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Abstract— We investigate a scenario where multiple
sources independently and voluntarily contribute status
reports, which are then aggregated through a federated
process. To address the challenge of partial participation
in distributed systems, we introduce the age of federated
information (AoFI), a novel metric that quantifies data
freshness. This metric is specifically designed to bridge
the gap between classical age of information (AoI), which
is unsuitable for collaborative tasks, and the often imprac-
tical age of correlated information (AoCI), which requires
full participation. To model distributed optimization across
multiple independent sources, we adopt a game-theoretic
framework. In this framework, users strategically minimize
their individual penalty, computed as a global-local com-
bination of the overall AoFI on the common receiver’s
side and their individual energy expenditure. We derive the
worst-case Nash equilibrium of this game and compare
its efficiency with the centralized optimization optimum.
Our efficiency analysis reveals a critical design trade-off
for practical IIoT deployments: while decentralized coor-
dination is highly efficient in high-participation regimes,
performance in low-participation regimes is paradoxically
optimized by actively restricting the number of sources to
prevent strategic inefficiencies.

Index Terms— Age of federated information; Participa-
tory sensing; Federated learning; Mobile crowdsensing;
Game theory.

I. INTRODUCTION

Many modern communication networks are tightly inte-
grated with the internet of things (IoT), a paradigm of in-
terconnected physical devices that sense their environment,
process data, and communicate over the Internet [1]. These
devices are often resource-constrained, making the design of
lightweight and distributed communication protocols essential
to ensure efficiency and scalability.

At the same time, participatory and federated paradigms
offer promising ways to leverage decentralized data sources
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for distributed analytics and intelligent decision making [2],
[3]. In participatory sensing, autonomous nodes independently
collect and disseminate environmental data, thereby facili-
tating crowd-sourced real-time intelligence. However, data
generated by uncoordinated sources pose a fundamental chal-
lenge, namely the need to aggregate information efficiently
while minimizing both redundancy and resource consumption.

Aggregating data from disparate sources presents challenges
that are relevant for various new applications. Take, for
example, a predictive maintenance scenario in a smart factory,
where multiple battery-operated vibration sensors supervise a
crucial production line. A single sensor’s alert may represent
a false positive, yet a significant maintenance alert arises
when several sensors together detect anomalies in the same
timeframe. The certainty of this diagnosis improves as more
sensors support the anomaly. Maintaining up-to-date data is
essential for averting expensive breakdowns, but each sensor’s
energy limitations create a strategic balance between frequent
transmissions and power conservation. Similarly, in participa-
tory environmental sensing, building an accurate, localized air
pollution map requires a critical mass of current reports from
a specific region to create a reliable, immediate alert. In these
cases, traditional AoI (with its single-update criterion) fails,
prompting us to introduce a quorum-based approach to data
freshness.

Federated learning addresses this by distributing the learn-
ing process across decentralized nodes [4], [5]. Although this
improves diversity and resilience, it also introduces inefficien-
cies due to limited coordination. Traditional metrics such as
throughput or delay fail in capturing the timeliness of data,
as a high throughput may consist of only old updates and
a short delay may occur even with infrequent updates. A
suitable performance metric for these applications is the age of
information (AoI), which measures the freshness of received
data [6], [7].

Despite growing interest in AoI for distributed sensing,
there remains a gap in understanding how participatory and
federated systems behave when nodes act independently and
selfishly. Specifically, existing work does not sufficiently ad-
dress how coordination (or lack thereof) affects the AoI in
decentralized setups, nor how to incentivize optimal behavior.
Game theory has recently been explored to model this chal-
lenge [8], [9], especially in contexts where devices cannot be
centrally controlled.

To this end, we investigate a game-theoretic model of
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N independent sources monitoring the same physical phe-
nomenon. These nodes decide, over repeated rounds, whether
to transmit updates, balancing a global AoI objective with
individual transmission costs [10]. While AoI is highly
effective for systems where updates from any single source
are interchangeable, this model does not capture the nature
of federated and collaborative tasks, where data from a single
node is often insufficient. For example, in federated learning,
a global model update requires aggregating models from
multiple clients. At the other extreme lies the age of correlated
information (AoCI) [11], which defines a successful update as
a complete “snapshot” of data from all participating nodes.
This requirement, while useful for perfectly synchronized
systems, is often too brittle for practical wireless deployments
where full participation cannot be guaranteed.

