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Abstract
When Information Retrieval (IR) models are applied to and trained on sensitive and personal information, users’
privacy is at risk. While mechanisms have been presented to safeguard user privacy, the effectiveness of these
privacy protections is generally evaluated by studying the relations between performance on a downstream task
and the parameters of the mechanisms, e.g., the privacy budget 𝜀 in Differential Privacy (DP). This often causes
a partial understanding between formal privacy and the privacy experienced by the user, the actual privacy.
In this paper, we discuss the Query Inference for Privacy and Utility (QuIPU) framework, a novel evaluation
methodology designed to assess actual privacy based on the risk that an “honest-but-curious” IR system may
correctly guess the original query from the obfuscated queries received. The QuIPU framework constitutes the
first endeavour to quantify actual privacy for IR tasks, extending beyond the partial comparison of formal privacy
parameters. Our findings show that formal privacy parameters do not necessarily correspond to actual privacy,
resulting in cases where, despite identical privacy parameters, two systems reveal differing actual privacy levels.
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1. Introduction

Privacy is a fundamental right preserved by the Universal Declaration of Human Rights and its Article
12. Natural Language Processing (NLP) and Information Retrieval (IR) algorithms are trained and tested
using textual datasets consisting of queries, documents, reviews and posts on online social media. In
such a large amount of textual data, personal user profiles, personal opinions on different matters, such
as politics and religions [2, 3], along with sensitive information needs, can raise privacy concerns from
the user interactions with such systems. Specifically, through the analysis of browser search histories
and obtained documents, malicious actors can reveal private information, including an individual’s
salary and medical conditions [4, 5]. Heuristic strategies [6, 7] have been proposed for preserving privacy
in document retrieval tasks. From another view, progress in NLP have demonstrated the potential of
Differential Privacy (DP) [8] in the release of privacy-preserving text for different applications, including
text classification [9], authorship anonymization [10], and query obfuscation [11].

Obfuscating a query concerns safeguarding the original information need of a user in such a manner
that the resulting obfuscated queries can retrieve relevant documents while not fully disclosing those
information needs. For example, the query “how tumour grows” may be transformed into the obfus-
cated alternatives “how cancer grows”, “how infection spreads”, “how leukemia evolves”.
Focusing on the mechanisms’ privacy parameters represents a preliminary way to measure privacy.
Several attempts to assess the privacy provided have been proposed by adapting information security
measures based on entropy [12], syntactic and semantic similarities [13, 14] between original and
obfuscated texts. However, all these measures limit the actual privacy evaluation reached by the mecha-
nism [15, 16, 17]. After observing the obfuscated queries “how cancer grows”, “how infection
spreads”, “how leukemia evolves”, an adversarial system can quickly discover the actual user
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information need about cancer diseases and spreading using available query logs to generate potential
guesses of the original query. Nevertheless, some privacy budget parameters would lead to obfuscated
queries, giving mathematical guarantees of privacy, and most of the state-of-the-art measures would
consider such queries as properly obfuscated. In addition, since such queries still retain similar semantic
meaning to the original, they would probably produce high retrieval utility, giving a false impression
of privacy and achieving high retrieval results. Therefore, limiting the privacy analysis to the formal
mechanism parameters does not quantify the user’s risk in submitting the obfuscated queries [18].

In this study, we discuss the Query Inference for Privacy and Utility (QuIPU) framework [1], an
evaluation model developed to measure the actual privacy and utility trade-off provided by a mechanism
to safeguard potential information leakage in an obfuscation protocol. The QuIPU score is computed by
assessing the risk represented by a malicious adversary trying to infer the original user need correctly.
Therefore, to estimate such score, the Query Inference Attack (QuIA), a variation of the inference attacks
known as Membership Inference Attack (MIA) [19] tailored for a query obfuscation protocol, is used
against the obfuscated queries submitted to the system. Such an attack considers the risk probability
that the original query is successfully inferred from a query log by a IR system after analyzing the
alternative queries received and obfuscated using different configurations, i.e., using different formal
privacy parameters of an obfuscation mechanism. The measure takes into account the trade-off between
privacy and utility, extending beyond the configuration parameters of the obfuscated mechanisms by
calculating a modified version of the Area Under the Curve (AUC) on the risk versus utility trend. Our
findings show that formal privacy does not necessarily imply actual privacy, explicitly showing that
there is a high probability of a correct query guess for low values of the privacy parameter.

