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Abstract—We use Bayesian game theory to investigate the in-
teraction between a system controller and an additional unknown
agent in a cyber-physical system. The system controller performs
some monitoring for real-time operation management, with the
aim of minimizing the age of incorrect information (AoII). The
additional agent reports some extra information, which ideally
can serve to aid the controller and meet the same objective
of decreasing AoII, but it is uncertain whether these actions
are useful or correspond to (possibly international) false data
injection in the system. The controller only has information in
terms of probability of the legitimacy of this extra agent through
a common prior, and also knows that, in case it is malicious, it
will try to increase AoII instead. Our analysis reveals that, under
rational behavior, an adversary can effectively masquerading as
a sensor injecting legitimate data, as the controller can hardly
distinguish the behavior of a true helper from that of an attacker.
However, under variable data drift, the strategic behavior of the
external agent can give away their type.

Index Terms—Cybersecurity; Real-time applications; Sensor
networks; Age of incorrect information; Bayesian game theory.

I. INTRODUCTION

Cyber-physical systems (CPS) seamlessly blend physical
processes with sensing, communication, and control features,
providing real-time applications for many environments, from
autonomous vehicles and smart grids to industrial automation
and remote healthcare [1]–[3]. As they expand to multiple
sensing units, they shift from point-to-point architectures to
more complex interconnected networks consisting of sensing,
computing, and actuating nodes. This enables distributed data
collection and collaborative decision making, greatly enhanc-
ing system coverage, scalability, and responsiveness. This mul-
tifaceted structure allows a CPS to tackle more complex real-
time tasks, but also significantly expands the attack surface,
making it challenging to detect, isolate, and defend against
malicious manipulations such as false data injection [4]–[6].

In the context of real-time services, a suitable metric that
can be used to quantify both accuracy and freshness of the
exchanged information is age of incorrect information (AoII).
Introduced by [7], AoII at time t is quantified by the value
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that we write as δ(t), corresponding to the difference between
the current time index and that of the last time σ(t) the system
information was still considered accurate. If s(t) denotes the
actual state of the monitored system at time t, and ŝ(t) the
last received estimate of the state at the destination, it is
assumed that, whenever there is an explicit report about the
state of the system by one of the monitoring sensors at times
τ1, τ2, . . ., then δ(t) is set to 0 since in that case s(τj) = ŝ(τj)
. Whenever ŝ(t) differs from s(t) by more than a tolerance
value ε, the system information is no longer accurate, and δ(t)
grows linearly until a new status report resets it to 0. Formally,

δ(t) = t− σ(t) (1)
where: σ(t) = min{t > τ (t) : |s(t)− ŝ(t)| > ε]} ,

τ (t) = max
j
{τj < t} .

AoII is a joint characterization of key aspects of data
reliability and timeliness [8], useful for industrial control and
safety-related applications, where inaccurate and/or obsolete
information may cause the system to malfunction [9]. We
consider a system alternating between a binary “right” or
“wrong” condition. Transitions between states are caused by
status reporting by a system controller and natural changes in
the systems (called “drift”). The former causes a wrong state
information to become right, and the latter does the opposite.

In a single-agent system, these are the only ways the state
can change. However, for multisensor scenarios, there may
be additional agents injecting data, and we assume that these
supports the monitoring, as they correctly report about the
system state, or correspond to intentional false data injection
[10]. We assume that these actions contribute accordingly to
the correct measurement rate of the system or to the data drift
[11], respectively. Moreover, minimizing AoII is no longer the
only objective to consider, as if a malicious agent injecting
false data is present, it will try to maximize AoII instead, to
pilot the system operation outside of a correct management.

This interaction can be framed with game theory [12]–[15],
specifically in an adversarial setup. Whenever the information
on these extra sensors available to the system controller is
incomplete, an extension to Bayesian game theory is required
[16], [17]. This happens not only because it is not known to
the controller whether they will inject correct or false data but



also, according to the discussion above, since their objective
and strategic gameplay will be different.