Our work addresses the space between these two extremes.
We introduce Age of Federated Information (AoFI), a metric
designed for systems with partial participation requirements.
AoFI measures the time elapsed since the receiver successfully
aggregated updates from a sufficient, but not necessarily com-
plete, subset of sources. It is this ability to model a quorum-
based success condition that distinguishes AoFI from its
predecessors and makes it an essential tool for analyzing the
freshness of participatory data ecosystems, such as federated
sensing, crowdsourcing, and distributed analytics.

This setup reveals a tradeoff: with minimal participant re-
quirements, selfish nodes may depend on others for transmis-
sion, deteriorating AoFI. As participation demands increase,
AoFI initially increases due to node selfishness [12], then
decreases when almost complete collaboration is required,
aligning with AoCI findings [11]. AoFI is a valuable tool for
planning and assessing data freshness with partial participa-
tion, supporting informed decisions in systems, such as indus-
trial IoT, predictive maintenance, or real-time monitoring.

Finally, we compute the price of anarchy (PoA) and show
that the Nash equilibrium (NE) can be highly inefficient com-
pared to centralized solutions, except in cases requiring full
participation. Thus, we argue that even when full collaboration
is not strictly necessary, enforcing it can significantly improve
system performance.

The main contributions of this article are summarized as
follows:

• We introduce the AoFI metric to bridge the gap in the
literature between anycast-based status updates and fully
collaborative network updates, as required by the AoCI.

• We prove the existence of multiple Nash equilibria re-
sulting from the interaction between sensors, and we
focus our analysis on the least performing one on a
system-wide scale to derive lower bounds on the potential
inefficiencies of a partially collaborative scenario, as
measured by the PoA.

• We validate our system model using a real-world dataset
of IoT nodes and demonstrate that the proposed modeling
assumptions are consistent with practical deployment
scenarios.

The remainder of this article is organized as follows. Sect. II
discusses the relevant literature and compares our contribution
to previous studies. Sect. III presents the mathematical model

Reference AoI Game
Theoretic

Collaborative
Setup

Efficiency of
Distributed

Solution

[3] ✓ ✓
[7] ✓ ✓
[9] ✓ ✓ ✓
[11] ✓ ✓
[12] ✓ ✓ ✓
[13] ✓ ✓
[14] ✓ ✓
[15] ✓ ✓
[16] ✓ ✓
[17] ✓ ✓ ✓
[18] ✓ ✓

This article ✓ ✓ ✓ ✓

TABLE I
COMPARISON BETWEEN RELATED WORKS.

of the targeted scenario, defines the structure of the game
theoretic problem, and derives the NE solution. Sect. IV gives
numerical results. Finally, Sect. V draws the conclusions.

II. RELATED WORK

This work lies at a crucial intersection of information
freshness metrics and game-theoretic models for distributed
systems. Game-theoretic approaches have long provided a
foundational framework for analyzing network scenarios in-
volving self-controlling agents that compete over shared re-
sources. Influential work in this area has built models about
medium access control and resource allocation and has shown
how far strategic interaction shapes system effectiveness [19].
We adapt this classic paradigm to solve the specific modern
problems associated with keeping data fresh in participatory
systems.

Although the foundational research [20] introduced the
concept of AoI as a critical notion, only a handful of works
approach it through a game-theoretic lens, where the objec-
tives of the players are directly influenced by goals related
to AoI. The prevailing body of literature can be classified
into two main categories. A significant category emphasizes
adversarial settings, in which a malicious participant intends
to exacerbate the AoI of others [14], [21]. In contrast, another
category examines resources-limited games, where various
sources compete to provide updates, and each player tries to
reduce their own AoI [1], [22], [23].

In comparison to these purely adversarial or competitive
models, our situation is semi-cooperative: all individuals are
driven by a shared objective to decrease some global measure
of freshness, yet are also aware of minimizing their own costs.
This dynamic is characteristic of participatory platforms, from
the mobile crowd sensing systems detailed in [24] to the
neighborhood-scale energy management investigated in [17],
where game-theoretic frameworks are applied to facilitate
efficient collaborative outcomes. In this domain, incentive
mechanisms are commonly formulated through bargaining or
auction schemes to ensure desirable interactions [13], [16].
Although important, these works often do not address the
difficulty of ineffective updates in the event that the quota for
participants is not met. Consequently, other studies introduce
AoI to federated learning frameworks as part of some incen-
tive or scheduling mechanism to promote cooperation between
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nodes [7] or use a weighted measure of AoI to optimize
coverage quality [3], rather than analyzing general strategic
inefficiencies that arise without such schemes.

