
Age of Information for Machine Learning Tasks

With Mobile Edge Computing Offloading

Leonardo Badia∗, Paolo Castagno†, Vincenzo Mancuso‡§, Matteo Sereno† and Marco Ajmone Marsan§

∗Dept. Information Engineering, University of Padova, 35131 Padua, Italy
†Computer Science Department, University of Turin, 10125 Turin, Italy

‡Department of Engineering, University of Palermo, 90133 Palermo, Italy
§IMDEA Networks Institute, 28918 Leganes (Madrid), Spain

Email: leonardo.badia@unipd.it, {paolo.castagno,matteo.sereno}@unito.it,

vincenzo.mancuso@ieee.org, marco.ajmone@imdea.org

Abstract—We investigate the minimization of the age of in-
formation (AoI) of an AI-powered application that requires
timely processing of data generated by a multitude of users. We
consider that sequences of inference tasks generated at individual
terminals can either be processed locally with a tiny machine
learning (ML) model or be offloaded to a more powerful ML
model residing on an edge computing facility shared by all users.
Since the local ML model is less powerful, its inferences may have
low confidence. When this happens, the user is forced to repeat
the inference with the more powerful edge ML model. The choice
between local processing or offloading follows a randomized-
alpha policy, where the local ML model, while less powerful,
offers the advantage to alleviate congestion of the edge server.
The AoI model follows the frameworks presented in the literature
for multiple sources sharing the same queue. Local processing
instead works as a single-server dedicated queue, but we account
for the imperfections of the tiny ML model by including a
failure probability in the local server. Tasks that are processed
locally but eventually fail to achieve a minimum confidence level
are offloaded to the edge server, resulting in a longer overall
processing time. We derive a queueing model of the entire system
based on some bounds from the literature. Our results show the
trade-offs between processing latency, inference accuracy, and
system congestion, highlighting the importance of optimizing task
allocation strategies.

Index Terms—Age of Information; Machine learning; Mobile-
edge computing; Resource sharing.

I. INTRODUCTION

Machine learning (ML) aided applications, especially in-

volving large language models (LLMs), often require signif-

icant computational resources to interpret data due to their

complexity and multidimensionality [1]. Failure to obtain a

processor that is both sufficiently powerful and free from

congestion can lead to long inference times, particularly when

accurate predictions require evaluation of many parameters [2].

For example, convolutional neural networks used in image

recognition or transformer-based models in natural language

This work has been supported by the European Union under the Ital-
ian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on ”Telecommunications of the Future” (PE00000001 - program
”RESTART”), S2 SUPER – Programmable Networks, Cascade project PRISM
- CUP: C79J24000190004. Marco Ajmone Marsan’s activity was supported
by the TUCAN6-CM project (TEC-2024/COM-460), funded by CM, the
Regional Government of Madrid, Spain (ORDEN 5696/2024).

processing may involve billions of parameters [3]. Even sim-

pler models, such as support vector machines or decision trees,

can experience considerable delays when handling large-scale

data or complex decision boundaries [4]. As a result, appli-

cations requiring immediate responses, such as autonomous

driving or medical monitoring, may suffer latency issues that

hinder their effectiveness [5].

Delayed data interpretation is particularly problematic in

scenarios where rapid decision-making is critical. In real-time

applications, such as industrial automation or emergency re-

sponse systems, any delay in processing can lead to substantial

inefficiencies and a possible safety hazard [6], [7]. The usual

solution invoked to deal with computationally intensive tasks is

to resort to more powerful remote servers [8]. In our scenario,

this can actually further exacerbate the problem by introducing

additional latency due to network congestion [9], also due to

the convergence of requests from multiple users [10].

This prompts a joint analysis of resource allocation in the

edge-cloud continuum to optimize the offloading of tasks and

include the freshness of the resulting outputs. The latter can

be connected to the characterization available in the literature

through age of information (AoI) [11]. For our purposes, we

need to extend the standard AoI models, which usually focus

on atomic sensing and/or measurement tasks, to include traffic

splitting, merging, and processing times [12]–[14].