The paper is structured by first presenting the Related Works and Background in Section 2, introducing
the different measures used in the privacy evaluation and the background on the Query Obfuscation
protocol. Section 3 presents the formal definition of QuIPU, showing the phases completed to evaluate
the actual textual privacy provided by a mechanism. Finally, Section 4 reports the results and discussion
of the formal and actual privacy analysis performed on different obfuscation mechanisms.

2. Related Works and Background

2.1. Related Works

Different metrics have been proposed to organize available privacy measures [20, 21]. Wagner and
Eckhoff [20] systematically classified over eighty privacy metrics, offering a comprehensive framework
for assessing privacy across different domains, e.g., communication, databases, and social networks.
The survey highlights the significance of identifying the specific aspect of privacy that a metric aims to
quantify, suggesting nine guiding aspects for selecting the appropriate privacy measures. Specifically, the
authors stress the importance of considering the adversary’s knowledge and capability when evaluating
privacy. In addition, Sousa and Kern [21] described how different mechanisms developed for NLP tasks
provide privacy for textual data and which can be the threats in such scenarios. Moreover, Habernal [22]
discussed the importance of not relying strictly on formal analysis of DP and its application on NLP
tasks but to push research towards concrete measurements of the privacy provided to texts.

Traditional methods for evaluating privacy primarily focus on estimating the failure rates of obfusca-
tion mechanisms [12] or assessing the similarities between original and obfuscated texts [23, 11]. On
the one hand, uncertainty measures such as 𝑁𝑥 and 𝑆𝑥 [24, 25] estimate the probability that a term 𝑥
remains unchanged after obfuscation and the minimum cardinality of the set of words to which 𝑥 is
mapped by the mechanism, respectively. However, such measures do not capture if the mechanism
changes the original term with a closely related one. On the other hand, the similarity between the
original and obfuscated texts is commonly estimated using metrics like the Jaccard index or cosine
similarity between sentence embeddings computed by a Transformer, drawing inspiration from the
use of BERTScores used to assess the quality of generated texts [14]. Meisenbacher et al. [23] pro-
posed the 𝛼-PUC score to compute an 𝛼-weighted mean between uncertainty, similarity measures, and
utility preserved. This score is tuned by the tuning parameter 𝛼, which adjusts the focus on utility



Figure 1: Overview of the query obfuscation protocol in the presence of an “honest-but-curious” IR system. On
the safe user side, the obfuscation mechanism takes in input the user query and produces 𝑁 obfuscated queries.
Such obfuscated queries are submitted to the honest IR System to retrieve documents. Then, if curious, the IR
system might use the obfuscated queries to infer the original information need.

or privacy, allowing the user to decide whether to prioritize the former or the latter. However, none
of the above measures offer insights into the actual privacy afforded to the texts, nor do they assess
the adversarial potential to infer the original meaning of the obfuscated text. Specifically, previous
studies [26] criticized the reliance on formal privacy analysis solely based on the privacy budget 𝜀
parameter. DP mechanisms employing configurations where 𝜀 > 1 lack a comprehensive analysis
of actual privacy guarantees, raising concerns about the sufficiency of privacy protection methods
employed1. In addition, Damie et al. [5] introduced a novel indicator to assess the risk of successful
query recovery attacks within searchable encryption protocols. The study revealed that, even without
additional background knowledge, an adversary can obtain the original queries with a success rate of
85%, encouraging analysis of privacy measures employed considering real attack scenarios.