The formulation of relevant models for private costs is
essential. These costs may encompass physical quantities
such as energy use [25] or include intangible considerations
such as privacy risks, security, and trust in data [26], [27].
Our model facilitates these multifaceted issues through a
parametric model. The parametric form of our utility functions
enables us to incorporate these considerations in a linear
combination similar to [9], aligning the semantic objective of
minimizing AoI with these cost-related considerations. In ad-
dition, we study a complete information game. Although most
models utilize incomplete knowledge to model private user
information, our assumption enables an analytically tractable
description of the worst-case inefficiency and serves as a
fundamental baseline from which to understand system limits
on achievable performance. Complementing the direct applica-
tion of such analytical models is an emerging methodological
trend that seeks to address the inherent complexity of their
formulation; recent work, for instance, proposes leveraging
Generative AI frameworks to automate the construction and
solution of game-theoretic models for networking, with the
goal of making these powerful tools more accessible to system
designers [18].

Although globally cooperative and centralized architectures
can achieve a lower peak AoI [11], such approaches are
impractical for the voluntary and decentralized systems that
are the focus of our work. The work most similar to our
scenario is [12], which considers multiple sources with the
aim of collectively obtaining the minimum value of AoI.
However, the work lacks rigorous proof regarding various
equilibria and does not consider the typical inefficiencies
in a distributed system. Our work directly addresses these
issues. In this work we introduce the concept of AoFI,
bridging the gap between AoI and AoCI. Another metric that
addresses collaboration of nodes stemming from the AoI is
the age of collection (AoC) [28], and in our scenario it is
identical to the AoCI. The idea of partial collaboration can
be naturally extended to other freshness metrics. For instance,
similar quorum-based mechanisms could be formulated for
the age of incorrect information (AoII), which measures the
timeliness of accurate rather than merely recent updates [29];
or the version age of information (VAoI), which captures the
staleness of versioned updates in distributed systems [30].
A formal treatment of these extensions is beyond the scope
of this article but represents a promising direction for future
research. Table I outlines these distinctions, emphasizing the
novelties of our contribution.

III. SYSTEM MODEL

A. System Overview

Our system involves a set of N nodes, which are potential
participants in a given task, and a centralized aggregator server
R, also referred to as the receiver. We consider a discrete-time
axis divided into slots. The receiver is interested in keeping
fresh information of the process monitored by the nodes,

Decentralized Data,
Sensors & Systems

Data Aggregator
& Servers

...

p1

p2

pN-1

pN

Fig. 1. High-level description of the considered scenario. Nodes,
representing sensors or systems, participate in a federated process,
voluntarily sourcing data related to the environment or a monitored
phenomenon with a probability pi.

which is tracked by the instantaneous AoI, denoted as δ(t)
and defined as the current time instant t minus the timestamp
of the last successful update tk [6]

δ(t) = t− tk . (1)

The nodes can choose, independently of each other, their
transmission probability pi for a specific slot. We further
assume that nodes always have data to transmit (generate-
at-will model) and we neglect the transmission delay, as
commonly done in the literature [6], [9]. This consideration
holds true not only in an analytical scenario, but also in
the presence of low power networks such as LoRaWAN and
energy harvesting sensors for which the interupdate times are
much larger than the transmission delays [31], [32]. See Fig. 1
for a graphical representation of the scenario.

In each slot, the nodes may independently decide to partic-
ipate in the task. The literature offers some similar analysis in
the context of medium access control, where the nodes belong
to the same collision domain and the goal is to coordinate their
transmission in a distributed fashion [9], [20].

Here, we look instead at the sensing or federated process
from the perspective of the upper layers, and the physical
location of the nodes is irrelevant, as long as they are all
able to collect information about the process being monitored.
In this context, we are interested in describing the strategic
interaction of the players when making the crowdsensing
decision. A complete summary of the notation adopted in this
work is reported in Tab. II.

B. Success Probability Model
Centralized optimization techniques can minimize peak AoI

with fully correlated information sources [11]. However, if
fewer than a threshold m nodes participate in a round, the
receiver may not fully understand the measured phenomenon.
To address this, we define a concave function that reduces the
success probability when some nodes do not transmit, even
if at least m are collaborating. This accounts for data noise
or the need for sufficient collaboration to understand certain
characteristics of the phenomenon.
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Notation Description

N number of nodes
δ(t) instantaneous AoI at time t
Ci individual node cost term
c̃ normalized cost factor
pi transmission probability of node i

Psucc probability of successful transmission
Q(·) survival rate
m minimal number of nodes required to participate
α exponent of the success rate

θmin minimal acceptable ML model accuracy
Pi penalty of node i

TABLE II
MATHEMATICAL NOTATIONS USED IN THE ARTICLE.