From this background, we analyze the case where a system
controller N tries to achieve a low expected AoII ∆ = E[δ(t)],
and is at the same time subject to cost limitations, so it also
seeks to minimize its own activity. An external node X is
present in the system and offers an aid to monitor the system,
which decreases AoII, allowing the controller to save effort.
Node X is under a similar cost limitation, so it actually tries
to minimize the sum of ∆ and its activity cost. However,
it can be suspected that X is malicious and tries to inject
false data, increasing ∆ rather than decreasing it. As seen in
the following, this interaction develops into a Bayesian game,
where the two players N and X decide their activity rate, and
X has a private type (good/evil) describing its behavior.

It is found that the game admits a unique Bayesian Nash
equilibrium (BNE), which is computed and discussed. Beyond
the values resulting from the BNE, a point of interest is
whether the controller is able to tell the two types of X apart
[18], [19]. It is interesting to see that changing the values of the
costs is not particularly revealing to the nature of X. However,
if N is able to modify the system drift (i.e., the rate at which
the system state naturally changes and becomes incorrect), it
may obtain a way to identify malicious sources.

The remainder of this paper is organized as follows. In
Section II, we review related works. Section III presents the
system model and our Bayesian game theoretic analysis. We
present results in Section IV, and conclusions in Section V.

II. RELATED WORK

The approaches to modeling AoI and AoII under attack
through game theory found in the literature generally assume
that the adversary is persistently malicious [2], [10], [11],
[20]–[23], with extensions possibly involving multiple adver-
saries competing to attack [13]. A more niche line of research
involves studies in which a non-malicious extra node is consid-
ered; e.g., [24] considers a relay corroborating the information
sent by a source and possibly increasing information freshness.
However, the relay is always collaborative, and game theory
is invoked only due to the desire of both agents (the controller
and the relay) to contain their activity costs.

Scenarios with ambiguous external nodes that possibly
involve an extension to Bayesian games are not common.
Most of the time, the goal is instead to remove the uncertainty
through detection techniques. A preliminary study in this sense
is found in [16], which focuses on identifying critical nodes
that are more vulnerable to attacks, with particular reference to
smart grids, which are highly sensitive to false data injection.
In [25], [26], this is pushed forward to encompass the most
advanced techniques involving automated reasoning.

Some contributions [17]–[19], [27], [28] use adversarial
Bayesian games for cyberphysical security. In these papers,
a CPS is under attack and the controller has incomplete
information about the adversary. The uncertainty is related to
the technology, location, or energy level of the attacker and
the nature of the attack is different, corresponding to a denial
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Fig. 1. Continuous time Markov chain describing z(t), i.e., the state of the
system being accurate or not.

of service/jamming in [17] and [19], while in [18] and [28] it
can include false data injection but without influencing AoII.
Finally, in [27] the Bayesian element relates to whether the
opponent will adapt its behavior or not, but the scenario still
only focuses on jamming and does not consider AoII.

In contrast, we ground our analysis in [11], where the
strategic gameplay revolves around the goal of minimizing
AoII for the system controller, while also including costs
associated with the activity of the players. For that analysis,
though, complete information is available to both players, and
the scenario with incomplete information about the nature of
the attacker has not yet received a characterization.

III. SYSTEM MODEL

We consider a CPS where we track the correctness of the
monitored information using a binary state model, where the
state of the information at the destination is right (R) or wrong
(W). According to the previous notation introduced in (2),
these states correspond to |s(t)− ŝ(t)| being less than or more
than ε, respectively. We follow the model introduced in [11],
where the transitions between states are treated as memoryless,
and therefore a continuous-time Markov process captures the
dynamics of information correctness.

Let z(t) ∈ {R,W} denote the value of this binary state at
time t. Note that z(t) is different from the actual state of the
system s(t), since our assessment is related to the AoII value,
which abstracts from the numerical measurements and only
considers whether they are correct or not. The model used for
z(t) and its transitions is represented in Fig. 1.

