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Abstract—Goal-oriented communication entails the timely
transmission of updates related to a specific goal defined by the
application. In a distributed setup with multiple sensors, each
individual sensor knows its own observation and can determine
its freshness, as measured by Age of Incorrect Information (AoII).
This local knowledge is suited for distributed medium access,
where the transmission strategies have to deal with collisions.
We present Dynamic Epistemic Logic for Tracking Anomalies
(DELTA), a medium access protocol that limits collisions and
minimizes AoII in anomaly reporting over dense networks. Each
sensor knows its own AoII, while it can compute the belief
about the AoII for all other sensors, based on their Age of
Information (AoI), which is inferred from the acknowledgments.
This results in a goal-oriented approach based on dynamic
epistemic logic emerging from public information. We analyze
the resulting DELTA protocol both from a theoretical standpoint
and with Monte Carlo simulations, showing that it is significantly
more efficient and robust than classical random access, while
outperforming state-of-the-art scheduled schemes by at least 30%,
even with imperfect feedback.

Index Terms—Goal-oriented communication; age of incorrect
information; dynamic epistemic logic; medium access control.

I. INTRODUCTION

Goal-oriented communication is a new paradigm that aims
at overcoming the limits of traditional communication systems
by considering the meaning and purpose of data, i.e., their
value for a specific application [2]. Goal-oriented schemes
consider the relevance of information, taking into account
the shared context of the communicating agents, timing and
bandwidth constraints, and the application-level performance
metric that needs to be optimized. Research on the subject
gained steam after the development of joint source-channel
coding [3] and has since been extended to wider semantic
aspects [4], is mostly focused on goal-oriented compression.
Instead of classical reliability metrics, the semantic approach
defines a complex, application-dependent distortion function:
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even if part of a message is lost, distorted, or omitted, the
objective is to convey the intended meaning.

On the other hand, a parallel approach has been developed
by the Internet of Things (IoT) community, focusing on
medium access instead of coding. In this case, the relevance
of information depends on the error of a remote monitor
that estimates the state of a dynamic process through sensor
updates. The accuracy of the estimate will tend to degrade
over time, unless new updates are received. Age of Information
(AoI), which represents the time elapsed since the generation
of the last received status report [5], captures this basic
relation [6], but it is only a proxy for the actual relevance
of sensory information, which depends on the stochastic
evolution of the process. The Value of Information (VoI) is
a more recent metric that directly considers goal-oriented
aspects by measuring the estimation error directly, allowing for
more context-aware access schemes, but also increasing their
complexity. In order to capture both the need for fresh updates
and their relevance [7], the Age of Incorrect Information
(AoII) considers a linear penalty counting the time elapsed
since the last variation of system conditions [8].

The design of medium access schemes that can minimize
AoI or AoII is an important problem in goal-oriented commu-
nication, as the relevance of sensor information is known to
individual nodes, requiring a distributed approach. This is par-
ticularly relevant in scenarios with a large number of sensors
and relatively rare events in each location, such as anomaly
tracking [9]: scheduled schemes can minimize AoI, or even
the expected VoI [10], but the centralized scheduler cannot
be aware of anomalies, leading to a higher AoII. However,
most of the relevant literature still considers centralized setups
due to the need to coordinate transmissions [11] to avoid the
collision issue that plagues classical random access protocols
such as ALOHA [12], even when using feedback from the
common receiver [13] to resolve collisions by computing the
state of other contending nodes [14].

The study of random access protocols that can act in a truly
goal-oriented fashion, minimizing AoII and fully exploiting
the knowledge that centralized schemes lack, is still in its
infancy [15], as the analysis of AoII is complex even for simple
ALOHA-based protocols [16], [17]. Distributed protocols that
can take the content of sensor observations into account are
rare in the relevant literature: while a centralized controller
cannot exploit the knowledge of the sensors’ true observations,
distributed protocols are often plagued by collisions [18].
Sensors can decide whether and when to transmit based on
their own observations, but they do not know what other
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sensors are observing, and which decisions they might make
as a result. This work aims at filling this gap by designing
a distributed scheme that uses Dynamic Epistemic Logic
(DEL) [19] to allow nodes to employ deductive reasoning
over others’ states based on common knowledge information
about their behavior. This can reduce both the frequency of
collisions [20] and the time needed to resolve them [21].

We design Dynamic Epistemic Logic for Tracking Anoma-
lies (DELTA), a protocol that adopts DEL to allow sensors to
minimize AoII distributedly. Each node considers its belief that
it is the one with the highest AoII and then acts accordingly:
listening to acknowledgments (ACKs) guarantees that it is able
to track everyone else’s AoI, using this information to update
its belief over others’ AoII. The protocol considers a simple
binary relevance model, which can however represent a variety
of applications, such as (i), a set of wireless sensors reporting
anomalies, e.g., excessive temperatures in a factory setting,
to a common access point, in which the sensor detecting
the occurrence of an anomaly remains in an alert state until
it successfully reports it [22], or (ii), a scenario in which
agents request access to computing resources over a shared
channel, sending a request/interrupt to the common computing
engine [23] when they receive a task [24].

To the best of our knowledge, we are the first to combine
DEL and goal-oriented communication, designing a random
access protocol that exploits this information to provide supe-
rior performance over scheduled approaches. The contributions
of this paper are listed as follows.

• We introduce DELTA, a random access protocol based
on inference reasoning, formally proving that it can allow
multiple sensors to efficiently operate in a goal-oriented
fashion based on common knowledge information;

• We analyze the protocol settings, providing an exact
optimization framework for the collision resolution phase
of the protocol and an approximate semi-Markov model
for the epistemic reasoning phase;

• We provide an analysis of the effects of various feedback
models, showing that the protocol is robust to errors in
the feedback channel, degrading gracefully even in very
difficult scenarios.

DELTA can reduce the probability that the AoII is over a set
threshold by 30−80% with respect to scheduled schemes if the
offered load is below 0.5, achieving much better performance
than existing random access schemes, as well as reducing the
expected AoII with respect to both scheduled and random
access alternatives. A preliminary version of this work was
presented as a conference paper [1]. There are two major
contributions in this work compared to [1]. First, we design
a collision resolution scheme that is more advanced than the
one in [1], with a superior performance under ideal feedback.
Second, we analyze the impact of imperfect feedback. Several
feedback models are introduced for this purpose. The results
confirm the robustness of DELTA with respect to different
imperfect feedback scenarios.

The rest of this paper is organized as follows: first, Sec. II
presents the state of the art. Sec. III then defines the communi-
cation system model, and the DELTA protocol is specified in
Sec. IV, along with the theoretical analysis of its parameters.

We then describe the simulation results in Sec. V, while
Sec. VI concludes the paper and presents some possible
avenues of future work.

II. RELATED WORK

The analysis of AoII and other AoI extensions in distributed
settings is still in its infancy. The existing random access
schemes that target information freshness, either require a
certain side coordination, or a traffic is extremely sporadic
[18], [25]. Even though it was studied in the seminal paper
that first defined AoI [5], where the metric was originally
introduced for vehicular networks, relatively few works have
explicitly considered medium access. A common approach is
to treat centralized coordinated access [10], [26], due to the
complexity of keeping track of the system state in distributed
schemes, as well as information locality: since sensors operate
without knowing what the others measure, the collision risk
becomes acute unless access is centrally scheduled [18].
Several recent studies [27] considering AoI in random access
channels point out how collisions have a detrimental effect on
AoI, even when considering carrier sensing [20] and collision
resolution mechanisms [21]. The efforts to prevent nodes from
entering collisions are mostly circumscribed to the threshold
ALOHA approach [16], which can be adapted dynamically
to time-varying traffic conditions [28]. However, threshold-
based methods can be efficient for AoI but are suboptimal for
anomaly reporting due to the overhead incurred due to waiting
until an AoII threshold is reached [29].