In our analysis, we focus on a generalized case, where we
want to model the success probability with a soft gradient
along the lines of [12]. Furthermore, we want to account both
for the requirement of a minimum number of participants and
that this is not sufficient to guarantee the task’s success. In
particular, the conditional probability of a successful update
as a function of the number of transmitting nodes is taken as
a strictly increasing concave function, regulated by tunable
parameters, such that it increases if more than m nodes
transmit and is equal to 1 only when m = N . This design
criterion results in choosing

P [succ|x] =


(√

1− (x−N)2

(N−m+1)2

)α

if m ≤ x ≤ N

0 if 0 < x < m
(2)

where the exponent α ≥ 0 is used to adjust the steepness of
the growth of the success rate.

We focus on two versions of the model: (i) hard threshold
(HT), where α = 0, i.e., the communication attempt is
successful with probability 1 if at least m nodes collaborate
and (ii) soft threshold (ST), where we choose α = 3; in
the latter, the success probability is not 1 unless all nodes
collaborate in the same round.

To validate this analytical formulation in a real scenario, we
focus on the accuracy reached by an ML model trained with
the Edge-IIoTset dataset [33]. This dataset contains traffic logs
from 10 different IoT nodes in both a normal operation and
a malicious scenario. We train a random forest classifier to
convergence, varying the number of sensors contributing to
the data collection. After averaging the obtained accuracies
over all possible sensor combinations, we obtain the accuracy
values displayed in Fig. 2. We also introduce a parameter
θmin which indicates the minimal accuracy we want the ML
model to achieve. If the number of collaborating nodes is not
enough to achieve an accuracy above this threshold, we set
P [succ | x] = 0. Otherwise, this conditional probability is
proportional to its position in the interval between the maxi-
mum achievable accuracy and the threshold. With this setup,
choosing θmin maps directly to choosing m, i.e., deciding
how many nodes are needed to collaborate. See Fig. 3 for
a graphical representation of (2) and the real data case.
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Fig. 2. Mean accuracy achieved by the ML model as a function of the
number of collaborating nodes.
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Fig. 3. Conditional success probability function for m = 0.55N in HT,
ST and real data with θmin = 0.65 cases.

C. Expected AoFI and Success Rate

The expected AoI for a receiver getting independent updates
that may or may not be successful is computed as [6]

E [δ] =
1

Psucc
− 1 , (3)

where Psucc is the probability of a successful update to occur.
In turn, this event depends on whether enough nodes transmit
and, since they are independent sources, Psucc is the survival
rate of a Poisson-binomial distribution X .

If every transmission attempt with at least m simultaneous
transmissions always results in a successful update, we can
write:

Psucc = Q(m) =

N∑
t=m

P [X = t] , (4)

Applying our thresholding functions, the law of total prob-
ability gives:

Psucc =

N∑
t=m

P [X = t] · P [succ | X = t] . (5)

Expanding further using [34] for the probability mass func-
tion (PMF) of the Poisson-binomial distribution, we derive:

Psucc =

N∑
n=0

{[
N∑

t=m

P [succ | X=t] · exp
(
−2πjnt

N+1

)]
(6)

·
N∏
ℓ=1

(
pℓ

(
exp

(
2πjn

N+1

)
−1

)
+ 1

)}/(
N+1

)
where j is the imaginary unit.
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Fig. 4. Transmission probability with the NE for different threshold profiles, LR.
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Fig. 5. Transmission probability with the NE for different threshold profiles, HR.

D. Penalty Function and Node Cost
Each node i has a penalty defined as [9]

Pi = E [δ] + Ci =
1

Psucc
− 1 + cpi , (7)

where the cost term is:

Ci = cpi . (8)

Note the concordant sign for both terms in (7), since the
players in the game seek to minimize both AoFI and cost.

E. Game Theoretic Setup
From a game theory perspective, the interactions among

the nodes can be effectively represented as a static game
of complete information, denoted by G = (S,A,U). The
decision to use this model is driven by the characteristics of
such games. Indeed, the complete information assumption1 fa-
cilitates a thorough examination of the role of uniform sensors,
focusing uncertainty exclusively on their actions rather than
on the sensor types. This approach also enables an analytically
manageable description of NEs and PoA. In this framework,
S = {S1, S2, . . . , SN} is the set of players, where |S| = N as
the receiver is treated as a passive entity, meaning that it does
not actively participate in decision making. The set of possible
actions A represents the transmission probabilities pi ∈ [0, 1]
chosen by each player i ∈ S. The utilities U describe the
trade-offs faced by the players, reflecting penalties or rewards

1The game theoretic terminology of complete information only refers to
the data related to the game, that is, it implies that each player is aware of the
existence of other nodes in the federated task, and also that these are rational
agents; it does not imply any exchange of data among the federated nodes,
which keep their content as private.

based on their actions and the resulting network performance.
The utility function for each player is formally defined in (7).

