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Abstract
Privacy is an essential aspect to consider when processing sensitive textual information in Natural Language
Processing (NLP) and Information Retrieval (IR) tasks. Private medical records, queries, online posts and reviews
can contain sensitive information that can endanger the confidentiality of users’ data. To address this privacy issue,
the gold-standard framework employed to protect such sensitive information when dealing with textual sentences
is the 𝜀-Differential Privacy (DP) obfuscation framework. However, to implement, develop and test state-of-the-art
mechanisms, there is a need for a unified framework for such new obfuscation mechanisms. pyPANTERA is
designed as a modular, extensible library developed to enrich DP techniques, enabling the integration of new
DP mechanisms and allowing reproducible comparison of the current mechanisms. The effectiveness of the
pyPANTERA package is measured by applying it to sentiment analysis and query obfuscation protocols. The
library’s source code is available in the public repository at https://github.com/Kekkodf/pypantera.
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1. Introduction

Natural Language Processing (NLP) and Information Retrieval (IR) systems are commonly developed and
trained on textual data, e.g., queries, documents, and online posts, that contain sensitive and personal
user information. Such a processing of textual data can pose privacy risks to the safety of users. For
example, the queries a user submits to a search engine or the textual content that they can post on online
social networks can contain personally identifiable information, e.g., the name or address of the searcher
and details about the user’s private sphere, e.g., political views, sexual orientation, that might expose
them to blackmailing and cyber bullying [2] or even endanger their safety in illiberal countries [3, 4].
Consequently, the privacy research community [5, 6, 7, 8, 9] has stressed the importance of privacy for
textual data analysis proposing different strategies of textual obfuscation. Such privatization techniques
are based on the gold-standard definition of privacy, represented by 𝜀-Differential Privacy (DP) [10].
The DP formal framework was introduced to provide users with the “Plausible Deniability” property,
i.e., the outcome of any analysis is statistically indistinguishable considering a given privacy budget
𝜀. A limitation within state-of-the-art obfuscation methodologies is that these approaches have been
evaluated across different tasks and datasets; nevertheless, they have not been structured within a
unified framework for text obfuscation in NLP and IR. Therefore, privacy practitioners can benefit
from a compact, modular, and adaptable framework that encourages the rapid design of novel DP
methodologies and permits a consistent and efficient evaluation against state-of-the-art techniques
across multiple experimental tasks.

In this work, we discuss the pyPANTERA [1], an open-source unified, flexible and user-friendly
framework for DP mechanisms implementation and comparison. Moreover, we bring together state-
of-the-art mechanisms [11, 12, 13, 14, 15, 16] based on the DP framework and used for NLP and IR
privacy tasks. pyPANTERA is structured into modules that implement different families of obfuscation
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mechanisms, specifically sampling and embedding perturbation approaches, along with an evaluation
module used to assess privacy and text the empirical correctness of the mechanisms. The obfuscation
modules provide distinct interfaces for different mechanism families, ensuring the integration of new
algorithms alongside existing ones. On the other hand, the evaluation module enables practitioners
to assess the privacy of the obfuscated text by measuring the similarity between the original and
obfuscated sentences and testing the effectiveness of the obfuscation mechanisms implemented.

Finally, we report the results of the implemented mechanisms, enforcing their use in real NLP and
IR tasks and proving that those findings are comparable to those found in the original mechanism
studies. This highlights the effectiveness of pyPANTERA as an important tool for privacy practitioners
to implement prospective obfuscation techniques and accurately replicate results from prior studies.
The code is open source under the GNU General Public License version 3.0 and publically available1.

The paper is organized as follows: Section 2 describes other related works related to obfuscation
techniques and tools publically available; moreover, Section 3 illustrates the design of the Python
package, providing technical information about the resource, and finally Section 4 reports the results
obtained from the tasks performed to evaluate the overall obfuscation framework.

2. Related Works

2.1. Background and Differential Privacy Approaches

Formal privacy is mathematically guaranteed by the definition of 𝜀-Differential Privacy (DP) introduced
by Dwork et al. [10]. A DP obfuscation mechanism ℳ is an algorithm that receives as input a text and
produces as output one or more noisy versions of the received input, regulating the amount of noise
provided depending on the parameter 𝜀 ∈ R, called privacy budget of the mechanism. An obfuscation
mechanism ℳ satisfy 𝜀-DP if and only if, for any pair of neighbouring datasets 𝐷,𝐷′, i.e., datasets
that differ for only one record, and given 𝜀 > 0, Equation 1 holds for all subsets 𝒮 ⊆ Image(ℳ) .