2.2. Background

The research community has widely studied application of privacy measure when performing NLP
and IR tasks [27, 28, 29]. The scenario discussed in this study assumes that the users are willingly
paying part of the utility during the document retrieval phase to defend the privacy of their search
activity with the Information Retrieval system. The system is considered non-cooperative, as it does not
actively contribute to protecting user privacy, e.g., it does not provide any private online API to mask
the information need of the user. Figure 1 illustrates the general query obfuscation protocol, the focus
of application of QuIPU in IR [11, 30]. The process considers two distinct domains: on the user (safe)
side, the original query is generated by the user and privatized using an obfuscation mechanism, i.e., an
algorithm that, given an original sensitive query 𝑞, generates 𝑁 non-sensitive obfuscated queries that
(theoretically) prevent the unveiling of the original information need. These obfuscated queries are
sent to the IR system without explicitly disclosing their information need, after the initial obfuscation
process. During this step, the user sets the parameters, i.e., formal privacy guarantees, considering the
utility lost on the tasks [31, 32]. On the (unsafe) IR system side, relevant documents are retrieved by
the “honest” system considering the obfuscated queries received, thus putting such documents on a
lower rank. Finally, the documents are returned to the users for the post-processing described above.
To prevent a “curious” IR system from discovering the actual query, the obfuscation methods employed
are divided into two families of mechanisms, either based on heuristics or 𝜀-DP.

Heuristics Obfuscation. To protect privacy in IR tasks, non-formal obfuscation methods were
proposed [6, 7]. Arampatzis et al. [6] employed the WordNet [33] database to replace original terms
within the query using synonyms, hypernyms, and holonyms. The obfuscation was performed based

1The DP configurations with 𝜀 > 1 deviate from the “theoretically secure” privacy setting, i.e., strong assurance about the
formal privacy introduced, see DP definition [8].



on a hierarchical degree, i.e., the level parameter, aligned with the desired obfuscation the user aims to
achieve. Such an approach was further extended by Fröbe et al. [7]. More in detail, the obfuscation
approach retrieves locally the top-𝑘 documents from a local corpus. Then, using a sliding window, the
sequences of 𝑛 terms within such documents are taken as candidate obfuscation queries, removing
those queries that contain synonyms and holonyms. Using the top-𝑘 documents retrieved locally as
pseudo-relevant, the queries submitted are the ones that achieve the higher nDCG.

Differential Privacy (DP) Obfuscation. Dwork et al. [8] introduced the 𝜀-DP framework to
formalize the privacy guarantees when releasing data. Given a privacy budget 𝜀 ∈ R+, and any pair of
neighbouring datasets 𝐷,𝐷′, i.e., datasets that differ for only one entry, an obfuscation mechanism ℳ
is DP if it holds the inequality Pr [ℳ(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 · Pr [ℳ(𝐷′) ∈ 𝑆] ∀𝑆 ⊂ Im(ℳ). DP introduces
calibrated noise levels during output computation using the privacy budget 𝜀, which controls the balance
between data privacy and utility. The adoption of the DP framework for metric spaces, and therefore for
NLP tasks, has been proposed in [34]. Metric-DP extends the traditional DP definition by ensuring that
the probability of obfuscating two distinct points 𝑥, 𝑥′ is proportional to the distance 𝑑(𝑥, 𝑥′) between
them. The DP formal framework has enabled the privacy research community to propose different
strategies based on noisy sampling [35, 36, 37, 30] and perturbed word embeddings [24, 25, 38].

3. The QuIPU Evaluation Framework

We present the Query Inference for Privacy and Utility (QuIPU) framework: we report the threat model
for an obfuscation protocol and the settings of QuIA. Finally, we report the risk evaluation of the attack.

3.1. Defining the Threat Model

In this scenario, the adversary is represented by the IR system, which aims to understand the original
user information need. In the query obfuscation protocol, the sweet spot for inferring the original
queries is represented by the ones the system receives. The mechanism parameters, e.g., the 𝜀 privacy
budget parameter of the DP obfuscation mechanisms, do not guarantee with absolute certainty that the
original text is changed (or changed enough). Therefore, such queries may cause a leakage of the real
information need. In addition, for the same parameters, different obfuscation strategies may produce
texts with different obfuscation degrees. For instance, the effect of the parameter 𝜀 depends on the
specific mechanism used [39, 40]. As a result, two DP mechanisms (one embedding-perturbation based
and the other sampling-based) are both parametrized with 𝜀 = 3 and could lead to a situation where
one method achieves an actual obfuscation while the other achieves only formal obfuscation. Therefore,
the IR system aims to extract as much information as possible from the received queries, previously
obfuscated on the user side, using this knowledge to infer the real text.