Deterministic access quickly becomes AoI-optimal for large
networks [30]; however, this only holds if the traffic is
intense. There are very few investigations on the freshness
of anomaly reporting, which is not expected to be persistent.
Most anomaly tracking applications, where staleness is better
quantified by AoII, do not require constant updates and avoid
unnecessary transmissions, improving battery lifetime and
congestion [10]. Scenarios include vehicular flow management
in which critical reporting by a vehicle is not constant and
depends on its position [31], environmental supervision in
smart agriculture, wildlife tracking, or monitoring for safety
and security purposes in domotic, industrial, or smart grid
scenarios [32]. Even medical supervision of elderly or chronic
patients likely only reports relevant condition changes [33].
In all these scenarios the traffic is intermittent, but far from
sporadic (e.g., vehicular communications may require an ex-
change of data with an update every second or so [34]), and
the tracked anomalies are sudden and variable across the users.
In this context, analyzing AoII in more complex reservation-
based protocols is often only possible as the number of
nodes grows to infinity [35], while precise results for finite
networks have been provided just for simple schemes, such as
ALOHA [36]. To the best of our knowledge, the only work to
actively optimize AoII instead of analyzing existing schemes
is [15], whose results are still inferior to simple round-robin.

We then consider the work on epistemic logic, a branch
of formal reasoning dealing with the inference, transfer, and
update of knowledge among multiple agents [37], [38]. When
knowledge evolves over time and successive interactions, this
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is referred to as DEL, and finds applications in social networks
and cryptography [39]. The solution is often obtained through
meta-reasoning on whether other agents are able to solve the
problem. For example, in the well-known “muddy children
puzzle,” agents may possess an individual trait (i.e., a dirty
face) or not. This information is not directly available, as each
agent only knows if others have the trait, and that at least one
child does [40]. Proceeding by induction, one can determine
the exact number of muddy faces over a few rounds.

There have been a few attempts at introducing DEL at the
network level, mostly driven by the use of AI-empowered
devices. For example, [32] discusses the ability of IoT systems
to combine local knowledge of individual nodes through
automated reasoning, so as to gain further meta-information.
Quite recently, [38] has explored AI for network virtualization,
and leverages epistemic logic to improve over the uncertainties
of AI with respect to traditional software-based virtual network
functions. However, none of these or other similar proposals
consider DEL for medium access.

III. SYSTEM MODEL

Consider a discrete-time system with a set N of sensors
(also referred to as nodes), each of which measures an in-
dependent quantity and can detect anomalies. We denote the
number of nodes as N = |N | and the state at time step t
as xt ∈ {0, 1}N , whose n-th component xn,t corresponds
to the state of sensor n at time t. The free evolution of
the process monitored by sensor n is driven by λn, the
transition probability from the normal state 0 to the anomalous
state 1. The sensor starts in the normal state, and once an
anomaly occurs, it remains in state 1 unless an external
command resolves the anomaly. The transition matrix An of
the absorbing Markov chain is then

An =

(
1− λn λn

0 1

)
. (1)

However, we assume that the gateway can receive warnings
from the sensors and adjust its estimate of the system state
or send commands to actuators to resolve the anomaly. This
effectively means that, upon a successful transmission, a
sensor returns to the normal state. We define the indicator
variable sn,t ∈ {0, 1}, which is equal to 1 if n successfully
transmits at time t and 0 otherwise. We then define the time-
dependent transition matrix Bn,t:

Bn,t =

(
1− λn(1− sn,t) λn(1− sn,t)

sn,t 1− sn,t

)
. (2)

In other words, while An represents the natural transition of
the process, which is absorbing, Bn,t includes the reporting
process as part of the evolution of the system. Whenever the
sensor is in state 1 or an anomaly occurs, it can go back to
state 0 by informing the gateway.1 We then define the AoI of
node n at time t, denoted as ∆n,t, as

∆n,t = t− max
τ∈{1,...,t}

τ sn,t−τ . (3)

1For the sake of simplicity, we consider transmissions to be instantaneous.
The case in which transmissions incur a delay of 1 slot can be dealt with by
adding 1 to all AoI and AoII measurements in the following.
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Fig. 1. Example of the AoI and AoII evolution for a node.

However, AoI is not meaningful in our case, as a sensor might
spend a long time with nothing to report: as long as its state
is normal, new updates from it are not necessary. We then
introduce the AoII Θn,t [8], which is defined as

Θn,t = t− argmax
θ∈{t−∆n,t+1,...,t}

θ xn,t−θ. (4)

As Fig. 1 shows, the AoI grows even while in the normal
state, while the AoII only grows in the anomalous state. We
also define the AoII violation probability Vn(θ∗) as

Vn(θ
∗) = E

[
lim
T→∞

1

T

T∑
t=0

I(Θn,t > θ∗)

]
. (5)

where I(·) is the indicator function, equal to 1 if the condition
in the argument is true and 0 otherwise.

We consider the wireless communication system to operate
in Time Division Duplex (TDD) mode, so that each time slot
is divided in an uplink and downlink part. During the uplink
part, each sensor may transmit or remain silent. The uplink
is modeled as a collision channel, in which transmissions are
never successful if more than one node is active. If a single
node n transmits, its packet erasure probability is εn.

During the downlink part, all sensors are in listening mode.
If the uplink transmission was successful, the ACK packet
from the gateway informs all nodes of the identity of the
transmitter, while if it was unsuccessful, either because of
a collision or a wireless channel erasure, a Negative ACK
(NACK) packet informs all nodes of the failure, but does not
report the identity of the transmitting nodes. Finally, if no node
transmitted, the gateway is silent [41].

We will consider four different models for theACK and
NACK transmission channel from the gateway to the nodes:

• An ideal feedback channel, in which all nodes receive
the messages without errors;

• A noisy feedback channel, in which ACKs and NACKs
are always distinguished, but the decoded identity of
the intended recipient of theACK is a Gaussian random
variable with a standard deviation σf , as explained below;

• An erasure feedback channel, in which each node may be
unable to decode theACK with probability εf , but knows
whether a feedback message was sent;

• A deletion feedback channel, in which a node is unable
to even know if a feedback message was transmitted or
not with probability ωf .

In general, the protocol is robust to an imperfect feedback
channel, and we will discuss the countermeasures to deal with
this case in the following. The noisy model is inspired by
new IoT technologies such as wake-up radio: recent studies
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and standardization efforts by 3GPP [42] show that a gateway
using simple on-off keying can deliver a 16 bit ACK in
0.1 ms [43], and the use of more advanced modulations like
Orthogonal Frequency Division Modulation (OFDM) can fur-
ther improve their efficiency [44]. Accordingly, the duration of
the downlink phase can be safely neglected, and the electronics
implementing the receiver can be designed to consume orders
of magnitude less than a standard radio. In this case, confusing
ACKs and NACKs becomes almost impossible, as the code
can be designed for a wide separation of the two, but the
duration of the ACK signal may be misinterpreted by nodes,
leading to a certain probability of error over the node ID. In
this case, we consider a Gaussian noise over the decoded ID,
w ∼ N (0, σ2

f ): if node n receives an ACK for a packet sent
by node m, the decoded ID is

m̂n = mod(int(m− 1 + w), n) + 1, (6)

where mod(m,n) is the integer modulo function.
Finally, if node n transmitted during the slot, it will always

assume that an ACK is meant for its own packet independently
of the noise, as only one packet can be acknowledged in a
given slot. On the other hand, the erasure and deletion models
correspond to more classical digital feedback channel models,
in which the nodes are in receive mode during the downlink
phase of each round. This usually ensures a very low feedback
error probability, as the gateway can transmit using a high
power and a robust modulation and coding, but requires a
higher energy expense for the nodes.

We denote the feedback (or lack of it) received by node n
after slot t as fn,t, and the history of feedback up to time t
as fn,0:t ∈ Ft. Our objective is then to find a transmission
strategy π∗

n,t : Ft × N → [0, 1] matching the past history
of received feedback and the current AoII to a transmission
probability and achieving

π∗
n,t = argmin

π:Ft×N
Vn(θ

∗). (7)

As the space of possible strategies is extremely large, our
solution relies on heuristic reasoning.

In the following, we will refer to random variables using
capital letters, e.g., X , while their realizations will use the
corresponding lowercase letter, e.g., x. The Probability Mass
Function (PMF) of X will be indicated as pX(x), and the
corresponding Cumulative Distribution Function (CDF) will
be PX(x). Vectors are indicated as bold lowercase letters,
e.g., x, whose n-th element is denoted by xn. Matrix symbols
are bold capital letters, e.g, A, whose element in row m and
column n is denoted by Am,n.