Pr{ℳ(𝐷) ∈ 𝒮} ≤ 𝑒𝜀Pr{ℳ(𝐷′) ∈ 𝒮} (1)

Equation 1 grants the property of “plausible deniability” to the user: an adversary cannot confirm with
absolute certainty the specific input (the user’s original data) corresponding to a selected output.

However, to provide this property to textual data, the original definition of 𝜀-DP is extended to metric
spaces [17]. Once a text is encoded into a vector, Metric-DP [17] ensures that a randomized mechanism
ℳ : R𝑛 → R𝑛 defined over a geometric space with distance function 𝑑 : R𝑛 × R𝑛 → R+ respects the
definition of DP, iff, for any triplets of points 𝑤,𝑤′, �̂� ∈ R𝑛, the inequality in Equation 2 is respected.

Pr{ℳ(𝑤) = �̂�} ≤ 𝑒𝜀𝑑(𝑤,𝑤′)Pr{ℳ(𝑤′) = �̂�} (2)

Obfuscation mechanism based on 𝜀-DP and 𝜀-Metric DP for natural texts has gained strong interests
from the research and industry community [18, 5]. Specifically concerning these types of obfuscation
mechanisms, the common categorization is based on the nature of the obfuscation perturbation applied
to the texts. On the one hand, the mechanisms presented in [11, 12, 13] obfuscate the embeddings of the
terms within the sentence by adding statistical noise following the privacy budget 𝜀. Conversely, the
mechanisms outlined in [14, 15, 16] rely on the initial computation of a score between word embeddings
to rank analogous terms, utilizing 𝜀 to modify the probability of sampling the new words.

2.2. Differential Privacy Resources

Several endeavours are available to provide privacy to structured tabular data. Such libraries primarily
facilitate the implementation of private statistical interrogation and private machine learning pipelines,
such as the computation of Differentially Private Stochastic Gradient Descent [19, 20]. According
to the evaluation proposed in [21, 22], examples of such libraries include IBM Diffprivlib [23], Meta

1https://github.com/Kekkodf/pypantera.
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PyTorch Opacus [24], and Google TensorFlow Differential Privacy [25] toolkit. Furthermore, built as a
forked project of Google TensorFlow Differential Privacy and OpenDP [26], OpenMined has released
PyDP [27], a wrapper library in Python used for aggregating sensitive statistics across tabular datasets.

In NLP, text sanitization and anonymization are another privacy aspect. Text sanitization and
anonymization concern removing sensitive data from textual data by substituting them with placeholders
or censoring with random symbols. Microsoft Presidio [28] is constructed employing the SpaCy [29]
library and consists of an Analyzer and an Anonymizer, which are designed to detect and mask personally
identifiable information within a specified sentence. The Analyzer leverages regular expression rules
and Named Entity Recognition Machine Learning models supplied by SpaCy to identify sensitive terms
within the provided context. Thus, after the identification phase, Presidio employs the anonymization
module to obfuscate such information by redacting, hashing, or replacing the identified sensitive data,
generating an obfuscated censored version of the original text. Although Presidio and pyPANTERA
operate on textual data, they address distinct privacy considerations: data sanitization and obfuscation,
respectively. Therefore, these two resources can be considered complementary. In future work, we
intend to merge the functionalities of Presidio and pyPANTERA to integrate Presidio’s data identification
and sanitization capabilities with the semantic obfuscation features of the DP framework in pyPANTERA
within the obfuscation pipeline, thus designing an DP mechanism able to redact texts formally.

3. pyPANTERA

3.1. Obfuscation Pipeline

Figure 1 reports the general obfuscation pipeline of how the text is processed using pyPANTERA. The
initial step involves the tokenization and parsing of the input text to eliminate punctuation while also
converting all capitalized letters within the sentence to lowercase. The Initialization Phase concludes
upon receiving the practitioner’s selected parameters necessary to initialize the chosen obfuscation
mechanism. The mechanisms available are either based on noisy embedding obfuscation strategies or
on the noisy sampling of the terms employed in the obfuscated text produced. After each term in the
sentence is finally obfuscated, all texts are reassembled in order to generate the user-required number of
obfuscation variants. Such obfuscation produced is either stored in a single text or a suitable data frame
and saved in a CSV file. Finally, the obfuscated versions of the texts can be used to perform the NLP
and IR tasks privately. Additionally, pyPANTERA offers a module to assess the level of privacy granted.

Figure 1: Pipeline of the pyPANTERA library.