We consider a scenario in which multiple terminals perform

sequences of ML tasks, as would be the case for persistent

monitoring of patients, motion tracking, or ambient surveil-

lance. We investigate the freshness of the ML output, captured

through AoI as the main performance metric [15], [16].

Moreover, we study the impact of network decisions on AoI,

assuming that devices can either process tasks locally (e.g.,

with their onboard capabilities and/or at a close-by dedicated

server) with a tiny ML model, or offload them to a more

powerful remote computing facility at the network edge where

a better ML model is available [17]. Neither of these solutions

is optimal if taken alone, as far as timeliness is concerned [18],

since the remote server can become congested if too many

tasks are offloaded there by all the terminals that share it,

while local processing alone is possibly not accurate enough



and may require further evaluation on the remote edge server,

which makes offloading unavoidable [19].

As a result, careful balance between task offloading and

local processing must be sought. To characterize it, we focus

on a randomized-alpha policy as introduced in [20]. In our

analysis, we leverage the (queuing-based) derivations available

in the literature to characterize average AoI in queues with

superimposed flows, for two different cases. In both, we use an

M/M/1 model [21]. However, the local processing is assumed

to behave like a queue with concurrent flows corresponding

to the correct and failed classification, respectively; the latter

delays the queue but does not decrease the AoI. Conversely,

the remote edge server never fails its classification, yet is

represented as a queue where flows from multiple sources

converge [22].

Our analysis allows us to highlight how the joint distributed

optimization of relevant parameters, specifically the offloading

rate and the intensity of task generation, is neither viable nor

robust to errors. A small deviation of the values from the

optimum can lead to performance degradation. Conversely,

reaching convergence on the amount of local processing and

optimizing the generation rate afterwards is much more robust.

The remainder of this paper is organized as follows. In

Section II, we review the related literature. Section III expands

analytical formulas taken from seminal papers to the specific

case at hand, giving an estimate of the average AoI under

different offloading choices. We present numerical results in

Section IV, and we conclude in Section V.

II. RELATED WORK

Considering the timeliness of ML tasks is necessary due

to the recent surge in the adoption of AI for many real-time

applications. However, the idea of evaluating data freshness of

ML tasks and how networking choices influence it is relatively

unexplored in the recent literature. Only a handful of papers

consider these aspects, and for the most they just claim that

long execution times of AI-driven applications may lead to

frequently obtaining accurate but obsolete classification.

This is relevant for medical monitoring leveraging mul-

timodal LLM; however, producing stale output from these

models may be entirely useless or, worse, harmful. This point

is advanced by [23] when proposing an AoI-aware semantic

scheduler for sensed data in a body area network. In the same

spirit, [24] discusses this issue as a byproduct of data sharing

and security aspects. The authors investigate data freshness,

but only indirectly to evaluate its influence on the usefulness

of the output, whereas the modeling aspects concern the

application layer and not the resource allocation.

Another field of real-time applications exploiting ML tasks

is autonomous driving (for both terrestrial and unmanned aerial

vehicles), where computationally intense computer vision jobs

can be performed either by some units available on-board or

offloaded to some external edge server. As argued in [25], safe

and seamless vehicle synchronization would require consistent

use of fresh sensing, to which end the authors propose an AoI-

driven scheduling.

Instead, [10] considers an edge computing server that

performs processor sharing among the offloading sources,

possibly focusing on ML-related time critical applications.

The analysis expands on the way of sharing the queue among

multiple sources and leverages results similar to ours in the

derivation, but it does not argue about server selection or the

failure rate of the tiny ML processing.