IV. THE DELTA PROTOCOL

In order to reduce the AoII violation probability, we pro-
pose the Dynamic Epistemic Logic for Tracking Anomalies
(DELTA) protocol, which is based on the notion of common
knowledge as defined in [19]. DEL is a formal framework
to describe the dynamics of beliefs in multi-agent systems,
which distinguishes between general and common knowledge
proposition. A proposition is general knowledge if its truth
value is known to all agents, while for it to be common

BTnot NACK

ZWnot NACK CR not ACK

CE

ACKNACK

not NACK

maxψt = 0

NACK

NACK

Fig. 2. DELTA state diagram.

knowledge, the fact that it is general knowledge also needs
to be known to all agents, extending recursively to infinity.
The use of common knowledge-based Bayesian reasoning
allows DELTA nodes to maintain a shared understanding of
the state of the system, which each sensor can combine with its
own private observations to make communication decisions.2

Furthermore, the public outcome of these decisions can be
used by sensors to infer other nodes’ private knowledge,
following a Bayesian framework. The crucial aspect to enable
this is the public nature of ACKs. In the following, we only
consider the ideal and noisy feedback channel cases, but we
adapt DELTA to an imperfect feedback channel in Sec. IV-E.

A. Protocol Definition

The DELTA protocol includes 4 phases, and transitions
between them only depend on publicly available information,
e.g., the outcome of the previous slot. The DELTA phase
diagram is shown in Fig. 2.

The Zero-Wait (ZW) phase is the default mode of operation:
during this phase, each sensor transmits whenever its state
changes, i.e., an anomaly occurs. This allows us to keep the
AoII equal to 0 when the system is empty. Sensors remain in
this phase until a transmission fails due to multiple sensors
simultaneously observing anomalies or a wireless channel
erasure. As the gateway transmits a NACKs signal to inform
sensors of the collision, all sensors switch to the Collision
Resolution (CR) phase [21], recording their membership in
the collision set through an indicator variable mn,t.

During the CR phase, nodes with mn,t = 0 never transmit.
In the first slot after the collision, members of the collision set
transmit with a certain probability p. In the following slots,
the nodes keep transmitting with the same probability until
there is a successful transmission, i.e., an ACK is received:
in this case, the nodes transition to the Collision Exit (CE)
phase. During this phase, nodes that are not in the collision
set remain silent, while the node that successfully transmitted
exits the collision set by setting mn,t = 0. All remaining
members of the collision set transmit with probability 1. This
strategy does not always lead to an immediate reduction of
the AoII. While it is very effective if there are 1 or 2 nodes
in the collision set, it always results in a collision if there
are more than 2. However, it also has a significant advantage
over less aggressive strategies: whatever the outcome of the

2In the following, we assume that vector λ is known to all nodes. If this
is not the case, empirically estimating the activation rate of other sensors
without signaling is easy if the feedback includes the AoII of the successfully
reported anomaly, as the distribution of inter-anomaly times is geometric.
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slot, it allows all nodes to know the phase of the system. If
the CE phase is successful, i.e., the slot is either silent or a
correct transmission, the feedback implicitly tells the nodes
that the collision set is empty, and they should switch to the
Belief Threshold (BT) phase. On the other hand, the second
collision allows all nodes to know that the initial collision is
still unresolved, and that there should be another CR phase.
This allows for the preservation of common knowledge, which
can provide significant long-term benefits.

Finally, the BT phase allows sensors to gradually reduce the
maximum estimated AoII, eventually going back to the ZW
phase: as the sequence of CR and CE phases can take several
steps, anomalies may have accumulated, and several sensors
may have a high AoII. Consequently, the sensors need to get
back to a state in which they have common knowledge that
everyone is in state 0 before ZW operation can safely resume.

Let us denote the highest possible AoII that a node might
have given the common knowledge information as ψn,t:

ψn,t = sup {θ ∈ N : P (fn,0:t|Θn,t = θ) ̸= 0} . (8)

Under an ideal feedback model, all nodes can compute ψn,t
and obtain the same result, and they know that Θn,t ≤
ψn,t ∀t, n. The computational complexity of this calculation
is O(ψn,t), so the overall computational complexity of the
maximum AoII update is O(Nψmax), where ψmax = maxψt.
Node n’s AoII Θn,t is the highest if no node has higher AoII,
and the activation of each node is independent. The probability
that node n has the highest AoII, given the vector ψt, is then

zn,t (Θn,t,ψt) =
∏
m ̸=n

(1− λm)
[ψm,t−Θn,t+1]+

, (9)

where [x]+ = max(0, x) is the positive part operator. In
the BT phase, we set a threshold Z, and node n transmits
with probability 1 if zn,t > Z. If ψt = 0N , i.e., the all-
zero vector of length N , the system goes back to the ZW
phase. The complexity of the calculation of zn,t (Θn,t,ψt)
is O(Nψmax). As all other DELTA operations are O(1), the
overall complexity of the protocol is O(Nψmax), which is
manageable even for rather large networks.

We note that collisions are more common in the BT phase
than in ZW, as nodes must be more aggressive to gradually
reduce ψt. All collisions are handled identically, regardless
of the phase during which they originated. The full decision-
making algorithm for each sensor is presented as Alg. 1.

Finally, we provide the following theorem about the cor-
rectness of the protocol:

Theorem 1. Under an ideal feedback model, the phase and
the value of ψt are always common knowledge, and the phase
is always the same for all nodes.

The proof of the theorem, involving a DEL model of the
network, is presented in the Appendix.

B. Collision Resolution Phase Optimization

The expected number of slots τc required to resolve a
collision depends on the number C of colliding nodes, which
transmit with the same probability p until the collision is

Algorithm 1 Pseudocode of the DELTA protocol

Require: phase, Z, p, xn,t, NACK, mn,t, ct, ψt−1

1: if NACK then
2: if phase = CE then
3: ct ← ct + 1

4: phase← CR
5: if ACK and phase = CR then
6: phase← CE
7: if phase = BT then
8: ψt ←UPDATEMAXIMUMPOSSIBLEAOII(ψt−1)
9: if max(ψt) = 0 then

10: phase← ZW
11: if phase = CE and (not NACK) then
12: phase← BT, ct ← 0

13: if xn,t = 0 then
14: return 0
15: else
16: switch phase do
17: case ZW: return 1
18: case CR: return mn,t×BERNOULLISAMPLE(p(ct))
19: case CE: return mn,t

20: case BT: return HIGHESTAOIIPROB(θt,ψt)> Z

resolved. As defined in Sec. III, the wireless channel erasure
probability for node n is denoted as εn. The probability of
success in any given slot when there are c colliding nodes is

σ(c, p, εn) = (1− εn) Bin(1; c, p), (10)

where Bin(k;N, p) =
(
N
k

)
pk(1−p)N−k is the binomial PMF.

After the first ACK, the remaining colliding nodes transmit
with probability 1 in the CE phase. This means that C − 1
nodes will collide if C > 2. We then define vector p, whose
i-th element represents the transmission probability in the i-th
collision resolution phase.

If all nodes have the same ε, we can represent the cycle
starting from c colliding nodes as an absorbing Markov chain
with c states, representing each individual CR phase. The
transition from one state to the next is the CE phase, and
the structure of the protocol prevents the size of the collision
set from increasing. The transition probability matrix is

Pc =

(
B σ(2, pc−1, ε)u

c−1
c−1

(0c−1)
⊺ 1

)
, (11)

where 0N is the column vector of length N whose elements
are all equal to 0, and the non-zero elements of matrix B are

Bij =

{
1− σ(c− i+ 1, pi, ε), j = i;

σ(c− i+ 1, pi, ε), j = i+ 1.
(12)

The time τc until absorption, i.e., until the collision is fully
resolved, follows a discrete phase-type distribution character-
ized by the matrix Pc. The CDF of τc is simply given by the
corresponding element of the t-step matrix, pτc(t) = (Pc)

t
1,c.

In the case where c = 1, i.e., when a single node’s transmission
failed because of the channel, the time until absorption reduces
to a geometric random variable, i.e., τ1 ∼ Geo(p1).

Theorem 2. If the colliding set was a singleton, i.e., C = 1,
the expected duration of the subsequent CR and CE cycle is

E [τ1] = 1 +
(
(1− ε)p1

)−1
. (13)
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For a set of c > 1 colliding nodes with the same ε, the expected
duration of a cycle of CR-CE phases, which begins after the
initial collision and ends when the collision set is empty, is

E [τc] = c− 1 + ε+
ε

(1− ε)pc
+

c−2∑
i=0

1

σ(c− i, pi+1, ε)
. (14)

Proof: We begin by proving the theorem in the singleton
case, in which there is a single CR phase, whose duration
is geometrically distributed with parameter (1 − ε)p1. An
additional slot needs to be added to account for the CE phase.