The NE of G is obtained through a one-sided optimization
of the utility, i.e. each player looks for a best response to the
unchanged actions of the other players. Each player’s choice
of transmission probability not only affects their own utility
but also influences the utilities of other players, which must
be considered in the optimization. Without loss of generality,
we will focus on player 1 as the solution for the NE of the
others is symmetric as proven by the following theorem.

Theorem 1. All NE in mixed strategies of game G are
symmetric, i.e. all nodes transmit with the same probability
p1 = · · · = pN .

Proof: See Appendix II.
An NE must satisfy the condition

∂P1

∂p1
= −∂Psucc

∂p1
· 1

(Psucc)
2 + c = 0 , (9)

that can be computed by applying the chain rule on (7).
The derivative of Psucc with respect to p1 can be obtained
in closed-form from (6) with simple derivation rules, or
alternatively, as in Appendix I.

Theorem 2. Game G with HT admits multiple feasible NEs
within 3 categories depending on the relationship between
the number of active participating nodes µ and the minimum
number of participating nodes m: if µ = m all active nodes
participate with the same probability p(m) = 1. If m < µ ≤ N
there is an NE where µ nodes are active but p(µ) < p(m);
additionally, there are

(
µ
ζ

)
pure and mixed strategies NEs,

with ζ = 1, . . . , κ and κ = µ −m, where N − µ + ζ nodes
are silent.
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Fig. 6. Penalty with the NE for different threshold profiles, LR.
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Fig. 7. Penalty with the NE for different threshold profiles, HR.

Proof: See Appendix III.

Theorem 3. Game G with ST admits fewer NEs compared to
HT, as there exists an m∗ ≥ m that indicates the emergence of
NE. For µ < m∗ there exists only a catastrophic equilibrium
in which all the nodes decide to stay silent.

Proof: See Appendix IV.

Theorem 4. In game G with HT, m → 1 is the best Pareto
efficient working point for the system.

Proof: See Appendix V.
We further calculate the PoA to evaluate how much a de-

centralized solution deteriorates the optimal centralized one’s
performance. The PoA is calculated as [35]

PoA =
maxs∈NE

∑
i Ps

i

mins∈T
∑

i Ps
i

(10)

where, in the numerator, we take strategy s from the set of
NEs that maximize the penalty, and at the denominator, the
optimal centralized strategy that gets the lowest social penalty.

IV. RESULTS

In this section, we analyze the equations for the threshold
functions that were previously defined, considering various
values for the number of collaborating nodes m, while keeping
the total node count N constant. For analytical results, we set
N = 20, and used N = 10 for simulations with real data [33].
The generalizability of our findings is introduced by a scale-
invariant model design based on two key normalizations. First,
the strategic behavior of the nodes is governed by the relative
participation threshold m/N , which defines partial collabo-
ration independent of the absolute system size N . Equally

important is the normalized cost, c̃ = c/N , which is critical
to preserving the strategic trade-off at any scale. Without this
normalization, as N grows, the impact of a fixed individual
cost would become negligible compared to the global AoFI
penalty, trivializing the game-theoretic decision. By scaling
the cost, we ensure the tension between individual sacrifice
and collective benefit remains important for nodes’ policies.
Consequently, the system’s equilibria depend on these relative
parameters rather than absolute node counts, which ensures
the scalability of our conclusions. We further differentiate
the plots for two utilization regimes: Low utilization Regime
(LR) when the participation threshold is m ≤ 0.7N and High
utilization Regime (HR). This subdivision is motivated by the
different behavior of the system when subjected to different
loads. The results for the standard AoI metric is reported for
m → 0.05N and HT, similarly AoCI is found for m → N .

Fig. 4 illustrates the NE transmission probabilities within
an LR setting. As anticipated, higher m values necessitate
increased transmission probabilities, since overly reducing a
node’s transmission probability is not advantageous. Such a
reduction would lead to an undesirable increase in AoFI. Inter-
estingly, as m → N , not all nodes transmit with probability
1 when c̃ is high (Fig. 5). This reflects selfish behavior, as
nodes reduce transmission to avoid communication costs if
the expected AoFI impact is minimal.