Another recent paper [14] focuses on how offloading to

mobile edge computing servers affects AoI; however, it uses

stochastic geometry to study physical placement of compu-

tation resources and does not give a performance evaluation

through queueing theory. The conclusions are that a careful

balance of the available resources should be used, so the au-

thors propose a partial offloading approach. This is analogous

to the randomized-alpha policy proposed in [20], which we

adopt in this paper, with the difference that the latter randomly

assigns individual tasks to different servers, whereas the for-

mer paper considers all tasks partially processed in multiple

units. Also, [14] focuses on a wireless channel and possibly

successful or erroneous transmissions depending on signal

quality, whereas we assume an independent and identically

distributed failure probability of the tasks that follows from the

underlying ML model. In addition, they consider instantaneous

output of their computationally intense tasks, whereas we

keep into account the propagating effect of congestion on the

remote edge computing facility, which may actually choke data

freshness.

The authors of [26] propose a joint optimization of server

selection in MEC scenarios, also involving the allocation of

bandwidth within the shared wireless channel and computing

resources within the shared computing facilities. Similar to our

investigation here, the paper considers a choice between local

and edge processing, invokes ML tasks in the evaluation, and

considers AoI in the evaluation metric. However, the main goal

of that paper lies in the optimal server selection, as opposed

to finding closed form expressions for AoI.

In general, it is evidenced by the recency of these references

that the issue of evaluating the average AoI of ML-driven real-

time applications remains largely unexplored in the literature,

not only in terms of raising awareness about it, but even more

so in developing analytical frameworks of the network choices

impacting on it, so as to optimize performance.

For what concerns the modeling of AoI within queueing

systems, a kind of analysis that enjoyed popularity in the last

decade already from the seminal papers introducing the idea

of AoI [11], there are indeed analytical results such as the

derivation of the average AoI for an M/GI/1 queue [27] as

well as the numerous results in [21] (and references therein),

especially considering queues with multiple sources.

While no previous paper combines queues of multiple kinds,

we explicitly consider the dichotomy between local and edge

processing, seen as an exclusive server with limited rate (and

possibly failures) versus another queue with higher service

rate but shared with other sources. This is meant to leverage

analytical instruments and may be seen as a first step towards

deriving a fully closed-form characterization of such systems.



III. AOI OF TASKS WITH OFFLOAD OPTIONS

Consider a time-critical application run by N terminals. We

imply that each terminal generates a sequence of ML tasks to

be processed, according to a Poisson point process of intensity

λ, which means that task generation is memoryless. These

tasks can be processed on a local or a remote server, according

to independently drawn probabilities. Due to the properties of

Markov processes, each server sees a sequence of tasks with

exponentially distributed inter-arrival times.

The decision on where to process it is made independently

for each task, according to a randomized-alpha policy [20],

which means that a task can be processed locally with proba-

bility α or offloaded to a remote (mobile edge) server facility

with probability 1−α. Local processing with the tiny ML

model translates into an M/M/1 FCFS queue with service

rate µ1, i.e., the service time is exponentially distributed and

arrivals are memoryless, as per the previous discussion.

We consider that the processing in the remote facility uses

a single server according to an M/M/1 FCFS queue whose

service rate is µ2 > µ1. We remark that this assumption is just

preferred for the sake of a simpler exposition and the better

availability of some analytical components. We tested different

queueing systems, also including multiple servers, and under

reasonable approximations the results are qualitatively similar.

To work efficiently, the shared remote facility must approach

instability, without reaching it, which means that the main

aspect to consider is the overall service rate µ2. More than

the queueing notation characterizing the remote facility, the

difference from local processing is that while the M/M/1 queue

describing the latter is reserved for that individual user, all

the N terminals use the same remote facility, where the tasks

offloaded by all of them converge.

Finally, we also consider that local processing is not always

successful. We define a local success probability, ς , that

captures how often the accuracy of the tiny ML model is

adequate. In contrast, remote processing at the edge computing

facility is assumed to always be successful. This assumption

can be justified by either the higher reliability of the remote

classifier or the fact that tasks offloaded there are repeatedly

processed until success. Instead, tasks whose inference in the

tiny ML model is not successful are subsequently transferred

to the remote facility after the first attempt.