Consequently, the threat of a successful query inference stems not only from the obfuscation failure
of the mechanism but also from the additional knowledge about the queries possessed by the adversary.
The IR system might exploit its queries from the logs [41, 42]: by producing a classification on the
information needs carried by the obfuscated queries received and the information in its logs, it aims
to improve the chances of a correct guess of the original user query. Note that if the original query is
not an extremely long tail one, it is reasonable to assume that the original information need has been
previously submitted to the IR system, and thus, the attack can succeed with high probability.

Finally, a critical remark must be made regarding using cryptographic primitives in the protocol of the
scenario we are analysing. Eavesdroppers or man-in-the-middle adversaries do not significantly threaten
the user or the system. Cryptography can be employed while exchanging queries and documents
between the client, i.e., the user, and server, i.e., the IR system, ensuring confidentiality among the
internal parties of the protocol and security against external auditors. However, confidentiality does
not imply privacy: if the IR system aims to disclose the user’s original query, cryptography techniques
alone are insufficient to safeguard privacy concerning an internal adversary.



3.2. Introducing the Query Inference Attack (QuIA)

Algorithm 1: The Query Inference Attack (QuIA).
Data: 𝒬obf (obf. queries 𝑞′𝑖), 𝒬logs (query log 𝑞𝑖), 𝒯 (transformer encoder).
Result: Ranked list of query logs ℒ.

1 Encoding 𝒯 (𝒬obf) = {𝒯 (𝑞′𝑖) ∈ R𝑛} and 𝒯
(︀
𝒬logs

)︀
= {𝒯 (𝑞𝑖) ∈ R𝑛};

2 Define �̂� as the centroid of the vectors in 𝒯 (𝒬obf);
3 Compute 𝒮 =

[︀
cos (�̂�, 𝒯 (𝑞𝑖)) , 𝒯 (𝑞𝑖) ∈ 𝒯

(︀
𝒬logs

)︀]︀
;

4 Define ℒ =
[︀
(𝑠𝑖, 𝑞𝑖) , 𝑠𝑖 ∈ 𝒮, 𝑞𝑖 ∈ 𝒬logs

]︀
;

5 Sort ℒ in descending order considering the similarity score 𝑠𝑖;
6 return ℒ;

The class of attacks known as Membership Inference Attack (MIA) was introduced by Shokri et
al. [19] to investigate the information leakage stemming from the output of machine learning models.
The attack is defined under the assumption that the attacker sees a data record but has no information
about either the model parameters or the actual model architecture, i.e., a so-called black-box scenario.
The attack is successful when the attacker can correctly guess whether the data is in the training set.

In an obfuscation protocol, the Query Inference Attack (QuIA) uses the received obfuscated queries
and the query logs to generate a ranked list of queries from the logs based on the similarity with the
information need. Similarly to the black-box of the MIA scenario, the assumption is that the IR system
does not know the obfuscation mechanism used on the user side and the privacy parameters of the
obfuscation mechanism. Algorithm 1 reports the pseudo-code of the attack: the system receives the set
of obfuscated queries 𝒬obf and knows its query logs 𝒬logs. Firstly, it uses a Transformer [43] encoder 𝒯
to obtain the embeddings of the queries in the sets2. Once the texts in 𝒬obf are encoded, it calculates
the centroid �̂� of the vectors in 𝒯 (𝒬obf), to capture the average contextual similarities among the
obfuscated queries received. The system computes the cosine similarity between the embeddings of the
queries from the logs 𝒯 (𝑞𝑖) ∈ 𝒯

(︀
𝒬logs

)︀
and the query �̂� to understand which queries from the logs

most closely represents the average information need carried by the obfuscated queries and saves it
into the list 𝒮 . The algorithm generates a ranked list ℒ of the queries in the logs 𝑞𝑖 ∈ 𝒬logs by sorting
(𝑠𝑖, 𝑞𝑖) in descending order based on the similarities 𝑠𝑖 ∈ 𝒮 . In case of ineffective obfuscations, then
most likely, the higher a query from the logs is ranked in ℒ, the more it fits the user information need.