Transitions between states R and W occur due to (i) natural
drift and (ii) player-induced actions. The former describes that
condition R will inevitably deteriorate, as after a while the
system state will no longer be accurately known. This means
that the Markov chain has a transition from R to W with rate
d describing that the system information becomes inaccurate
on average after a time 1/d. In contrast, each measurement
sent by the controller reports accurate state information. We
assume that the controller measures and reports according to a
Poisson (memoryless) process whose average interarrival time
is 1/p, which implies a transition from W to R with rate p. It
is not restrictive to assume that updates are always successful,
as any unreliability in the update channel can be absorbed into
a rescaled p value, as discussed in [29].

In a similar non-Bayesian model introduced in [11], we for-
mulated a static game between a controller and an adversary.
In that model, the adversary injects false data at a certain
rate q, and the controller updates the state of the monitored



system at a rate p. The goal of the controller is to minimize
AoII while keeping the communication cost low, while the
adversary seeks to increase AoII while considering the cost of
disruption. The interaction is modeled using utility functions:

uN (p, q) = −∆− Cp, uM (p, q) = ∆−Kq, (2)

with ∆ being the expected AoII, and C, K are unit costs
(prices) for the controller and the adversary, respectively.
Transitions from W to R occur with a rate p (decided by the
controller), while the transition rate from R to W is d+q.

Here, we adopt an extended model, where an external agent
referred to as player X transmits additional information of
ambiguous nature. The impact of these depends on X’s type,
but the true nature of player X is not directly known to
the controller, introducing an element of uncertainty into the
system. Player X injects data with rate x and can belong to
one of two types: (i) Type G (Good): a cooperative participant
that can reinforce the controller’s information with more useful
updates; (ii) Type E (Evil): an adversarial agent attempting to
degrade information quality by injecting wrong data. We point
out that this corresponds to having two parameters associated
with player X, denoted as xG and xE . When player X is good,
xG > 0 and xE = 0. Otherwise, xE > 0 and xG = 0.
However, as visible in Fig. 1, this changes the placement
of the transitions and extends the original model (where xG
was never present) to a case where another player, other than
the controller, can affect the transition from W to R. Since
all transitions are memoryless and based solely on current
observations, the process z(t) still forms a Markov chain [9].

From a Bayesian game theory perspective, the controller
holds belief θ ∈ [0, 1] that player X is of type G and 1 − θ
that it is of type E. This model gives rise to a game with
incomplete information. A similar uncertainty structure has
been used in the recent literature to characterize cyberthreats
and cooperative behavior in age-sensitive systems [5], [18].

We define an interaction according to type-specific objec-
tives, where a Type G player injects helpful information at
a rate xG, to further reduce AoII through timely updates.
Conversely, a Type E player injects misleading or corrupt data
at a rate xE , attempting to increase AoII and degrade system
performance. The presence of such an ambiguity creates chal-
lenges for the controller, which must make decisions without
knowing the true intent of player X.

The controller does not directly know the type of player X,
but instead maintains a belief distribution over possible types.
As in any Bayesian game framework, some shared information
is still required for the players to interact. In this case, while
only player X knows its own type, the controller is informed
about the probability distribution over the types of player X. In
our case, this corresponds to knowing the value of θ, which is
common knowledge among players. In game-theoretic speech,
the value of θ is said to be a common prior [30].

Let ∆G(p, xG) and ∆E(p, xE) represent the expected AoII
when player X is of Type G or Type E, respectively. These are
derived from the steady-state probabilities of the underlying

Markov chain, as introduced in [11]. The controller seeks to
minimize an expected AoII, weighted by its belief:

E[∆(p)] = θ ·∆G(p, xG) + (1− θ) ·∆E(p, xE) .