This system model, shown in Fig. 1, implies that a task can

follow one of three possible routes: (i) With probability ας ,

it is processed locally successfully. (ii) With probability 1−α,

it is immediately offloaded to the remote facility. (iii) With

probability α(1−ς), it is processed locally but fails, and is

eventually sent to the remote facility, traversing both queues.

This would imply that the entire system can be characterized

as an M/G/1 queue, where we classify the service discipline as

“general” since we account for the linear combination of the

three cases described above. For this scenario, some analytical

results on AoI are well established [27]. However, to further

complicate things, processing in some of the paths involves

other sources sharing the queue. For this reason, we resort

gNB
Remote computing

facilityUE

𝛼
1 − 𝛼 𝜍 1 − 𝜍

Local Processing Competing sourcesRemote processing
UL

DL

Fig. 1. System model. Local processing is chosen with probability α but
is successful only with probability ς . In the case of offloading (chosen with
probability 1−α) or failure of the local processing (probability α(1−ς)) the
task is processed in the remote computing facility, shared by N terminals.

to leveraging the known result [10], [21] that states that the

average AoI, ∆, can be computed as:

∆ =
E[T 2]/2 + E[ST ]

E[T ]
, (1)

where T is the interarrival time in the queue, i.e., the time

between generation of tasks by one source, and S is the system

time (i.e., the sum of the waiting time in the queue and the

service time). The principle of (1) is well known and follows

from geometric arguments [22].

Since (1) requires memoryless arrivals but works for a

generic service process, we can include a fixed delay to reach

the edge server, which in many cases can be relevant [9]. For

the sake of simplicity in the exposition, we do not consider

this extension in the analysis, although it would be immediate

to include the fixed delay to reach the edge server within the

term S. At the end of Section IV, we will show its impact.

In the system at hand, T is exponentially distributed, so

clearly E[T ] = 1/λ and E[T 2] = 2/λ2, thus (1) simplifies to

∆ =
1

λ
+ λE[ST ] . (2)

Computing E[ST ] would be easy for an M/M/1 queue. In

the case under exam, it becomes complex due to the parallel

service routes that a packet can experience. For an individual

packet, one can write E[S] = α(E[S])L + (1 − ας)(E[S])R,

where subscripts L and R stands for “local” and “remote,”

respectively. This holds since, according to the adopted system

model, the time spent by a task is the weighted sum of the

probability of being served through the local processing and

the edge server, where with probability α(1−ς) an initial local

processing fails and is then followed by the remote processing;

therefore, the task experiences both system times.

To compute both (E[S])L and (E[S])R we can use (35) in

[21]. For (E[S])L, we consider the AoI minus the term 1/λ
by taking a useful traffic of αςλ and a competing traffic of

α(1− ς)λ, representing unsuccessful classifications, insisting

on the same M/M/1 server. For (E[S])R, we adopt the same

approach, but we consider the useful and competing traffic

rates as (1 − ας)λ and (N−1)(1 − ας)λ, respectively, since

in this case there are no failures but extra traffic is contributed

by other N−1 sources.



However, the above approach results in an expression,

denoted as ∆1, which is not correct unless the offered load on

both servers is low. In this case, there is no queue on either

server, and the term E[ST ] in (2) can be split into E[S] ·E[T ]
and subsequently E[S] can be written as a weighted average.

In general, ∆′ can be seen as an upper bound of AoI [12],

where we neglect the option that tasks are processed along

multiple routes in different order of arrival.

As argued in [21], based on the considerations also ad-

vanced by [28] and [12], a scenario with parallel service is

generally complex. However, a solution is proposed in [29]

by approximating the age through multiple servers with the

weighted harmonic mean.