In the general case, the expected time until absorption of
a Markov chain is hard to compute, but the structure of the
transition matrix simplifies the problem. Any state i is reached
from i−1 with a successful transmission after a geometrically
distributed number of failures, i.e., self-transitions:

E [τi−1,i|C = c, pi−1] =
(
σ(c− i, pi−1, ε)

)−1
. (15)

The number of self-transitions in each state is independent
from what happens in other states due to the Markov property,
and the protocol requires c − 1 CR phases to reach the
absorbing state c. Additionally, there are c − 2 collisions
caused by the intermediate CE phases, during which the nodes
discover that the collision set is not empty. Finally, there is
one more CE phase from the last colliding node after reaching
state c. If the transmission is successful, the cycle is over, but
if there is a wireless channel loss, there is one more singleton
collision resolution cycle after it.

However, the value of C is unknown to the sensors. If we
consider the ZW phase in a system in which all sensors have
the same activation probability λ, we get

pC(c|ZW) = Bin(c;N,λ) [1− (1− ε)δ(c, 1)] , (16)

where δ(m,n) is the Kronecker delta function, equal to 1 if the
two arguments are equal and 0 otherwise. We can also easily
get the total failure probability pf (ZW) =

∑N
c=1 pC(c|ZW).

We can then apply the law of total probability, adding the c−1
CE phases as in Theorem 2, to obtain the CDF of the duration
of a collision resolution cycle, with ηc = 1− (1− ε)pc:

Pτ (t|ZW) =
ε(1−ε)
pf (ZW)

[
Bin(1;N,λ)

(
1− ηt−1

1

)
+

min(N,t)∑
c=2

Bin(c;N,λ)

(
(Pc)

t−c+1
1,c

ε
+

t−2c+1∑
k=1

(Pc)
t−c−k
1,c ηk−1

c pc

)]
.

(17)

Theorem 3. The optimization problem defined by

p∗ = argmin
p∈[0,1]N

N∑
c=1

pC(c|ZW)E [τc] , (18)

is convex if all nodes have the same λ and ε, and the optimal
transmission probability p∗i for the i-th round of CR is the
unique solution of

Bin(1;Ni, λ)ε

(p∗i )
2

+

Ni∑
c=2

Bin(c;Ni, λ)
1− cp∗i

c(p∗i )
2(1− p∗i )

c
= 0,

(19)
where Ni = N − i+ 1. In the N -th CR phase, p∗N = 1.

Proof: Since each CR phase is independent from all oth-
ers, each element of p can be separately optimized to minimize
the expected duration of that individual phase. We then take the
probability for the first CR phase as a representative example,
obtaining problem

p∗1 = argmin
p∈[0,1]

[
N∑
c=1

wc
(
σ(c, pi−1, ε)

)−1

]
, (20)

where wc = pC(c|ZW), which is independent from p1. In
order to prove that it is convex, we only need to prove that
each component of the weighted sum is convex. The first one,
with c = 1, is proportional to p−1, so it is convex for p > 0.
We show that components with c > 1 are convex by taking
the second derivative of (σ(c, p, ε))−1 with respect to p:

∂2
(
σ(c, p, ε)

)−1

∂p2
=
c(c+ 1)p2 − 2(c+ 1)p+ 2

(1− ε)cp3(1− p)c+1
. (21)

As c > 1, p ∈ (0, 1), and 1 − ε is always positive, so is the
denominator. The second derivative is then positive if

c(c+ 1)p2 − 2(c+ 1)p+ 2 > 0. (22)

This quadratic equation has no real solution for c > 1. The
objective of the problem in (18) is then convex, and the set
[0, 1]N is also convex, proving the first half of the theorem.

We can then trivially show that (19) is the first derivative
of the objective in (20) We can trivially prove that the two
extremes, p = 0 and p = 1, lead to an infinite expected
duration for N > 1: if p = 0, no node ever transmits, while
if p = 1, the nodes will keep colliding forever whenever the
remaining collision set is not a singleton [12]. The maximum
is then inside the interval for N > 1.

Finally, we can prove that (19) is a multiple of the first
derivative of the optimization function in (18), and finding its
root in (0, 1) is equivalent to finding the minimum.

Since the problem is convex, there exists a single global
optimum in the optimization set, which can be found by setting
the derivative to 0, i.e., by the condition in (18). However,
solving the equation is not possible in closed form, as it
involves a hypergeometric function. However, a solution can
be easily found by applying the bisection method [45]. This
can be then stored efficiently as a look-up table to avoid a
further computational burden.

C. DELTA+

A fixed transmission probability still does not fully account
for the information received through public announcements:
each failed or silent slot can be used as a Bayesian update.
This principle was adopted as part of the Sift protocol [46],
which provided an optimal solution for a known number of
colliders and an approximated one with an unknown number.
In our case, the initial distribution of the number of colliders
in the first CR phase is

ϕ0(c) = 1(c−1)

(
1− (1− ε)δ(c, 1)

)
Bin(1;N,λ)

εBin(1;N,λ) +
∑N
c′=2 Bin(c

′;N,λ)
, (23)
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Fig. 3. Approximated semi-Markov model of DELTA with K=3N , Ψ=4.

where 1(x) is the stepwise function, equal to 1 if x ≥ 0 and
0 otherwise. We can then update the belief distribution after
an ACK by applying Bayes’ theorem:

ϕCR
j+1(c|ACK) =

ϕj(c+ 1) [(c+ 1)pj(1− ε)(1− pj)
c]∑N

c′=1 ϕj(c
′) [c′pj(1− ε)(1− pj)c

′−1]
.

(24)
After a silent slot, we get

ϕCR
j+1(c|SIL) =

ϕj(c)(1− pj)
c∑N

c′=0 ϕi,j(c
′)(1− pj)c

′
. (25)

Finally, we can perform a similar update after a NACK:

ϕCR
j+1(c|NACK) =

ϕj(c)pNACK(c)∑N
c′=0 ϕj(c

′)pNACK(c′)
, (26)

where pNACK(c) is

pNACK(c) = 1− (1− pj)
c − cpj(1− ε)(1− pj)

c−1. (27)

After an unsuccessful CE phase, we update the belief as

ϕCE
j+1(c|NACK) =

ϕj(c)1(c− 1)
(
1− (1− ε)δ(c, 1)

)
εϕj(1) +

∑N
c′=2 ϕj(c

′)
. (28)

Using this belief distribution, the optimal transmission proba-
bility p∗j is the solution of

ϕj(1)

(p∗j )
2
+

N∑
c=2

(1− cp∗j )ϕj(c)

c(p∗j )
2(1− p∗j )

c
= 0. (29)

The proof that this solution is optimal trivially follows from
Theorem 3. We will refer to the version of the protocol using
this slot-level belief update as DELTA+, to distinguish it from
the basic version.

In the basic version of DELTA, the transmission probabili-
ties in the CR phase can be pre-computed and stored as a look-
up table, with no computational cost at runtime, but DELTA+
must solve (29) at each CR step. If we consider a precision p̃,
the bisection method can solve this equation in O

(
log2

(
p̃−1

))
time. The overall computational complexity of each phase of
DELTA and DELTA+ is summarized in Table I.

D. Belief Threshold Optimization

We can create a semi-Markov model of the system, as
shown in Fig. 3, by applying some simplifications: firstly, we
consider nodes with the same activation probability λ. Setting
a threshold Z on the probability of being the highest node
then corresponds to setting a maximum number K = log(Z)

log(1−λ)
of possible slots in which the nodes transmit. Secondly, we
consider some approximations in the outcomes of the BT
phase, which we will discuss below.

The ZW state always leads to a collision, i.e., to a CR phase,
but the state of the model also keeps track of the highest ψ∗

(which is always 0 for the ZW phase). Correspondingly, each
sequence of CR and CE phases ends with a transition to the BT
phase, but ψ depends on the duration of the sequence, which
we have analyzed above. During the BT phase, we simplify
the model by considering the case in which a single collision
resolution phase led to the current state, i.e., by discarding
secondary collisions that happen while in the BT phase. Given
the maximum possible AoII ψ, we can obtain the conditioned
PMF of the number of colliders by applying Bayes’ theorem:

pC(C|ψ) = pC(c|ZW)pτc(ψ
∗)(pτ (ψ))

−1, (30)

where pτ (ψ) is the PMF corresponding to the CDF in (17).
We then consider a pessimistic and an optimistic model.