Fig. 6 shows the penalty values obtained by the nodes in
the NE solution. For HT, penalties increase almost linearly
as costs increase. In contrast, for ST, the curves for lower
utilization factors become more concave and, for certain nor-
malized cost values, they result in higher penalties compared
to those with higher utilization factors. This plot additionally
confirms Theorem 4, demonstrating that the smallest penalties
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Fig. 11. PoA for different threshold profiles, HR.

for HT are achieved with the smallest m. In Fig. 7, both the
HT and ST curves generally follow the same trend, but for
ST, lower utilization factors underperform across nearly all
cost values. This occurs because the nodes have a higher
transmission probability with ST than with HT. With real
data, the penalty remains highest, attributed to the decrease in

success probability compared to the analytical model, leading
to more frequent transmissions to prevent AoFI divergence.

Fig. 8 shows the expected AoFI obtained in the NE for the
LR case. Similarly to the penalty discussed in the previous
paragraph, the ST increases the concavity of the curves as
the normalized cost increases. An important remark is that
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Fig. 12. PoA obtained for different required number of participating
nodes for selected values of parameters α and c.

for HT there is a clear advantage in lowering AoFI when
m is close to m = 0.1N . This situation drastically changes
when ST is applied. Fig. 9 shows the expected AoFI in the
HR case. Requiring more nodes to work together clearly
enhances efficiency in reducing AoFI. Additionally, this graph
demonstrates how resilient participation regimes are to the
type of threshold needed for a successful update. As shown in
Fig. 5, when m ≈ N , the participation probability does not see
a notable increase between HT and ST. This indicates that the
expected number of participating nodes per communication
round is already sufficient for success. An interesting trend in
Fig. 9 is that the expected AoFI E[δ] does not consistently
decrease with m due to the strategic behavior of the players.
As m rises, more nodes engage, reducing AoFI even if
the task success probability drops. Yet, higher costs dampen
participation, raising AoFI and limiting success likelihood.
This highlights the significant role of cost: low costs motivate
engagement in difficult tasks, while high costs deter it. The
curves for the real dataset follow similar patterns, which
reinforces that a lower success probability escalates AoFI.

Fig. 10 shows the PoA, computed as in (10), as a function of
the cost factor c in LR. The NE solution is always less efficient
than the centralized one, with a PoA above 2 for all c̃ and
m values examined, highlighting the selfish behavior of the
nodes.In LR, nodes lower their participation probability for in-
dividual gain, causing inefficient resource use since tasks suc-
ceed with limited participation, a phenomenon known as the
tragedy of the commons [36]. In the top graphs, the threshold
and strategic interactions affect curve concavity, with partial
participation decreasing success probability, thereby reducing
PoA and slightly mitigating inefficiency. However, as shown
in Fig. 9, even for m = 0.95N , the NE solution remains
far from optimal. Small costs notably increase inefficiency,
emphasizing their effect on the NE solution.

Fig. 12 shows the PoA as a function of the fraction of
participating nodes m/N for some values of the normalized
cost c̃ and threshold profiles. As shown in Fig. 10 and Fig. 11,
all curves decrease steadily as more nodes participate, with
higher m curves consistently below curves associated with a
lower m. The impact of applying ST on increasing PoA is only
apparent when m ≪ N , diminishing with more participating
nodes. Conversely, c sets the efficiency limit when full node
collaboration is required. Interestingly, when m ≪ N , a
higher cost results in a more efficient outcome using both

Metric Low Utilization (LR) High Utilization (HR)

Tx Prob. (p)

Increases with m; lower
for high c̃; not all nodes
transmit at m → N (self-
ish behavior)

High even at m → N ;
HT and ST curves nearly
overlap

Penalty (P)

HT: grows linearly; ST:
more concave and higher
for small m; real data has
highest penalty

Similar trends; ST per-
forms worse at low m

AoFI (E[δ])
HT: lowest at small m;
ST: less efficient, espe-
cially for low m

Higher m improves
AoFI; cost c̃ significantly
impacts participation

PoA
Always > 2; worst at low
m and low c̃; tragedy of
the commons visible

Decreases with m; ST in-
creases PoA mainly when
m ≪ N

TABLE III
SUMMARY OF MAIN RESULTS ACROSS UTILIZATION REGIMES

threshold profiles, this is especially noticeable with ST.
A summary of the results is reported in Tab. III.

V. CONCLUSIONS

This study introduces the AoFI, a new metric that mea-
sures information freshness in partially collaborative contexts,
bridging the gap between the standard AoI and AoCI. Our
model considers updates to be successful if a sufficient number
of nodes transmit at the same time. This condition was mod-
eled with a monotonically increasing function that decreased
the likelihood of success when too few nodes participated.
Explicit equations for the average AoFI revealed a symmetric
NE, where nodes used the same transmission probability.