3.2. Development Workflow

3.2.1. Requirements and Initial Usage

pyPANTERA is developed in Python (version 3.10) and requires Python ≥ 3.7 as the minimum version.
Python was selected due to its accessibility, fast prototyping, and active user community. Moreover, as
the tasks for which the obfuscation mechanisms are implemented depend on deep learning methods,
ensuring rapid interoperability between obfuscation and the overall pipeline significantly enhances
the efficiency of conducting experiments within the framework. The library can be installed and used
in two ways: the first manner, i.e., the recommended one, is by cloning the repository of the resource
available in GitHub2. The reason for the cloning is to ensure the last version of the mechanisms and
methods. In addition, the README provides detailed instructions for setting up the virtual environment
for conducting obfuscation and analysis. Alternatively, pyPANTERA can be installed using pip to
download the package from PyPI3, using the command pip install pypantera.

One of the advantages of pyPANTERA is that it is accessible to privacy practitioners of all expertise. To
achieve this, pyPANTERA constructs upon popular data science libraries, i.e., Numpy [30], Pandas [31],
and SciPy [32]. In addition, to optimize large amounts of text obfuscation, the library supports parallel
computing with the Python library multiprocessing4, increasing the efficiency.

3.2.2. Mechanisms Overview

New obfuscation mechanisms can be developed using the abstract classes provided by pyPANTERA.
The library’s UML diagram is accessible in the project repository, and it features a general abstract
DP mechanism class for initializing new mechanisms. Additionally, distinct child abstract classes
corresponding to embedding and sampling perturbation define each specific obfuscation process. An
obfuscation mechanism has three main phases, i.e., Preprocessing, Distortion and Selection, depicted in
Figure 2. The preprocessing phase deals with the tokenization and removal of alpha-numeric terms,
after which an embedding model is usually employed to obtain the vectors of the terms in the original
text. The second phase, i.e., the Distortion phase, modifies such term embeddings, considering the 𝜀
privacy budget and the other parameters specific to each mechanism. Finally, there is the Selection
phase, where the final obfuscated word is selected to compose the produced privatized text.

Obfuscation
Mechanism

Parsing
&

POS Tagging

Preprocessing

Computation
of obfuscated

terms

Distortion

Production of
obfuscated

text

Selection

Embedding
model

Original
Text

Obfuscated
Text

Figure 2: General steps of an obfuscation mechanism.

We report a list of state-of-the-art mechanisms available in the package. The mechanisms have been
categorized into Embedding (Cumulative Multivariate Perturbation Mechanism (CMP), Mahalanobis

2https://github.com/Kekkodf/pypantera
3https://pypi.org/
4https://docs.python.org/3/library/multiprocessing.html
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(Mhl), Vickrey CMP Mechanism (VickreyCMP), Vickrey Mahalanobis Mechanism (VickreyMhl)) and
Sampling (Custumized Text Mechansim (CusText), Sanitization Text Mechanism (SanText), Truncated
Exponential Mechanism (TEM)) perturbation groups to delineate the type of obfuscation process they
perform. More details can be found in the repository.

• Embedding Obfuscation: Generally speaking, this family of obfuscation mechanisms is related to
the alteration of the terms embeddings in the original text, adding a certain amount of statistical
noise sampled proportionally to the 𝜀 privacy budget.

– CMP [11]: After encoding each term in the original text, the statistical noise sampled from
an 𝑛 - dimensional Laplace distribution and it is added to the embedding of the terms.
Finally, the new obfuscated terms are selected considering the proximity of the respective
embeddings to the noisy ones computed.

– Mhl [12]: Similarly to the CMP mechanisms, after the encoding of the terms in the input
text, the noise is sampled from an 𝑛 - dimensional Normal distribution proportional to the
𝜆 regularized Mahalanobis norm of the term embedding, stretching the obfuscation noise
towards more similar terms, and the 𝜀 parameter. Finally, the selection of the new term is
based on the proximity of the obfuscated embeddings to the original one.

– VickreyCMP and VickreyMhl [13]: In this mechanism, the preprocessing and distortion
with noise is defined by the parent method (CMP or Mhl) and the obfuscation term is then
selected based on a free parameter threshold 𝑡 ∈ (0, 1).

• Sampling Obfuscation: While the Embedding obfuscation mainly considered the Distortion phase
of an obfuscation mechanism, these strategies deal with the noisy selection of the obfuscated
terms in the output texts. In this case, the mechanisms do not alter the embedding representation
of the terms, thus missing the distortion phase in Figure 2.

– CusText [15]: Selecting a new term involves a sampling approach, where the replacement
word is chosen from a set of 𝑘 possible term candidates. The determination of these
candidates is based on their similarity to the original term, which is assessed through the
distances between word embeddings. The 𝑘 words with the highest similarity scores, i.e.,
lowest distances, are identified, from which one is selected exponentially proportional to 𝜀.