The pessimistic model considers L(ψ) = N , i.e., all nodes are
considered as possible colliders, independently of their ψn,t.
This is a pessimistic estimate, as some nodes might have a
lower ψn,t such that it is common knowledge that they cannot
be part of the collision set. On the other hand, the optimistic
model subtracts the expected number of colliders from the
set of active nodes, considering that they have a much lower
AoI and, as such, will not transmit. This model is optimistic,
as it considers a single collision resolution phase, while the
previous dynamics might be more complex and lead to a larger
number of potential colliders. The number of active nodes in
the optimistic model is L(ψ) = N − E [C|ψ]. Each sensor
transmits with probability β = 1−(1−λ)

K
L(ψ) , so the collision

probability is

ξ(ψ) = 1− (1− λ)K − (1− ε) Bin (1;L(ψ), β) . (31)

In the ZW phase, we have K = 1. In the BT phase, we
typically have less than N active nodes, but we need to set
K > N , as ψn,t decreases by

⌊
K
L(ψ)

⌋
− 1 for each BT step,

including those whose outcome is a collision. We can also
adjust the transmission probability vector p of a CR cycle
following a collision in a BT slot, using 1− (1−λ)

K
L(ψ) as an

activation probability and finding the solution from Theorem 3.
In order to maintain a finite state space S, we need to set

a maximum AoII Ψ, so that |S| = 2Ψ + 1. We can reduce
the approximation error as much as possible by considering

TABLE I
COMPUTATIONAL COMPLEXITY OF THE TWO DELTA VARIANTS.

Version ψt update ZW CR CE BT

DELTA O(Nψmax) O(1) O(1) O(1) O(Nψmax)
DELTA+ O(Nψmax) O(1) O(N − log2(p̃)) O(1) O(Nψmax)
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a large value that will almost never be reached in practice.
This analysis can also be used to ascertain the stability of the
system: if the steady-state probability of state CR(Ψ) does not
decrease as Ψ increases, the system is unstable. We can then
give the elements of the transition matrix M of our model,
considering the transitions toward state ZW:

Ms,ZW = (1− ξ(ψ))δ(s,BT(ψ))1(K − ψL(ψ)). (32)

As ψ is reduced by ⌊KL(ψ)⌋ − 1 steps whenever a collision
is avoided in the BT phase, only BT states with a low value
of ψ return directly to ZW. We can compute the transition
probabilities to CR states as

Ms,CR(ψ)=

1, s=ZW, ψ=0;

ξ(ψ′), s=BT(ψ′), ψ′=
[
ψ+1− K

L(ψ′)

]+
.

(33)

Finally, we compute the probability of transitioning to the BT
phase, considering that ψ is limited to Ψ:

Ms,BT(ψ) =


ζψ′(ψ − ψ′), s=CR(ψ′);

1− ξ(ψ′), s=BT
(
ψ+1− K

L(ψ′)

)
;

∞∑
ℓ=Ψ−ψ′

ζψ′(ℓ), s=CR(ψ′), ψ = Ψ;

(34)

where ζψ′(ℓ) is the PMF corresponding to the CDF given
in (17), computed using the optimal transmission probability
vector p∗(ψ′). However, as the system is not a Markov chain,
but a discrete-time semi-Markov model, we have TZW,CR(0) =
Geo(ξ(0)), T (BT(ψ), s′) = 1, and T (CR(ψ),BT(ψ′)) =
ψ′ − ψ. We also consider a pessimistic approximation: if the
collision resolution process leads to state BT(Ψ), the time in
the CR state will be Ψ, which should be set to a higher value
than the time that is reasonably required to resolve a collision.
We can easily obtain the steady-state probability distribution
β as the solution to the equation β(P−I) = 0, normalized so
that ||β||1 = 1. This corresponds to the left eigenvector of M
with eigenvalue 1. The steady-state distribution µ is obtained
by weighting β by the average sojourn times E [T (s, s′)]:

µ(s) =

∑
s′∈S β(s)M(s, s′)E [T (s, s′)]∑

s∗,s∗∗∈S β(s
∗)M(s∗, s∗∗)E [T (s∗, s∗∗)]

, ∀s ∈ S.

(35)
We can then use µ(ZW) as a proxy for our desired perfor-
mance and find K∗ = argmaxK∈N\{0,1} µ(ZW). Alterna-
tively, we can sum the steady-state probabilities of states that
do not violate the AoII requirement.

E. Dealing with Imperfect Feedback and Future Extensions

Theorem 1 requires all nodes to be able to perfectly distin-
guish between ACKs, NACKs, and silent slots. This condition
is met by the ideal and noisy feedback models, as the only
confusion in the latter is over the identity of the node receiving
the ACK. As we will see in the following, this has a negligible
effect on performance, unless the number of nodes in the
system is very small.

To compute ψt and synchronize phase transitions, all nodes
need to receive an ACK or NACK after each communication
slot. In the ZW, CR, and CE phases, this issue can be mitigated

by adding only 2 bits to ACK and NACK packets, representing
the current phase (with 4 possible values). The gateway knows
the outcome of each transmission, as it is the intended receiver.
It can then compute the current phase and piggyback it on
ACK and NACK packets. This synchronizes the protocol
for these three phases where knowing the phase completely
determines a node’s behavior; unless the same node misses
multiple feedback packets, the anomaly will be quickly solved,
and the protocol will work as intended. Mitigation is more
complex in the BT phase: since computing zn,t(Θn,t,ψt)
requires a full knowledge of what happened in the past, nodes
may have slightly different beliefs over the possible states of
the system, leading to inconsistent decision-making processes.
We will consider a scheme that includes max(ψt) in the
feedback packets during the BT phase, while sensors simply
remain in the same phase if they do not receive an ACK,
relying on the next one to synchronize with the others. This
heuristic might not be optimal, but we show that it is robust
with respect to feedback errors, as adapting the Bayesian
reasoning in the proof of Theorem 1 to this case, considering
missed feedback packets as a possible cause of the outcome
of each slot, is rather complex.

Additionally, the behavior of the DELTA protocol after a
feedback message has been missed is as follows:

• In the ZW and BT phases, the node behaves as if
the slot was successful until the next feedback message
allows it to synchronize the protocol phase. While this
choice is optimistic, it leads nodes to avoid reducing their
transmission probability unnecessarily;

• In the CR phase, the node behaves as if the slot failed
until the next feedback message allows it to synchronize
the protocol phase. In the DELTA+ variant, the belief
over the number of colliders is not updated;

• In the CE phase, the node assumes there was a collision,
waiting for the next ACK, unless the slot was silent, in
which case it moves to the BT phase. In DELTA+, the
belief over the number of colliders is not updated.

Under the deletion channel feedback model, nodes in the CE
phase always move to the BT phase. The rationale for this
design choice is that, while the CR and CE phase involve
contention for the channel, and thus minimizing the additional
traffic ensures a faster recovery, the other phases of the
protocol try to avoid collisions at all costs, and thus increasing
the traffic slightly by behaving more aggressively for a short
time will not have a significant effect. Additionally, even
causing a collision will trigger a NACK, leading most nodes
to synchronize their protocol phase.

In the design of DELTA, we selected a collision channel
model was selected both for its simplicity and because it puts
random access protocols at a disadvantage with respect to
models with capture or Successive Interference Cancellation
(SIC). However, the modifications to deal with imperfect feed-
back can also easily deal with multi-packet reception channels,
in which the desynchronization between nodes’ beliefs is due
to the capture of collided packets. This scenario would require
an adjustment of the CR phase probability optimization, which
would need to account for the higher success probability, but
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Fig. 4. µ(ZW) as a function of K.

we expect DELTA to improve its performance in this scenario.
However, the analysis is left as future work.

Additionally, the current model considers sensor observa-
tions to be accurate, and anomalies to be solvable only when
reported; richer anomaly models, which might entail keeping
track of beliefs over the system state at the gateway, are also
a possible extension of the basic principles behind DELTA.

V. SIMULATION SETTINGS AND RESULTS

This section presents the results of the Monte Carlo sim-
ulations meant to validate the performance of the DELTA
protocol. Each setting was tested over a simulation lasting
106 slots. In the following, the maximum offered system load
ρ = ||λ||1 will be considered as the key parameter.3

A. DELTA Optimization and Robustness

First, we analyze the correctness of the theoretical model
and the optimization of the DELTA protocol parameters.

