t1, t2) =
1

12(1− a)

[
−2t41+8t31+6at21−18t21−4a2t1+12t1

+ 2t42 − 8t32 − 6at22 + 18t22 + 4a2t2 − 12t2 + a3 − 3
]

These closed-form solutions enable the evaluation of ex-
pected penalty across different triangular distribution config-
urations and allow for an efficient optimization. Also, the
expression can be generalized to more than 2 observation
points but with an even more cumbersome derivation, which
is therefore omitted here. In the following section, we will
discuss practical numerical evaluations of this analysis.

V. RESULTS

We evaluated the performance of a two-stage event moni-
toring strategy over a normalized observation window [0, 1],
where the event occurrence follows a triangular probability
distribution with varying mode a. Using both brute-force grid
search and MATLAB fmincon optimization algorithm, we
identified the optimal observation times t1 and t2 that mini-
mize the expected penalty. Fig. 1 reports a three dimensional
plot of the resulting penalty as a function of t1 and t2 showing
the unique minimization point in the domain 0 < t1 < t2 < 1.

More in general, as it is immediate to expect, the optimal
observation times shift to later values as the value of the
distribution peak a increases. This is reported in Fig. 2 that
shows the optimal positioning of the observation points t1 and
t2, as well as the resulting expected penalty. A saturation effect
is also observed, in that when the most likely values of x are
those around the end of the window, with a flat trend near the
end of the interval as the distribution becomes more skewed.
When a surpasses a threshold at around 0.75, it becomes
convenient to set the observation points earlier than that, to
avoid the case of a high penalty even in the unlikely case of
an early event. This is consistent with the fact that, even though
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Fig. 2. Penalty minimization under two transmission points

the event is ultimately not captured by either observation, the
notion that nothing happened in the initial observations still
gives valuable information through logical inference [30].

Such results are in line with what obtained in [18]. In
addition, they also imply that a two-point monitoring reduces
the late detection penalty compared to the single-observation
case, which is visible by comparing the expected penalties.
Finally, these results can also be generalized to more than
2 observation, even though the equations become even more
complex and they are not reported here. We report in Fig.
3 the trend for 3 observation points, which shows qualitative
similarity with the results presented in Fig. 2 and highlights
how the saturation point is pushed even further, but the trend
is overall flatter due to the presence of multiple observations.

VI. CONCLUSIONS

Real-time decision-making influenced by the Age of Infor-
mation (AoI) in cyber-physical systems involves complex dy-
namics, providing both theoretical perspectives and real-world
relevance [16]. The coordination of prompt event recognition
and efficient transmission planning is vital for maintaining
control performance and meeting the demands of time-critical
communication systems [21].

We considered a multiple-observation detection scenario for
an event taking place within a finite observation window,
where the event time is only statistically characterized via
a probability distribution. Specifically, the event is taken as
following a triangular probability distribution with a variable
peak. We studied the case of two observation points, aiming
to minimize the expected AoI-related penalty by determining
their optimal placement.

Building on this foundation, we formulated a mathematical
optimization model that quantifies the penalty associated with
delayed or missed event detection in our framework. We
derived closed-form expressions and we discussed the result-
ing trends. This basic analysis can be extended to different
analytical frameworks, with other probability distributions [23]
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Fig. 3. Optimal observation point for three measurements

or more observation points and/or multiple events, with the
goal to align decision-making with the probabilistic nature of
the system.

Indeed, besides the development of real-time applications, it
is also important to gain insight on how intelligent systems can
react to timing uncertainty and event distribution asymmetry in
dynamic environments. For this reason, our analytical frame-
work lays a foundation for further research into alternative
probability models, event correlations, or even monitoring of
multiple concurrent events.

Additionally, future extensions may explore scenarios in-
volving multiple intelligent agents making sequential or de-
centralized decisions, either within a dynamic system or from
a game-theoretic perspective [25]. Such work would contribute
to understanding the strategic behavior and resulting efficiency
of collaborative event detection in complex cyber-physical
infrastructures.
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