Thus, we take a further estimate ∆2 of the average AoI as

the weighted harmonic average of the paths, i.e.,

∆2 =
1

λ
+

[

ας

(E[S])L
+

1− α

(E[S])R
+

α(1− ς)

(E[S])L + (E[S])R

]

−1

.

Finally, as an empirical estimate, which is further verified

through simulation in the following section, we estimate the

average AoI ∆ as (∆1 +∆2)/2.

IV. RESULTS

We evaluate the formulas derived in the previous section

in a scenario where N terminals behave as sources of ML

tasks associated with a time critical application. These ML

tasks become computation jobs that are processed by FCFS

queues either locally or in a remote computing facility (i.e.,

a mobile edge computing server). The choice about this split

is via a randomized-alpha policy, i.e., each task is assigned

a probability α of local processing, whereas with probability

1−α it is offloaded to the remote server. The individual local

processing queue is exclusive to that source; the remote server

is instead shared by all offloaded traffic. Moreover, while

the offloaded tasks are always completed with success, local

processing is only successful with probability ς (i.e., local

inference does not achieve a sufficient confidence level with

probability 1−ς). If local processing fails, the task is also sent

(after local processing) to the remote server. All time and rate

values are reported as normalized to the local service rate µ1,

taken equal to 1 (inverse time units). The same plots work by

rescaling the numerical values if the same proportion of λ and

µ1, µ2 is kept.

In Fig. 2, we validate our estimate of the average AoI.

The parameters are µ1=1, µ2=16, N=25, ς=0.8, while we

consider λ as the independent variable and different values

for α. We plot the results of the analytical estimate, the upper

and lower bounds, and the simulation results. To understand

the figure, remember that this scenario involves the joint

management of two parameters with different meanings, that

is, the probability of local processing α and the intensity of

traffic generation λ [17]. Most of the literature investigates

the optimization of AoI via λ alone [22]. We show that the

optimization strongly depends on α too, controlling how much

traffic is sent to either server. Choosing a different α does not

mean that the AoI cannot be close to optimal, but λ becomes

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

1

1.5

2

2.5

3

3.5

Fig. 2. Average AoI vs. data generation rate λ, for different values of
local processing probability α, local success probability ς = 0.8, N = 25
offloading sources, remote server rate µ2 = 16. All values are normalized to
µ1 taken equal to 1 per unit time.

completely different. In other words, a joint optimization of

both parameters at once is fragile, which makes a distributed

optimization challenging.

In particular, the curves rise relatively sharply as the edge

server instability approaches. In this case, the simulation re-

sults show a lower value since they are computed over success-

fully processed tasks only, but there are also many incomplete

or unprocessed tasks when instability is approached. As a side

note, it is difficult to exactly predict the optimum, since it

happens when the gap between the upper and lower bounds is

wider. This is because optimal server usage requires a careful

balance of both options for local or remote processing, which

is exactly when the analytical estimates are less accurate.

However, the lowest point of each curve occurs just before

the more powerful remote edge server reaches instability. In

this sense, local processing can be seen as a way to alleviate

the load on the remote server, in a way similar to classic

approaches to active queue management, that is, random

removal of tasks to avoid congestion [30]. Compared to these

approaches, we are not dropping tasks, but processing them

elsewhere, which represents a further improvement if properly

done.

However, this implies that identifying the precise pair of

optimal α and λ is quite a challenge. Increasing α further

pushes the limit of an unstable edge server, which causes the

lowest point of the curve to occur for a higher λ. In general,

a joint optimization of these two parameters is difficult and

possibly subject to high cross-variability of the parameters,

i.e., a small variation in α implies a high variability of the

optimal associated λ. In contrast, it is notable that the lowest

point of each curve is substantially equivalent, which will be

further discussed later on.

If we focus on the minimum achievable AoI with each

choice of α, we get Figs. 3 and 4. These are basically

the envelopes of the minima in Fig. 2, plotting the y-axis

value (minimum) and the x-axis value (minimizing point),

respectively, for different values of N . The local success

probability is kept at ς = 0.8 as before.