Fig. 4 shows the value of µ(ZW), which we can use as a
proxy for the stability of the protocol, as a function of the
chosen K. We used a Monte Carlo simulation to verify the
two approximations, and considered a case with a 20% offered
load and a case with a 50% offered load. In both cases, the
two semi-Markov models lead to the correct optimization of
K. However, Fig. 4a shows that the optimistic model tends to
be less accurate when the load is low. This is due to the nature
of collisions in this case: most of the time, higher values of ψ
will be reached due to multiple collisions between few nodes
or even wireless channel losses, leading the estimated value
of L(ψ) to be too low. In this case, the pessimistic model,
which assumes that all nodes have the same ψn,t, is closer to
the real results. On the other hand, the opposite is true when
ρ = 0.5, as shown in Fig. 4b: when the offered load is high,
multiple collisions may cause large differences in the nodes’
ψn,t values, so that the pessimistic model foresees a very low
probability of remaining in the ZW phase. In this case, even
the optimistic model is too conservative when K is high, as
collisions will be frequent enough that nodes will have very
different values of ψn,t, but it manages to capture the trend
up to the optimal value of K, and as such, it can provide
a good guideline for system optimization. DELTA is stable
with respect to both K and p, and thus robust to errors in

3The code for the protocol and the simulations in this paper is available at
https://github.com/signetlabdei/delta medium access

2 4 6 8 10
0

0.2

0.4

0.6

Round i

p
∗ i

ρ = 0.15 ρ = 0.3 ρ = 0.45 ρ = 0.6 ρ = 0.75

Fig. 5. Optimal transmission probability for each consecutive CR round for
different values of ρ, with N = 20 and ε = 0.05.

the estimation of ρ and ε. In the following, we will show the
performance of DELTA with optimized parameters, as well as
a version with a fixed value K = 5

2N , to prove that fixed
general settings can perform well in a variety of scenarios.

We can also consider the robustness of the parameter choice
in the CR phase: Fig. 5 shows the result of the transmission
probability optimization for different load values. We can note
that, aside from the case with ρ = 0.15, the difference between
the outcomes is less than 0.05 for all CR rounds: this means
that even significant errors in the load estimation will still lead
nodes to behave in a very similar way, resulting in a good
protocol performance even under parameter uncertainty.

Finally, we examine the overall behavior of DELTA and
DELTA+ under the settings we will consider to evaluate their
performance. Fig. 6a-b show the CDF of τc, i.e., the duration
of a CR/CE cycle before the collision is resolved. While
DELTA+ adopts a more complex strategy, it only gains a small
advantage for ρ = 0.75, and the resolution times are nearly
identical for smaller values of the load. Although a lower load
improves collision resolution performance, the two versions of
the protocol are able to resolve more than 90% of collisions
within 10 steps at all load levels. Fig. 6c-d show the CDF of
the highest maximum AoII. The two protocols are still very
similar, but DELTA+ manages to reduce the right tail of the
distribution for higher loads, gaining a small advantage. We
note that DELTA spends most of the time in the ZW phase
when the load is low, while loads over 0.5 are almost never in
that phase. This is a key parameter to determine performance,
and violation probability in particular, as the ZW phase is the
one in which DELTA is most reactive to new anomalies.

B. Benchmark Protocols

We consider two common centralized scheduling algorithms
and three distributed protocols as benchmarks to test the
DELTA protocol’s performance against them in terms of worst-
case AoII minimization. Firstly, we consider Round-Robin
(RR), the simplest possible scheduling algorithm. It entirely
avoids collisions and does not require sensors to listen to
feedback packets, as long as they maintain synchronization,
but may lead sensors to wait for a long time if the network
is large, as the average AoI is N

2 even with an error-free
channel [30]. Round-Robin (RR) is also vulnerable to wireless
channel losses, as a lost packet needs to wait for a full round
before being retransmitted. We also implement a Maximum
Age First (MAF) strategy, which is commonly adopted in the
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Fig. 6. Analysis of the behavior of DELTA and DELTA+ (considering K =
50) with N = 20 and ε = 0.05.

AoI literature, as it can optimize the average age in multi-
source systems [26]. In our case, it is equivalent to RR if
ε = 0, and has the same issues in large networks with many
sensors, but it can efficiently deal with wireless channel losses
by retransmitting the lost packet immediately. However, this
requires all sensors to listen to feedback packets, as they need
to know when packet losses occur.

The three distributed algorithms are a variation on the ZW
policy, with different collision resolution mechanisms. Firstly,
nodes with information to send under the Pure Zero-Wait (ZW)
policy immediately do so with a certain probability p1. If
their packets are lost, either due to the wireless channel or to
a collision, they keep transmitting with the same probability
until they receive an ACK and return to the normal state. This
corresponds to a classical slotted ALOHA system. We also
consider a Local Zero-Wait (LZW) scheme with two distinct
probabilities. Each node transmits with probability p1 if it
has information to send, then switches to probability p2 after
a failure until the packet is successfully transmitted. This
corresponds to a local back-off mechanism after collisions
with p2-persistence. Both ZW and LZW only require sensors
to listen to feedback packets after they transmit.

Finally, the Global Zero-Wait (GZW) protocol is similar
to LZW, but the back-off mechanism is implemented by all
nodes. After a transmission failure, all nodes switch from p1
to p2. They then go back to p1 after a successful transmission,
assuming the collision involved either 1 or 2 nodes. This
protocol is fairer than LZW, which can lead colliding nodes
to have a lower priority than other nodes with a lower AoII,
but requires all nodes to listen to the feedback for every slot.

The values of p1 and p2 for the distributed benchmarks
were optimized for each specific scenario by performing a
grid search over a Markov representation of the protocols.

C. Performance Evaluation: Ideal Feedback

We consider the performance of the protocols under the
ideal feedback model by measuring the AoII violation prob-
ability V (Θmax), which corresponds to the fraction of time
that the nodes spend with an AoII higher than the threshold
value Θmax. We analyzed the performance with Θmax = 0,
which requires nodes to immediately report anomalies, and
Θmax = 5, which allows for a short delay before the gateway
is successfully informed of the anomaly. Unless otherwise
stated, we consider a system with N = 20 nodes, a channel
erasure probability ε = 0.05.

Fig. 7 shows the violation probability and average AoII as a
function of the offered load ρ = ||λ||1, i.e., the load on the sys-
tem if all nodes immediately transmit successfully, which is an
upper bound on the actual system load. The plot clearly shows
that DELTA outperforms the other random access schemes,
which tend to approach the same reliability only for very low
values of the offered load. On the other hand, both V (0) and
V (5) grow approximately linearly with ρ for Maximum Age
First (MAF) scheduling: as expected, centralized scheduling
mechanisms can outperform any random access scheme for
congested networks, but DELTA manages to outperform MAF
for ρ < 0.55, which is a significant improvement over the
ZW benchmark, as well as a very intense traffic for anomaly
reporting applications. The performance of the optimistic,
pessimistic, and fixed (with K = 50) variants remains almost
the same, and a small difference can be seen only for very
high loads. Additionally, the DELTA+ variant is slightly better,
but the more intelligent collision resolution mechanism only
has a limited effect on the final performance of the protocol.
On the other hand, the other random access protocols have a
much higher sensitivity to parameter changes, and the jumps
for small changes in ρ are due to the quantization of p1
and p2, for which the grid search optimization considered
a 0.01 step, and to the higher instability of these protocols,
which may lead to snowball effects. Finally, if we consider
the expected AoII performance, shown in Fig. 7c, we note the
same pattern: while other random access mechanisms quickly
become unstable as ρ increases, DELTA outperforms MAF for
offered loads up to approximately ρ = 0.5, and its performance
degrades relatively gracefully even for higher loads. We note
that DELTA+ has an advantage over the simpler version, but
only at higher loads, for which MAF outperforms them both.

We can also consider the performance of the schemes as
a function of the number of nodes N , considering a scenario
with a relatively low load (ρ = 0.3) and one with a high load
(ρ = 0.5). As Fig. 8a-c show, the performance of DELTA in
the low load scenario tends to improve as the number of nodes
grows when considering V (0), while V (5) is close to 0 for
all network sizes. The expected AoII is also very close to 0 in
all cases. On the other hand, the performance of scheduled
algorithms gradually degrades as the network size grows
due to the longer duration between subsequent transmission
opportunities for the same node, and V (0) is high even for
small network sizes, as it is difficult for MAF to immediately
report anomalies. Random access schemes perform better:
among these, LZW confirms its advantage over ZW and GZW.
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Fig. 7. AoII violation probability as a function of ρ, N = 20.
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Fig. 8. AoII violation and expected AoII as a function of N .