3.3. Assessing the QuIPU Risk Modelling

Privacy is strictly linked with the definition of risk [44], i.e., the possibility that an action or event
generates consequences that have an impact on what users value, in this scenario, disclosing sensitive
information. The higher the risk, the lower the privacy. For example, DP obfuscation mechanisms offer
the possibility that privacy and utility can be balanced by tuning the privacy budget 𝜀. However, the
framework does not provide any assurance against inference attacks [45]. To overcome this limitation,
we need a formal definition of the risk against inference in the obfuscation protocol. After the QuIA
algorithm has returned the ranked list ℒ, the IR system is tasked to guess the original query. This
inference is based on the computed ranking, which considers the similarities between the obfuscated
queries received (potentially leaking information) and the system’s query logs (auxiliary knowledge for
a correct guess of the original user query). At this point, the IR system strategy to guess the correct
query is sequential: knowing that the first query is the most similar to the average information need
carried by the obfuscated queries, it represents the best choice for the guess. If the first query in the
logs ℒ is the correct query, the attack is successful, and there is a 100% risk of correct inference. On the
other hand, if the first one is not the correct guess, the adversary tries with the second query in the list,
and so on, until the original query is guessed, decreasing the risk of success. Therefore, the risk 𝑟𝑡 of

2𝒯 (𝒬obf) , 𝒯 (𝒬logs) indicate the sets of text embeddings, and with 𝒯 (𝑞′𝑖), 𝒯 (𝑞𝑖) the singular vector embedding of the queries.



successful QuIA in 𝑡 guesses can be defined as the probability that the IR system correctly guesses �̄� as
the original query 𝑞, seeing the sets 𝒬obf and 𝒬logs, i.e., 𝑟𝑡 = P

[︀
{�̄� = 𝑞} ∩ {𝑡 ≤ 𝑘} |𝒬obf,𝒬logs

]︀
, with

𝑘 the maximum number of guessing attempts the IR system is willing to take. The upper bound for
the value of 𝑘 is determined by the size of the set 𝒬logs. However, determining the precise threshold 𝑡
and assessing the risk the user faces is impossible without access to the IR system’s internal data and
kind of attack. Therefore, we propose to model the malicious IR system with three kinds of attackers,
representing relevant use cases: i) the “lazy” attacker, i.e., the one that looks only at the top position of
the ranked list ℒ and makes only one guess; ii) the “active” attacker, i.e., an adversary that selects the
top-𝑘 queries and checks only with them if the guess is correct; and iii) the “motivated” attacker, i.e.,
the one that tries all the queries until the original one has been found. To model the probability of the
risk a user faces against each of such attackers, we propose to use proxy indicators computed on where
the original query appears in the ranked list ℒ: Precision at 1 (𝑃@1) for the lazy attacker, Recall at 𝑘
(𝑅@𝑘) for the active attacker, and Reciprocal Rank (RR) for the motivated attacker.

Drawing inspiration from the usual ROC AUC, Figure 2 illustrates the evaluation plane that links
the risk 𝑟 of a successful QuIA and the utility 𝑢 measure considering a set of queries 𝒬obf(𝑝𝑖) – an
effectiveness measure such as nDCG in the IR case – obfuscated by a certain formal parameter 𝑝𝑖 – the
𝜀 parameter in case of DP. In the risk-utility plane, the Risk-Utility Boundary line, i.e., the diagonal,
describes two regions where the risk-utility trend 𝑓(𝑟, 𝑢) can be: i) above the line indicates that the
utility 𝑢 exceeds the risk 𝑟, and ii) below the line, where 𝑢 is less than 𝑟. Therefore, the QuIPU score in
Equation 1 considers the pairs (𝑟, 𝑢) estimated by submitting the set of obfuscated queries 𝒬obf(𝑝𝑖).

QuIPU = 2(𝑅+ +𝑅−) = 2

∫︁
𝑅+

𝑓 (𝑟, 𝑢) 𝑑𝜈 + 2

∫︁
𝑅−

𝑓 (𝑟, 𝑢) 𝑑𝜈 (1)

where 𝑑𝜈 represents an infinitesimal variation on the Risk-Utility Boundary line, and the factor 2 is
introduced to map the score from

[︀
−1

2 ,
1
2

]︀
to [−1, 1] interval. The integrals are calculated with respect

to the diagonal of the plane, such that regions where the curve lies below this diagonal, i.e., 𝑅−, are
assigned negative values, indicating that the risk 𝑟 is greater than the utility 𝑢. Conversely, positive
values are computed for regions where the utility 𝑢 exceeds the risk 𝑟, i.e., 𝑅+.