Differently from the individual curves of Fig. 2, these are



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.5

2

2.5

3

3.5

4

Fig. 3. Minimum AoI vs. local processing probability α, under optimization
of the data generation rate λ, for different numbers of offloading sources N ,
local success probability ς = 0.8, MEC service rate µ2 = 12. All values are
normalized to µ1 taken equal to 1 per unit time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1

Fig. 4. AoI-minimizing data generation rate λ vs. local processing probability
α, for different numbers of offloading sources N , local success probability
ς = 0.8, MEC service rate µ2 = 12. All values are normalized to µ1 taken
equal to 1 per unit time.

relatively flatter. Although there is a minimum for the average

AoI and, as such, a best choice of the task generation rate λ,

a suboptimal choice of α alone does not cause a significant

change, provided that λ is still optimized. Thus, unlike the

fragility shown by the previous figure, setting the value of

α alone is relatively robust. This suggests an approach in

which a target value of α, even if not optimal but not far

from it, is communicated to the entire network, which would

still obtain near-optimal performance at the price of a small

communication exchange. In other words, while full-scale

optimization of the parameters, despite obviously achieving

the best results, is neither practical nor robust enough, limited

coordination and message exchange can be applied to improve

system management. If the terminals cooperate in the choice

of λ, they can converge towards an efficient choice.

Analogous to the previous figures, in Fig. 5 we plot again

the minimal average AoI but considering N fixed to 30 and

varying the success probability ς of local processing in each

curve. The trends are similar to Fig. 3, but in reverse, and we

remark that a similar plot can be drawn to show the minimizing

value of λ instead. In fact, the number of sources only affects

the shared edge server, while the probability of success only

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.5

2

2.5

3

Fig. 5. Minimum AoI vs. local processing probability α, under optimization
of the data generation rate λ, for different values of local success probability
ς , N=30 offloading sources, MEC service rate µ2 = 12. All values are
normalized to µ1 taken equal to 1 per unit time.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1.5

2

2.5

3

3.5

4

4.5

5

Fig. 6. Average AoI vs. data generation rate λ, for different values of
local processing probability α, local success probability ς = 0.8, N = 20
offloading sources, remote server rate µ2 = 12. All values are normalized to
µ1 taken equal to 1 per unit time.

influences the local server, so the curves do not differentiate

when α=1 (only local processing) in Fig. 3 and when α=0
(all traffic is offloaded) in Fig. 5.

Notice that lowering ς makes the AoI optimization more

difficult than increasing the number of users, as it makes it

more likely that a task is processed twice, thereby increasing

traffic on both servers. For a low ς (especially below 0.5),

the margin for optimization of the average AoI is limited, as

most tasks processed by the tiny ML model do not reach an

adequate level of confidence, and further processing on the

edge server is still required, which nullifies the role of local

processing in alleviating congestion for the shared part.

Finally, we also consider the impact of a constant delay

to reach the edge server [9]. To this end, we consider the

same queueing systems as before, but reaching the edge server

now implies an extra delay d2 constantly equal to 2.0 time

units. Analysis-wise, this only implies to replace the previous

computation of Sremote with Sremote + d2. Although this

extra delay worsens performance in terms of average AoI, it

also makes the edge server, in a sense, less susceptible to

congestion, since the constant delay d2 is always present and

does not depend on the offered load in the edge computing



facility. For space reasons, we do not replot all the curves

previously shown, but we just limit the analysis to Fig. 6,

which is analogous to Fig. 2 but with the extra delay d2 now

kept into account. In this figure, the curves for different values

of α become more similar (and a similar trend can be shown

for all other plots), therefore strengthening our conclusion

that, instead of looking for a fine-tuned optimization of α
simultaneous to the data injection, a layered approach where

α is pre-determined and λ is individually optimized would be

basically equivalent but easier to implement.