Interestingly, all ZW variants tend to perform better for very
small networks, degrading as N grows between 4 and 16 and
then improving from that point on: in general, random access
schemes should benefit from larger network sizes, as collisions
become easier to resolve, but the Markov representation used
to optimize the network may be less accurate for small network
sizes. However, DELTA still significantly outperforms all other
schemes. As for the varying λ, the DELTA+ variant has a
negligible improvement over the basic version of the protocol.
This also holds in the high load scenario, shown in Fig. 8d-
f. Even in this scenario, which is close to its maximum
load, DELTA is remarkably robust, and V (0) improves as
the network size grows, although V (5) tends to increase for
larger networks. However, DELTA far outstrips other random
access protocols, which quickly collapse due to the high load,
and has a significant performance advantage over scheduled
schemes for N > 10. The performance gain of DELTA
actually increases as the network size grows, particularly with
respect to the expected AoII, shown in Fig. 8f.

Finally, we consider the robustness to errors in the estimated
activation rates: we set a load ρ = 0.5, and randomly sampled
100 activation probability vectors λ ∼ U

(
(1−ν)ρ
N , (1+ν)ρN

)
.

The input to DELTA was then the average vector, while the
actual activation rates exhibited growing differences among
nodes as ν increased. The resulting AoII violation probability
is shown in Fig. 9: all protocols are robust to this type
of disruption, and in particular, DELTA and DELTA+ are
insensitive to changes in the activation probabilities if the
overall load is approximately correct.

D. Performance Evaluation: Imperfect Feedback

We then evaluate the robustness of the schemes to imperfect
feedback, considering the low load (ρ = 0.3) and high load
(ρ = 0.5) scenarios with N = 20 and ε = 0.05 and following
the three imperfect feedback models outlined in Sec. III.

We first start with the noisy feedback model, in which
ACKs, NACKs, and silent slots can always be distinguished,
but nodes may erroneously interpret the content of messages:
Fig. 10 shows the AoII violation probability as a function of
the error standard deviation σf . As the figure clearly shows,
all protocols except MAF are almost unaffected. On the other
hand, MAF is strongly affected by this feedback model, as
the feedback messages serve as polling requests: if a node
mistakenly believes that it has been polled, it will transmit
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Fig. 9. Performance with imperfect rate estimation as a function of the activation probability range ν with ρ = 0.5, N = 20.
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Fig. 10. AoII violation as a function of the feedback noise standard deviation σf with N = 20.

an update, potentially causing a collision. The performance
advantage of DELTA and DELTA+ is unaffected by errors on
the feedback, even if they are significant (a standard deviation
σf = 5 out of a total of 20 nodes). This is reasonable, as errors
on the feedback will affect the belief of nodes only slightly (if
at all), considering that there are several nodes that have a high
maximum AoII. As the algorithm is very robust with respect
to the choice of the belief threshold, errors on the identity of
the nodes will have a limited effect.

We then consider the erasure feedback model: Fig. 11 shows
performance as a function of the erasure probability εf . After
including the adaptation of feedback messages discussed in
Sec. IV-E, the protocol degrades gracefully in the low load
scenario shown in Fig. 11a-b, maintaining a significant advan-
tage over all other schemes. On the other hand, the DELTA+
variant degrades much faster: while we showed that DELTA
can deal with some desynchronization, as the transmission
probability during the CR phase is extremely robust, DELTA+
relies on much more complex calculations, which lead p to
have a much wider range. Consequently, having nodes with
different information due to ACK erasure may lead to highly
suboptimal outcomes, as nodes might be misled into selecting
very low values of p that lead to a significant number of
repeated silent slots before the first success allows them to gain

more feedback. Additionally, if a node outside the collision set
misses the initial NACK and mistakenly transmits during the
CR phase, the resulting collision will lead node in the collision
set to decrease their transmission probability, believing the set
to be much larger, further compounding the issue. Even if
we consider the high load scenario, which is already close to
DELTA’s saturation point, with collisions becoming a frequent
occurrence, the protocol still comes out on top for εf ≤ 0.1,
as shown in Fig. 11c-d. On the other hand, the performance of
DELTA+ quickly degrades, becoming even worse than other
random access schemes.

Finally, Fig. 12 shows the performance of all schemes under
a feedback deletion model: in this case, we only show the
scenario with ρ = 0.5, as performance is almost identical to
the feedback erasure case. The only noticeable difference is
that DELTA+ degrades even faster, while the difference with
the erasure model is negligible for all other schemes.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented DELTA, a protocol that allows
distributed sensor nodes to report anomalies efficiently by rely-
ing on the DEL principle of common knowledge information.
The protocol considerably outperforms both random access
and scheduled schemes under reasonable operating conditions,
and its operation is robust to relatively large shifts in its
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Fig. 11. AoII violation as a function of the feedback erasure probability εf with N = 20.
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Fig. 12. AoII violation as a function of the feedback deletion probability ωf with N = 20.

most significant parameter settings, as well as to imperfect
feedback and traffic load estimation errors. Furthermore, the
performance gap widens as the number of nodes increases,
making the protocol suitable for large sensor networks.

Our work also opens several possible extensions and re-
search directions, from a case in which anomalies are modeled
as a more complex N -state Markov process to a more complex
case in which nodes have structured beliefs about their own
and others’ observations.

APPENDIX

DELTA CORRECTNESS ANALYSIS

We verify the correctness of the DELTA protocol by con-
sidering the system as an epistemic program, following the
notation from [19]. We first define the Kripke state model [47]
S = (S,

N−→S , || · ||S). We can define a set of atomic
propositions P(S) over the set of possible worlds S:

S =
{
(∆,Θ,Φ) ∈ N2N × {ZW,CR,CE,BT}N :

Θn ≤ ∆n∀n ∈ {1, . . . , N}
}
.

(36)

In other words, each state, or possible world, s represents a
different combination of AoI and AoII values for the nodes,
along with the DELTA phase Φn of each node. By definition,
the AoII in any possible world is upper bounded by the AoI.

Each member n−→S⊆ S×S of the family of accessibility re-
lations N−→S expresses which states nodes n considers possible
for a given real state, and the truth map ||·||S : P(S) represents
the truth of each possible atomic proposition about the state.
We can also extend atomic propositions to sentences, whose
truth value follows modal logic rules: we denote a generic
sentence as φ, and the language of possible sentences as L.
If sentence φ is true in world s, we denote it as s |= φ.

Additionally, we define a knowledge operator □M(φ),
which specifies whether the subset of nodes M ⊆ N know
φ ∈ L, and a common knowledge operator □∗

M(φ), which fol-
lows the game theoretic definition: under common knowledge,
even the fact that everyone knows φ is known to everyone,
i.e., □∗

M(φ) requires not only □M(φ) but also □M(□M(φ)),
recursively. The pointed epistemic model (S, s) includes both
the real state of the world and its perception by the nodes.

We express the outcome of each communication slot with
the set of possible public announcements A [48]. The three
possible outcomes, i.e., a silent slot, a successful transmission
and a failure, are represented by symbols γ, σ, and ω,
respectively. The possible announcements then include the
final outcome of the transmission, as well as which nodes
transmitted and which were silent, unless:

A = (∪n∈N (σ,unN )) ∪ {γ, ω}, (37)
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where unN is the column vector of length N whose elements
are 0, except for element n, which is equal to 1. We denote
the fact that statement φ holds after announcement α as [α!]φ.

We then define four modes of operation. The first is the
default mode, in which it is common knowledge that all nodes
are in phase ZW and have AoII Θn,t = 0, corresponding to
proposition φd:

φd = □∗
N ((Θn,t = 0 ∧ Φn,t = ZW) ∀n ∈ N ) . (38)

The collision mode and exit mode are then characterized by the
common knowledge of the phase, which is CR for all nodes for
the former and CE for all nodes for the latter. Additionally, the
AoII vector ψt is also common knowledge. They correspond
to propositions φc and φe, respectively:

φc =□∗
N (Φn,t = CR ∀n ∈ N ) ∧□∗

N (ψt) ; (39)
φe =□∗

N (Φn,t = CE ∀n ∈ N ) ∧□∗
N (ψt) . (40)

Finally, the threshold mode is a state in which all nodes are in
phase BT, and this is common knowledge, as is the maximum
AoII vector ψt. However, the nodes do not have common
knowledge about the actual AoII. This is expressed by φt:

φt =□∗
N (ψt ∧ (Φn,t = BT ∀n ∈ N ))

∧ ¬□∗
N (Θn,t = 0 ∀n ∈ N ) .