Figure 2: Risk 𝑟 vs. Utility 𝑢 model to evaluate actual privacy. The four labels describe the plane’s critical points,
and the red dashed line shows the Boundary tracing two areas, 𝑅+ and 𝑅−, with a QuIPU positive or negative.

In Figure 2, four points are defined. The No Utility Point shows when the risk and utility are
reduced to 0. It depicts the situation where the obfuscation mechanism fully modifies the original query,
completely stopping a QuIA. However, the user completely renounces the effectiveness of the task, i.e.,
the submitted queries failed to retrieve any relevant documents. The No Privacy Point illustrates the
effect of not using the obfuscation protocol. The queries are not obfuscated, meaning the original query
is fully exposed to the IR system, resulting in 100% risk. Yet, utility is fully achieved, as the system
uses the original query to retrieve the full list of relevant documents. Finally, the Optimal Point and
the Trash Point present the best and worst cases theoretically obtainable. In the first, the obfuscation
mechanism provides complete protection against Query Inference attacks, i.e., 0% of risk, maintaining
maximum utility. The user’s information need are entirely met during the retrieval without exposing
any information about the original query. The second is the opposite of the optimal point, i.e., the
mechanism neither obfuscates the query nor can these queries retrieve any relevant documents. This
case can happen in a “fully-dishonest” scenario, a.e., a phishing IR system [46].



4. Empirical Evaluation

We present the experimental setup and compare the results observed for the privacy analysis using the
parameters and QuIPU score. Further analysis, the data used, and the code are publicly available3.

4.1. Experiments Setup

We test the QuIPU framework on three different TREC collections: Deep Learning (DL’19) [47] and
Deep Learning (DL’20) [48], based on the MS MARCO passages corpus, containing 43 and 54 queries
respectively, and the Robust ’04 (Robust ’04) [49] which relies on disks 4 and 5 of the TIPSTER corpus
and contains 249 queries. As obfuscation mechanisms, we consider those available in the pyPANTERA
framework [50], i.e., CMP, Mahalanobis, their Vickrey Variants, CusText, SanText, TEM, and WBB.
As privacy budget 𝜀, we followed the parametrization reported in the original papers, which is also
the one used by the pyPANTERA package and other recent experiments [11]. In detail, we select
𝜀 ∈ {1, 5, 10, 12.5, 15, 17.5, 20, 25, 30, 50}. The heuristics obfuscation mechanisms, i.e., AEA [6] and
FEA [7], using different synonyms levels {3, 4, 5}, and sliding windows sizes {12, 14, 16}, respectively.
We generated 50 obfuscation variants for each query and mechanism configuration. Finally, the IR
system used as re-ranker in the post-retrieval phase of the protocol is the neural dense model Contriever,
as used in [11, 30]. The honest aspect of the IR system, i.e., the part that performs the document
retrieval task, is also the Contriever model while, the curious part of the system uses as encoder model
distilbert-base-uncased [51].We use two models for the tasks to obtain unbiased results, in line
with [11, 30]. To simulate a realistic scenario for the curious IR to perform the QuIA, we use as query
logs the AOL collection4 from which 750k queries were selected and added to the original ones.

4.2. Privacy Analysis Using the Mechanisms’ Parameters

The traditional privacy analysis evaluates the utility as a function of the formal privacy parameters,
e.g., 𝜀. Figure 3 reports the results of the nDCG@10 vs the formal privacy parameters on the three
different collections analysed. Note that the x-axis, representing the PrivacyParameter, considers both
the values for the 𝜀 parameter of the DP mechanisms and the parameters of the heuristics [6, 7]. From
this traditional perspective, it emerges that with lower values of the privacy parameters, mechanisms
based on a DP strategy, like TEM or SanText, achieve higher effectiveness for low values of the privacy
parameter 𝜀. On the other hand, obfuscation mechanisms based on the embedding obfuscation strategies
perform with high effectiveness only if the formal parameter is high. Finally, the Heuristics show high
nDCG@10 for AEA and the worst results for the FEA mechanism. These results show a misleading
sense of privacy: high results do not imply actual privacy, i.e., the submitted queries are the originals.