The controller’s utility function is thus:

uN (p;xG, xE) = −E[∆(p)]− C · p (3)

where C is the non-negative unit cost of N for transmitting
updates. Player X’s utility can be defined in a similar way, but
with a dependence on player X’s type, to represent that type
G wants to minimize AoII, whereas type E wants to maximize
it, and both types want to keep their activity costs low.

Thus, we formulate the interaction between the network
controller and player X as a Bayesian game. Unlike complete-
information frameworks where all system parameters are com-
mon knowledge, here some information is only known to one
of the players. Player X has two possible types, and the specific
type is known to player X but unknown to the controller. The
interaction among these players leads to a Bayesian NE, where
(i) the controller chooses the update rate p∗ to maximize its
expected utility; (ii) each type of player X chooses its injection
rate (x∗G, x

∗
E) to best respond to p∗.

Formally, the Bayesian game is a quadruple (P, T ,S,U)
[30], consisting of the following. Set P contains the players,
i.e., the controller N and an external player X. Set T includes
the types, where player N is not typed and player X has a
private type tX ∈ {G,E}, with G being a helpful agent
(e.g., a cooperative relay or another legitimate source) and
E representing a malicious agent (e.g., injecting incorrect
information). The strategies are contained in S, and are the
status update rate p ∈ R+ for the controller N, whereas player
X selects an injection rate xt ∈ R+ that actually depends on
its type tX , ultimately describing whether X is collaborative
or malicious [17]. This means that the strategy of X is a pair
of non-negative real values, (xG, xE). We note that the latter
corresponds to a type agent representation of a Bayesian player
[30], where different types can be considered as split players.

The utilities in U are instead defined as follows. First, we
denote the average AoII for type t ∈ {G,E} as ∆t(p, xt).
The system’s expected AoII is then:

E[∆(p, xG, xE)] = θ ·∆G(p, xG) + (1−θ) ·∆E(p, xE) . (4)

Moreover, the controller incurs a cost C·p for maintaining
update rate p, and its utility is as in (3). Instead, player X
has type-specific objectives, i.e., its type G (helpful) seeks for
minimizing AoII ans its own injection cost, thus its utility is

uG(xG; p) = −∆G(p, xG)−K · xG (5)

where the negative sign describes that uG is to be maximized,
and K is a non-negative unit cost parameter (price of activity)
defined similar to C, see (2). Type E (malicious) has a
similarly structured objective and the same price K, but aims
to maximize AoII while minimizing its own cost, hence

uE(xE ; p) = ∆E(p, xE)−K · xE . (6)



Let πt
W denote the stationary probability of being in state

W under player type t ∈ {G,E}. We obtain:

πE
W =

d+ xE
d+ xE + p

, πG
W =

d

d+ p+ xG

The AoII terms in (4), (5), and (6) are derived from the
expected time spent in state W before being corrected as:

∆E(p, xE) =
πE
W

λEWR

=
d+ xE

p(d+ xE + p)
(7)

∆G(p, xG) =
πG
W

λGWR

=
d

(p+ xG)(d+ p+ xG)
, (8)

with the λ terms representing the return rate to R.
These expressions capture that malicious injection increases

the frequency of errors, whereas supporting transmissions
accelerate recovery to the correct system regime. Both events
influence the steady-state and transient behavior of the system.

The controller, unable to observe the realized type, evaluates
the expected AoII as per (4) and chooses an update rate p ∈
R+ to minimize a trade-off between the expected AoII and
communication cost from (3), i.e.,

uN (p;xG, xE) = − [θ∆G(p, xG)+(1−θ)∆E(p, xE)]− Cp .

Taking the derivative with respect to p yields the first-order
condition for optimality:

duN
dp

= −
[
θ · ∂∆G

∂p
+ (1− θ) · ∂∆E

∂p

]
− C = 0

This condition reflects the marginal benefit of the controller
in reducing AoII versus the marginal cost C. The controller
reacts to its belief θ about the type of player X, increasing p
when malicious behavior is more likely (that is, xE is high),
and reducing p when player X is more likely to cooperate.