(41)

We will now prove that, under an ideal feedback model, a
DELTA network is always in one of these four modes.

Lemma 1.1. If the network is in default mode in step t, there
are two possible outcomes: either it remains in default mode
in step t+ 1, or it moves to collision mode. In DEL notation,

(st |= φd) ⇒ (st |= φd ∨ st+1 |= φc) . (42)

Proof: Consider the three possible outcomes of slot t. If
αt = γ, i.e., the slot is silent, no node transmitted, i.e., an,t =
0 ∀n. In the ZW phase, nodes are silent only if their state is
mormal, i.e., an,t = 0 ⇒ xn,t = 0. We also have xn,t = 0 ⇒
Θn,t+1 = 0, by definition. As the node remains in phase ZW
after a silent slot, we have (st |= φd) ⇒ [ω!](st+1 |= φd).
On the other hand, if αt = (σ, n), we have xn,t = 1, but the
anomaly is immediately resolved, and Θn,t+1 = 0. On the
other hand, any other node m is silent, so the proof follows
the previous case. All nodes can follow this procedure, as
the ACK contains the identity of n. We have (st |= φd) ⇒
[(σ, n)!](st+1 |= φd). Finally, if αt = ω, nodes move to the CR
phase following a NACK. Since at least one node transmitted
in slot t, we have ∃n : an,t = 1 ⇒ ∃n : xn,t = 1. The
maximum AoII ψn,t is then equal to 1 for all nodes, as it is
impossible to know n using only public information. We then
have (st |= φd) ⇒ [ω!](st+1 |= φc).

The straightforward consequence of the lemma is that,
whenever it is common knowledge that all nodes are in phase
ZW, such knowledge is preserved until the switch to phase
CR, which is performed simultaneously. While the knowledge
of the actual AoII is lost, the maximum AoII vector is still
common knowledge, and nodes can use it to coordinate.

Lemma 1.2. If the network is in collision mode at step t, it
will either remain in collision mode at step t + 1, or switch
to exit mode. In DEL notation, we have

(st |= φc) ⇒ (st |= φc ∨ st+1 |= φe) . (43)

Proof: We can follow the same steps as for the previous
lemma: in this case, outcomes γ and ω are public announce-
ments, and (st |= φc) ⇒ [(ω∨γ)!](st+1 |= φc). The maximum
AoII vector ψt+1 is simply increased by 1, as the feedback
contains no information on new or existing anomalies. On the
other hand, since σ is also a public announcement, all nodes
know that nodes move to phase CE when they receive an ACK.
In this case, the maximum AoII vector ψt+1 is increased by
1, except for the node n that transmitted, whose AoII is reset
to 0. This can be computed by all nodes through the feedback,
and (st |= φc) ⇒ [(σ, n)!](st+1 |= φe)∀n ∈ N .

Lemma 1.3. If the network is in exit mode at step t, it will
either go back to collision mode at step t + 1, or switch to
threshold mode. In DEL notation, we have

(st |= φe) ⇒ (st |= φt ∨ st+1 |= φc) . (44)

Proof: In the case of outcome ω, the DELTA protocol
dictates that the nodes must move back to the CR phase, and
(st |= φe) ⇒ [ω!](st+1 |= φc). Vector ψt is increased by 1
by all nodes. We can similarly prove that all nodes move to
phase BT following the protocol if there is another outcome. If
the outcome is a successful transmission, the maximum AoII
for node n, which successfully transmitted, is reset to 0. For
all other nodes, and for all nodes in case of a silent slot,
we need to consider the following. If the cycle of CR and
CE phases lasted k steps, the maximum AoII for node m
ψm,t+1 = min(ψm,t+1, k−1), as ψm,t ≥ k ⇒ xm,t−k = 1. If
the state was 1 at time t−k, and Φm,t−k = ZW, the node must
have been part of the collision set: Φm,t−k = ZW∧xm,t−k =
1 ⇒ am,t−k = 1. This means that it was a member of the
collision set, and must consequently have transmitted in the
CE phase if its original anomaly is still unresolved, but this is a
contradiction. Consequently, no node can have an AoII higher
than k−1, and ψt is common knowledge. Finally, we also need
to prove that it is not common knowledge that the AoII of all
nodes is 0. In the best possible case, the collision is resolved
in 2 steps, during which only members of the collision set can
transmit. We consider AoII vector Θt+1 = umN , in which only
node m, which was not in the collision set has an AoII equal
to 1. We have Φn,t = CE ⇒ am,t = 0 due to the rules of the
CE phase. World s′t+1 = (∆t+1,u

m
N ,BT) is then compatible

with the announcement, i.e., (st |= φe) ⇒ [ω!](s′t+1 |= φc).
However, this is in contradiction with the common knowledge
proposition □∗

N (Θn,t = 0 ∀n ∈ N ), and φt must therefore be
verified, proving the lemma.

Lemma 1.4. If it is common knowledge that all nodes are
always in the same phase, the maximum AoII vector ψt is
common knowledge at any time:

□∗
N (Φm,t = Φn,t)∀m,n ∈ N , t ∈ N ⇒ □∗

N (ψt) ∀t ∈ N.
(45)
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Proof: We have φd ⇒ □∗
N (ψn,t = 0 ∀n ∈ N ) by

definition. If we consider the sequence of CR and CE phases
starting at time t from default mode and ending after k slots,
there are two common knowledge propositions: firstly, as
stated in Lemma 1.2, switches between these two phases are
common knowledge. We know that st |= φd ⇒ ψn,t+k ≤ k.
Let us then consider the case in which a node m has xm,t = 0
and xm,t+1 = 1. We know that Φm,t+j ∈ {CR,CE}∧xm,t =
0 ⇒ an,t+j = 0 ∀j ∈ {t + 1, . . . , t + k}: as node m
was not in the collision set, it cannot transmit until time
t + k. There is then a world, compatible with the feedback
history, in which ψm,t = k + 1. The same reasoning can
be applied to nodes in the collision set, as it is common
knowledge that they reset their AoII at the time of their
last transmission. During phase BT, we can easily compute
ψn,t+1 = sup{θ ∈ N : zn,t(θ,ψt) ≤ Z, and any collisions
during the BT phase can be managed in the same way.

Lemma 1.5. If the network is in threshold mode at step t, it
will remain in threshold mode at step t+1 or switch to either
collision or default mode. In DEL notation, we have

□∗
N (ψt)∧(st |= φt) ⇒ (st |= φt ∨ st+1 |= φc ∨ st+1 |= φd) .

(46)

Proof: If the network is in threshold mode, we can ana-
lyze the effect of different outcomes. In case of a collision, all
nodes will move to the CR phase. If ψt is common knowledge,
it is also common knowledge that ψt+1 = ψt + 1, and st |=
φt ⇒ [ω!](st+1 |= φc). In case of a silent or successful slot,
e can easily compute ψn,t+1 = sup{θ ∈ N : zn,t(θ,ψt) ≤ Z,
except for the node that successfully transmitted, whose max-
imum AoII is 0. Consequently, st |= φt ⇒ □∗

N (ψt + 1)).
If the maximum AoII is 0, the real AoII must also be 0:
ψt+1 = 0N ⇒ Θt = 0N . In this case, all nodes will switch
to ZW, while in other cases, they will remain in BT. We then
have st |= φt ⇒ [(γ ∨ (σ, n))!](st+1 |= (φt ∨ φd)).

We can then restate Theorem 1 using DEL notation, proving
its correctness using the above Lemmas.

Theorem 1. The phase and the value of ψt are always
common knowledge, and the phase is always the same for
all nodes:

□∗
N (ψn,t,Φn,t) ∀n ∈ N ∧□∗

N (Φn,t = Φm,t ∀m,n ∈ N ).
(47)

Proof: Under an ideal feedback channel, the system is
always in one of the four modes, i.e.,

st |= (φd ∨ φc ∨ φe ∨ φt)) ∀t ∈ N, (48)

due to the concatenation of the four preceding lemmas: as the
system starts in default mode in step 0, it will remain in one
of the four modes at all times, and this is common knowledge.
As all modes require ψt to be common knowledge, this is an
immediate consequence. Additionally, all modes require every
node to have the same phase, proving the theorem.
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