V. CONCLUSIONS AND FUTURE WORK

We analyzed the average AoI of a multiserver system

with alternative paths for task processing, which represents a

scenario where N terminals execute a time-critical application

that requires the processing of a sequence of computationally

intensive ML tasks. The options available to the terminals are

to process the task locally, with a tiny ML model, possibly

leading to low confidence inferences, or to offload the task to a

remote computing facility at the network edge, more powerful

and accurate, but prone to congestion [14], [17].

In our analysis, the choice of the offload probability is

parametric and shared by the entire network, yet this kind

of stateless policy is still efficient and often more robust

than fine-tuned optimization [20]. Our results confirm this

claim by demonstrating that the joint optimization of the

offload probability and the intensity of traffic generation can be

fragile, potentially leading to congestion or suboptimal choices

of parameters. Conversely, a layered approach with limited

signaling, such as binding all terminals to use the same offload

probability but leaving them free to choose their own data

injection rate, is more robust and efficient.

There are many possible developments of our analysis, e.g.,

considering alternative queue models, such as multiserver sys-

tems or deterministic service, as well as including preemption

or buffer limitations. Another interesting extension involves

game theory, with a comparison between optimal control and

Nash equilibrium along the lines of [9]. Finally, future work

can evaluate ML approaches in practical settings, identifying

vulnerabilities that arise under heavy usage.

REFERENCES

[1] M. Shao, A. Basit, R. Karri, and M. Shafique, “Survey of different large
language model architectures: Trends, benchmarks, and challenges,”
IEEE Access, vol. 12, pp. 188 664–188 706, 2024.

[2] K. Zen, S. Mohanan, S. Tarmizi, N. Annuar, and N. U. Sama, “Latency
analysis of cloud infrastructure for time-critical IoT use cases,” in Proc.

Appl. Inform. Int. Conf. (AiIC), 2022, pp. 111–116.

[3] H. Luo, Y. Yang, B. Tong, F. Wu, and B. Fan, “Traffic sign recognition
using a multi-task convolutional neural network,” IEEE Trans. Intell.

Transp. Syst., vol. 19, no. 4, pp. 1100–1111, 2017.

[4] F. S. Abkenar, L. Badia, and M. Levorato, “Online domain adaptive
classification for mobile-to-edge computing,” in Proc. IEEE Symp. World

Wirel. Mob. Multimedia Netw. (WoWMoM), 2023, pp. 21–29.

[5] A. Telikani, A. Sarkar, B. Du, and J. Shen, “Machine learning for UAV-
aided ITS: A review with comparative study,” IEEE Trans. Intell. Transp.

Syst., vol. 25, no. 11, pp. 15 388–15 406, 2024.

[6] L. Badia and A. Munari, “Exogenous update scheduling in the industrial
Internet of things for minimal age of information,” IEEE Trans. Ind.

Informat., vol. 21, no. 2, pp. 1210–1219, 2025.

[7] Y. Inoue and T. Kimura, “Age-effective information updating over inter-
mittently connected MANETs,” IEEE J. Sel. Areas Commun., vol. 39,
no. 5, pp. 1293–1308, 2021.

[8] F. Bahramisirat, M. A. Gregory, and S. Li, “Multi-access edge computing
resource slice allocation: A review,” IEEE Access, vol. 12, pp. 188 572–
188 589, 2024.

[9] V. Mancuso, P. Castagno, L. Badia, M. Sereno, and M. Ajmone Marsan,
“Optimal allocation of tasks to networked computing facilities,” in Proc.

Int. Conf. An. Stoch. Model. Techn. Appl. (ASMTA), 2024, pp. 33–50.
[10] F. Chiariotti, “Age of information analysis for a shared edge computing

server,” IEEE Trans. Commun., vol. 72, no. 12, pp. 7826–7841, 2024.
[11] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should

one update?” in Proc. IEEE Infocom, 2012, pp. 2731–2735.
[12] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-

class queueing system,” in Proc. IEEE Int. Symp. Inf. Th. (ISIT), 2015,
pp. 1681–1685.