4.3. Privacy Analysis Using the QuIPU Score

Table 1 reports the QuIPU scores obtained analysing the Risk vs. Utility on each set of obfuscated
queries of the collections. The results show three distinct patterns that can be traced back to the three
different obfuscation strategies. The Sampling-based mechanisms show weaker defences against the
three attackers, and especially against the “active” one, i.e., QuIPU score more negative. In contrast,
the Embedding Perturbation mechanisms are designed to protect user information from attackers,
yielding higher QuIPU scores even against a “motivated” attacker. This suggests that, when using as
DP obfuscation mechanisms, if the user wants to achieve strong actual privacy guarantees against the
QuIA, it should select an obfuscation relying on changing the word embeddings of the queries. Finally,
the heuristics strategies obtain a null QuIPU score due to the stable risk and utility achieved. FEA
reaches a slightly positive QuIPU score against the three attackers, implying that it is impractical for an
attacker to guess the original query even if “motivated” to do so.

3https://github.com/Kekkodf/QuIPU_Framework
4https://ir-datasets.com/aol-ia.html



Mechanism
CMP
Mahalanobis

VickreyCMP
VickreyMhl

CusText
SanText

TEM
WBB

AEA
FEA

0 10 20 30 40 50
PrivacyParameter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ut
ilit

y n
D

CG
@

10

(a) DeepLearning ’19

0 10 20 30 40 50
PrivacyParameter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) DeepLearning ’20

0 10 20 30 40 50
PrivacyParameter

0.1

0.2

0.3

0.4

(c) Robust’04

Figure 3: nDCG@10 (Utility) when varying privacy formal parameters (PrivacyParameters) of the obfuscation
mechanisms. For example, TEM achieves immediate high performance, with unclear effects on actual privacy.

Table 1
QuIPU Score computed organizing the results by obfuscation strategy. computed using the Equation 1, measured
in terms of 𝑢 = nDCG@10, and the risk 𝑟 of a successful Query Inference considering different adversary models.
Positive values correspond to a better Utility-Privacy trade-off, cf. Section 3.

Obfuscation
Strategy Mechanism Lazy Attacker Active Attacker Motivated Attacker

DL’19 DL’20 Robust DL’19 DL’20 Robust DL’19 DL’20 Robust

Sampling

CusText 0.041 0.109 0.034 -0.014 0.010 -0.084 0.020 0.074 0.028
SanText -0.247 -0.222 0.046 -0.277 -0.252 -0.237 -0.255 -0.231 0.043
TEM -0.264 -0.274 0.028 -0.264 -0.274 -0.329 -0.264 -0.274 0.027
WBB -0.005 -0.002 0.001 -0.001 -0.022 -0.011 -0.006 -0.010 0.001

Embedding
Perturbation

CMP 0.299 0.372 0.175 0.257 0.323 0.001 0.283 0.353 0.170
Mahalanobis 0.280 0.381 0.202 0.258 0.363 0.090 0.272 0.371 0.200
VickreyCMP 0.341 0.430 0.194 0.310 0.411 0.103 0.334 0.424 0.193
VickreyMhl 0.342 0.426 0.199 0.318 0.410 0.119 0.335 0.421 0.199

Heuristics
AEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FEA 0.001 0.001 0.001 0.000 0.001 0.002 0.000 0.001 0.001

5. Conclusion and Future Work

Assessing the privacy guarantees provided to users during IR tasks remains an open challenge. Relying
solely on a formal privacy analysis considering the mechanism parameters is insufficient for concretely
evaluating the privacy of obfuscation mechanisms. In this study, we introduced the QuIPU framework,
a new benchmark designed to assess actual privacy provided to queries in an obfuscation protocol. We
empirically evaluated the risk that an “honest-but-curious” IR system can accurately infer the original
query from the obfuscated ones received using its queries from the logs. Our findings demonstrate that
strong formal privacy guarantees do not necessarily imply actual privacy protection. In future work,
we plan to explore additional proxy measures to investigate their correlation with the QuIPU score. In
addition, we intend to explore the capabilities of Large Language Models in determining whether or
not a query has been sufficiently obfuscated, adopting such models as defensive mechanisms against a
successful QuIA.
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