In systems with high demand, stricter requirements for
successful updates can decrease the AoFI at the receiver
compared to lenient conditions, as shown through PoA anal-
ysis. Controlling transmission cost, it is advantageous to have
all nodes cooperate, ensuring the lowest AoFI and minimal
PoA. Conversely, in low-demand systems, it is advantageous
to involve only the essential number of nodes required for
success. This insight is further supported by experiments
with real data, which validated the theoretical model and
demonstrated consistent results.

Future directions for this research might consider the study
of incentive mechanism to reduce the PoA when only a
marginal part of the network needs to participate in the task.
Another interesting direction might consider the interaction
of sensors with different capabilities and characteristics, thus
including the role of partial information in the analysis.

APPENDIX I

Alternative formulation for partial derivative of Psucc

Let X be a random variable with Poisson binomial distribu-
tion and let GX(z) =

∏N
i=1(1−pi+piz) be its probability

generating function (PGF). It is a well known result that the
relationship between the probability mass function (PMF) and
PGF of any discrete distribution is

P [X = t] =
1

t!

∂tGX(z)

∂zt

∣∣∣∣
z=0

. (11)
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Derivating (4) w.r.t. a generic pi we get

∂Psucc

∂pi
=

N∑
t=m

w(t)
∂P [X = t]

∂pi
, (12)

where we substituted w(t) = P [succ | X = t] for the sake of
compactness. The partial derivative of the PMF is given by

∂P [X=t]

∂pi
=

1

t!

∂t

∂zt
∂GX(z)

∂pi

∣∣∣∣
z=0

=
1

t!

[
(z−1)

∂tGX−i
(z)

∂zt
+t

∂t−1GX−i
(z)

∂zt−1

]∣∣∣∣
z=0

(13)

in which we applied the product rule to the derivative of the
PGF w.r.t. pi and we have defined GX−i

(z) as the PGF of
the Poisson binomial random variable X−i, that is a modified
version of X where we have removed the participation of node
i. After some algebra and substituting the result into (12) we
finally obtain

∂Psucc

∂pi
=

N∑
t=m

w(t)(P [X−i = t−1]− P [X−i = t]) . (14)

In particular, for HT in which w(t) = 1 for every t ≥ m the
expression further simplifies to

∂Psucc

∂pi
= P [X−i = m−1] . (15)

APPENDIX II

Proof of Theorem 1 We will explicitly prove the theorem
only for the HT case. The ST case follows exactly the same
steps. Let µ denote the set of active nodes, representing those
participating in the communication process. An NE is obtained
when for every player i ∈ S it holds that the derivative of the
penalty w.r.t. the node’s activation probability is 0. Consider
the system of (9) for nodes i and j. Solving it, we get

∂Psucc

∂pi
=

∂Psucc

∂pj
, (16)

as c and Psucc are the same for both. By applying the results
of Appendix I for HT, i.e. (15), we obtain

P [X−i = µ− 1] = P [X−j = µ− 1] . (17)

We can further subdivide X−i and X−j into random variables
Z, defined as the successes of µ − 2 nodes excluding i and
j and the Bernoulli trials Yi and Yj for nodes i and j,
respectively. By applying the law of total probability we get

P [X−i = µ−1] =
∑

k∈{0,1}

P [X−i = µ−1 | Yj=k]P [Yj=k]

= P [Z=µ−1](1−pj) + P [Z=µ−2]pj ,(18)

and with exchanged pedices for j. By plugging (18) into (17)
and isolating pi and pj , we promptly get

(pi − pj)(P [Z = µ− 2]− P [Z = µ− 1]) = 0 , (19)

for which the only solution is pi = pj , because Z is unimodal
and is not uniformly distributed, thus proving the claim of
symmetry for the NEs.

APPENDIX III

Proof of Theorem 2 Let µ denote the count of active
nodes, representing those participating in the communication
process, and recall that for HT the success rate is binary, 1
if µ ≥ m and 0 otherwise. The proof follows an iterative
reasoning. As a base case, consider µ = m. In this situation,
the number of transmitting nodes is guaranteed to be X = m,
and they all must transmit with probability p(m) = 1, therefore
Psucc = 1. In this scenario, this is a stable solution because if
node i decides to defect by not transmitting with probability
1, then the task will immediately fail and its penalty will be
Pi → +∞ > 1+c. Let us now consider the case m < µ ≤ N .
In this scenario an equilibrium in mixed strategies emerges.
To analytically obtain it, we solve (9) by rearranging the
terms and applying symmetry considerations from Theorem
1 obtaining