[13] M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information
in multi-source queueing models,” IEEE Trans. Commun., vol. 68, no. 8,
pp. 5003–5017, 2020.

[14] Y. Dong, H. Xiao, H. Hu, J. Zhang, Q. Chen, and J. Zhang, “Mean age
of information in partial offloading mobile edge computing networks,”
arXiv preprint arXiv:2409.16115, 2024.

[15] H. Li, J. Zhang, H. Zhao, Y. Ni, J. Xiong, and J. Wei, “Joint optimization
on trajectory, computation and communication resources in information
freshness sensitive MEC system,” IEEE Trans. Veh. Technol., vol. 73,
no. 3, pp. 4162–4177, 2024.

[16] H. Sedghani, F. Filippini, and D. Ardagna, “SPACE4AI-D: A design-
time tool for AI applications resource selection in computing continua,”
IEEE Trans. Service Comput., vol. 17, no. 6, pp. 4324–4339, 2024.

[17] L. Badia and A. Munari, “Partially stateful server selection for minimal
age of information scheduling over a finite horizon,” in Proc. IEEE

Infocom ASoI Workshop, 2025.
[18] Z. Tang, Z. Sun, N. Yang, and X. Zhou, “Age of information of multi-

user mobile edge computing systems,” IEEE Open J. Commun. Soc.,
vol. 4, pp. 1600–1614, 2023.

[19] A. Buratto, B. Yivli, and L. Badia, “Machine learning misclassification
within status update optimization,” in Proc. IEEE Int. Conf. Commun.

Netw. Satellite (COMNETSAT), 2023, pp. 640–645.
[20] V. Mancuso, P. Castagno, M. Sereno, and M. Ajmone Marsan, “Stateful

versus stateless selection of edge or cloud servers under latency con-
straints,” in Proc. IEEE WoWMoM, 2022, pp. 110–119.

[21] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE J.

Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210, 2021.
[22] R. D. Yates and S. K. Kaul, “The age of information: Real-time status

updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1807–1827, 2019.

[23] B.-S. Kim, “Semantic-aware scheduling for minimizing age of informa-
tive data in WBAN-based health monitoring systems,” IEEE Internet

Things J., 2025, early access.
[24] C. Su, J. Wen, J. Kang, Y. Wang, Y. Su, H. Pan, Z. Zhong, and M. S.

Hossain, “Hybrid RAG-empowered multi-modal LLM for secure data
management in Internet of medical things: A diffusion-based contract
approach,” IEEE Internet Things J., 2025, early access.

[25] T. Shi, Q. Xu, J. Wang, C. Xu, K. Wu, K. Lu, and C. Qiao, “Enhancing
the safety of autonomous driving systems via AoI-optimized task
scheduling,” IEEE Trans. Veh. Technol., vol. 74, no. 3, pp. 3804–3819,
2025.

[26] M. Kim, J. Jang, Y. Choi, and H. J. Yang, “Distributed task offload-
ing and resource allocation for latency minimization in mobile edge
computing networks,” IEEE Trans. Mob. Comput., vol. 23, no. 12, pp.
15 149–15 166, 2024.

[27] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for
the stationary distribution of the age of information and its application
to single-server queues,” IEEE Trans. Inf. Theory, vol. 65, no. 12, pp.
8305–8324, 2019.

[28] C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of
message transmission path diversity on status age,” IEEE Trans. Inf.

Theory, vol. 62, no. 3, pp. 1360–1374, 2015.
[29] R. Talak and E. H. Modiano, “Age-delay tradeoffs in queueing systems,”

IEEE Trans. Inf. Theory, vol. 67, no. 3, pp. 1743–1758, 2020.
[30] D. D. Clark and W. Fang, “Explicit allocation of best-effort packet

delivery service,” IEEE/ACM Trans. Netw., vol. 6, no. 4, pp. 362–373,
1998.