To find the best response of player X, we note that its utility
depends on its type t ∈ {G,E} as (5) and (6), respectively. In
both cases, the optimal injection rate x∗t satisfies:

dut
dxt

= ±∂∆t

∂xt
−K = 0 (9)

where the + sign is for type E, who wants to increase AoII,
the − sign is for G, who wants to reduce AoII, and ∆t follows
(7) or (8) depending on t being E or G, respectively.

Despite using different expressions for the two types of
player X, we can draw conclusions analogous to the case
where X is certainly malicious as in [11]. The derivative
of ∆t in (9) follows K at the equilibrium, which captures
the sensitivity to the activity cost. Whatever the expression,
increasing xt exhibits diminishing returns for both types of
player X. Thus, we obtain a threshold-like behavior. Each
type of player X only finds it worthwhile to inject when the
marginal impact on AoII is significant enough to offset the
associated cost K. For example, type G may remain idle if the
controller is already updating frequently, while type E becomes
more aggressive when the controller is passive.

Thus, a BNE (p∗, x∗G, x
∗
E) exists when: (i) the controller

maximizes uN (p) based on current beliefs and type-dependent

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

Fig. 2. Strategies of the players vs. prior of X’s type being G θ, for controller
activity price C=1.0, player X’s activity price K=0.3, drift rate d=0.5.

responses; (ii) each type of player X chooses its best response
to p∗. Hence, the BNE satisfies a fixed-point relationship:

p∗ = arg max
p

[−θ∆G(p, x∗G(p))−(1−θ)∆E(p, x∗E(p))−Cp]
(10)

This implies that despite the complication caused by the
types of player X, a solution can be found by reasoning in
the expected values. This is in line with the principles of von
Neumann-Morgenstern utilities to work in expectation [30].
Thus, it is immediate that a BNE exists and is unique, which
can be obtained by solving (10) using numerical methods.

IV. RESULTS

We present numerical evaluations of the BNE to highlight
some interesting trends. The objective of our evaluations are
the strategic choices of the players, namely, the activity rate p
for the controller N and the activity rates xt for the external
player X, distinguishing the two values xG and xE depending
on the type of player being G or E, respectively.

The first parameters of interest are the unit costs of activity,
denoted as C and K for the controller N and the additional
player X, respectively. This means that the utility of player
N is decreased by Cp, and similarly the utility of player X
is decreased by Kx (note that the unit cost is the same for
both types of player X, since they are never present at the
same time). Also relevant are the probability θ that player X
is of type G and the default drift rate d, always present in the
system even in the absence of an adversary.

In Fig. 2, we report the strategies of the players versus
the prior θ, i.e., the probability of player X being of type
G. This highlights a subtle result of Bayesian game theory:
when θ increases, the controller tends to trust player X more
and decreases its own data transmission rate p. This implies
that both the good and evil versions of player X increase their
activity as θ increases. Type G does so to genuinely contribute
more to the decrease of AoII in the system, whereas type E
sees a window of opportunity to attack the system more often.
Note that the latter circumstance is less likely since θ is high;
yet, it implies a particularly advantageous situation for the rare
malicious attackers that are unexpected due to the controller
expecting a good player X due to the value of the prior.
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Fig. 3. Expected AoII vs. prior of X’s type being G θ, for controller activity
price C=1.0, player X’s activity price K=0.3, drift rate d=0.5.
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Fig. 4. Strategies of the players vs. controller activity price C, for player X’s
activity price K=0.2, prior of X’s type being G θ=0.8, drift rate d=0.5.

Fig. 3 shows that the trend of the expected AoII is relatively
flat. The figure also shows the individual contributions ∆E and
∆G, which are interesting only for high θ, where ∆E soars,
yet the overall ∆ decreases since the contribution of ∆E to it
is minimal. These trends show that the behavior of both types
is often similar, making it difficult to tell them apart.