R(p, µ) = c , (20)

with X(µ) becoming a binomial random variable of param-
eters µ and p, X

(µ)
−i the same random variable without the

effect of node i, and

R(p, µ) =
∂Psucc

∂pi
· 1

(Psucc)2

=
P [X

(µ)
−i = m− 1]

(P [X(µ) ≥ m])2
. (21)

By analyzing the boundary behavior of R(p, µ) in the interval
(0, 1] we get that for p → 0 we get R(p, µ) ∼ 1

pm−1 → +∞,
and for p = 1 we have R(1, µ) = 0. Because R(p, µ) is
continuous, by the intermediate value theorem and the fact
that it is a strictly decreasing function in p, we find that
there exists a single solution p(µ) ∈ (0, 1]. We also analyze
the behavior of the function for fixed p. Let µ′ = µ + 1,
we have R(p, µ′) < R(p, µ), because the denominator of
R(p, µ′) is for sure bigger than the one of R(p, µ), as one
extra active node makes it easier to reach the threshold target.
If we substitute p(µ) in the previous relations, we get that
R(p(µ), µ′) < R(p(µ), µ) = c, meaning that in order for the µ′

solution to match the value of c, it must hold that p(µ
′) < p(µ).

In addition, it is immediate to prove iteratively that for each
m < µ ≤ N there is a combinatorial number of NEs. Let
us focus on the case µ = m + 1. In this case we have a
symmetric mixed strategy NE as described before that uses all
m+1 active nodes with probability p(m+1) < p(m), but there
are also

(
m+1
1

)
pure strategy NEs with m nodes active with

probability 1 as in the case µ = m. Similarly, for µ = m+ 2
we have a symmetric mixed strategy NE that uses all m+ 2
nodes active with probability p(m+2) < p(m+1) < p(m),(
m+2
1

)
mixed strategies NEs with m + 1 active nodes with

probability p(m+1) and
(
m+2
2

)
pure strategy NEs with m

active nodes. By iterating the same reasoning we get the
statement of the theorem for which there is a symmetric NE
in mixed strategies with p(µ) < p(m), and there are

(
µ
ζ

)
pure

and mixed strategies NEs, with ζ = 1, . . . , κ and κ = µ−m,
where N − µ+ ζ nodes are silent.
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APPENDIX IV

Proof of Theorem 3 The proof of the existence of multiple
equilibria closely follows the same reasoning of Theorem 2,
with the major difference being the threshold m∗ ≥ m. First, it
is trivial to check the existence of the catastrophic equilibrium
in which no node transmits. This emerges from the fact that
there is no incentive for any node to deviate from the not
transmit strategy when all the others are staying silent, as the
task will inevitably fail. To prove the existence of this modified
threshold m∗ let us consider again the ratio function R(p, µ)
for µ ≥ m, which now has to use the less handy version of
the derivative of the success probability (14) and the results
of Theorem 1 for the symmetry of the solution. With this
we get that for p → 0, R(p, µ) ∼ 1

pm+1 → +∞. For p = 1,
instead R(1, µ) approaches a positive value which depends on
the specific shape of (2). Given the continuity of R(p, µ) in p,
there must exist a global minimum Rmin(µ) ∈ (0, 1]. Because
increasing µ guaranties that more nodes are active and the
probability of task success increases, Rmin(µ) is a decreasing
function in µ. Therefore, there must exist m∗ = minµ[c ≥
Rmin(µ)]. In summary, if µ < m∗ we have c < Rmin(µ)
and the only stable NE is the one in which all nodes remain
silent. If µ ≥ m∗, then c ≥ Rmin(µ). By the continuity and
monotonicity of R(p, µ), by the intermediate value theorem
there exists a solution p(µ) ∈ (0, 1] for which (20) is satisfied.

APPENDIX V

Proof of Theorem 4 Consider the HT. A strategy is Pareto
efficient if no other strategy can decrease a player’s penalty
without increasing another’s. This is equivalent to finding the
NE that minimizes the social penalty defined as

∑N
i=1 Pi. This

is minimized when Psucc = 1 and thus the only component
to be minimized is

∑N
i=1 Ci. By Theorem 2, for any given

m, there exists a set of pure strategy NEs where exactly m
nodes transmit with probability p = 1. In these circumstances,
the cost component of the social penalty becomes

∑m
i=1 c, and

attains a minimum at m = 1. This is therefore the most Pareto
efficient solution to the problem, as any other configuration,
also in mixed strategies, would require a less cost-effective
activation pattern as µ > m nodes will be required to actively
transmit.
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