Fig. 4 displays the strategies of the players versus the unit
cost C of the controller’s activity. The trend is similar to the
previous figure, since increasing C causes player N to be less
active; consequently, player X increases its data injection. In
Fig. 5, we display the strategies of the players versus the unit
cost K of player X’s activity. Here, the trend of player X’s
activity is obviously reversed (it decreases its activity in both
types, since they share the same K). For the specific values
chosen, player N slightly increases its activity and also xE
drops to 0 sooner than xG, but these are due to our numerical
choice of θ = 0.8, a relatively high value, implying that it is
likely that player X is good. However, these trends suggest
that neither the variations of C nor K are good indicators to
distinguish the types of player X. This weakens one conclusion
of [11], i.e., that increasing K can prevent system attacks (but
it can also block support from goodwill collaborators).

A better way to distinguish types can be through changes in
drift rate d, as visible from Fig. 6. Here, we show the strategies
of the players versus d, whose variations are a giveaway for the
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Fig. 5. Strategies of the players vs. player X’s activity price K, for controller
activity price C=1.0, prior of X’s type being G θ=0.8, drift rate d=0.5.
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Fig. 6. Strategies of the players vs. drift rate d, for controller activity price
C=1.0, player X’s activity price K=0.2, prior of X’s type being G θ=0.8.
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Fig. 7. Controller strategy p vs. activation price C, for different priors of X’s
type being G θ, player X’s activity price K=0.1, drift rate d=0.5.

malicious type. Specifically, when d increases, a collaborative
player of type G increases its activity, whereas a player of type
E decreases it. This is in line with the finding of [11], showing
that malicious players are less active under frequent drifts, as
they represent a deterioration of the system’s accuracy that
comes for free, whereas player X’s activity has a unit cost
K. However, a collaborative player X would be willing to
pay this cost to beneficially decrease AoII [24]. Thus, if the
system can control or is aware of drift variations, it can exploit
this to distinguish the types of an external player.



Finally, Fig. 7 shows another interesting trend that aligns
with Bayesian game theory. In the figure, we focus on the
controller N and plot its strategy p versus its cost, for different
values of the prior θ. A clear threshold effect is visible in
that, regardless of θ, the controller always adopts the same
strategy when C is low. As C increases, a point is reached
in which N becomes concerned with costs and differentiates
its strategy based on how confident it is that player X can
provide true support, i.e., the curves separate with those
with high θ being lower. Identifying this point precisely and
characterizing it analytically may be interesting, as it can
represent a vulnerability of the system in which the controller
is willing to rely on external agents.

V. CONCLUSIONS

We discussed the strategic interaction between a CPS con-
troller and an additional source X that can be collaborative
or attempting an FDI attack. The controller’s objective is to
minimize the average AoII [7]; depending on its nature, X
further decreases or increases AoII.

We modeled the decision making of the controller and the
two types of player X via Bayesian game theory, discussing the
BNE and whether the controller can discriminate legitimate or
malicious sources [6], [18]. The BNE always sees an increase
in the activity of player X, regardless of its type, when the
price value C of the controller increases. This happens because
a legitimate additional source intervenes to assist, whereas a
malicious one tries to exploit this opportunity to harm the
network, knowing that no strong counter-reaction is expected.
Similarly, player X decreases its activity when its own price K
increases. This means that these parameters are hardly useful
in discriminating the behavior of the players.

However, a variation in the drift rate can has different effects
on assistive and malicious nodes. The former type increases
its activity in the presence of more frequent drifts, a behavior
that is not sustained by the latter. Clearly, malicious nodes
can enact more sophisticated deceptions (e.g., sometimes
supporting the controller), and also attack data integrity in
a non-memoryless fashion, hitting harder when they see that
the system is vulnerable [20]. The analysis of these complex
interactions is an interesting direction left for future work [5].
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