– SanText [14]: In this mechanism, there is no limitation of the top 𝑘 most similar words,
conversely with the CusText method, but all possible terms can be used.

– TEM [16]: The noise, sampled from an 𝑛 - dimensional Gumbel distribution, is incorporated
into the score computed based on the distances between the vector embeddings. A truncation
parameter 𝛽 is introduced to limit the possible obfuscation candidates during the selection
phase. Thus, the new term is chosen according to the maximum noisy score obtained by a
term using the exponential mechanism [33] for sampling.

3.2.3. Functionalities

pyPANTERA enforces different utility functions to help the practitioner get an exhaustive view of all
the pipeline steps. Therefore, the package offers an appropriate class to speed up the initialization
of the embedding vocabulary that uses parallelization to read the embeddings from the supplied file.
Moreover, using the logging python library5 the method creates a folder containing a logger file to
report all the action information regarding mechanism parameters, time of execution and steps executed.
Finally, to evaluate the similarities between the original and obfuscated texts and thus assess the privacy
provided to the texts, pyPANTERA implements the Jaccard Index to compute the overlapping terms,
i.e., offering a proxy measure on the lexical similarity of the produced texts, and a cosine similarity
among the contextual embeddings of the sentences depending on a configurable Transformer model,
i.e., showcasing the sentence similarity between input and output texts.

5https://docs.python.org/3/library/logging.html

https://docs.python.org/3/library/logging.html


4. Experimental Evaluation

In this Section, we report the experiments performed to verify the effectiveness of the pyPANTERA
package. As a downstream task, we employed the setups and methodology of the original studies,
i.e., sentiment analysis, classification and document retrieval. Finally, to assess the levels of privacy
provided, we followed the methodology proposed in [9] and computed the cosine similarity and Jaccard
scores between original and obfuscated texts using the methods implemented in pyPANTERA.

4.1. Dataset and Experimental Setup

To evaluate the correctness and effectiveness of the pyPANTERA library, we conduct experiments using
NLP tasks similar to those employed in the original state-of-the-art mechanism studies, specifically
sentiment analysis. Additionally, following the methodology proposed by Faggioli and Ferro [9], we
assess the library’s robustness in implementing the query obfuscation pipeline for an IR task, i.e.,
document retrieval, while ensuring user privacy protection. For the sentiment analysis task, we used
the Kaggle Twitter sentiment analysis6 test set. On the other hand, in the document retrieval task,
we obfuscated the queries from the TREC Deep Learning (DL’19) [34], based on the MSMARCO [35]
passage corpus. Finally, we measured the privacy levels achieved by the former query collection
using the metrics module in pyPANTERA. The default initialization parameters used to configure
the obfuscation mechanisms are reported in Table 1. The privacy budget 𝜀 was selected to verify the
impact of such parameter in a wide range of possible values, i.e., 𝜀 ∈ {1, 5, 10, 12.5, 15, 17.5, 20, 50}.
To encode the texts, the default embeddings in the package and used for all the tasks are read from a
local file containing the pre-computed vectors of GloVe [36] from Wikipedia 2014 publically available7.

Table 1
Table of the parameters of the mechanism used to perform the different tasks in the experiments. Those
parameters represents the default values with which the mechanisms are initialized.

Perturbation Families

Embedding Sampling

Mechanism Constraints Parameters

CMP - -
Mahalanobis 𝜆 ∈ [0, 1] 𝜆 = 1
VickreyCMP 𝑡 ∈ [0, 1] 𝑡 = 0.75
VickreyMhl 𝑡 ∈ [0, 1]; 𝜆 ∈ [0, 1] 𝑡 = 0.75, 𝜆 = 1

Mechanism Constraints Parameters

CusText 𝐾 ∈ N 𝐾 = 10
SanText - -
TEM 𝛽 ∈ (0, 1) 𝛽 = 0.001

A key feature of the pyPANTERA package is its flexibility in allowing practitioners to configure various
parameters for the obfuscation mechanisms directly via command-line arguments. This functionality
enables users to customize the behaviour of the mechanisms without modifying the underlying code. A
practitioner can specify the desired mechanism and its parameters by executing a command such as:

python3 testObfuscationIR.py --mechanism VickreyCMP -t 0.5

In this example, the –mechanism flag selects the “VickreyCMP” obfuscation mechanism, while the
-t parameter sets a threshold value of 0.5. This approach facilitates experimentation and fine-tuning,
allowing users to efficiently adapt the obfuscation process to specific use cases.

4.2. Natural Language Processing

To demonstrate the capabilities of pyPANTERA, we conducted a standard NLP task—sentiment anal-
ysis—on a dataset of tweets collected from Twitter. For sentiment classification, we utilized the

6https://www.kaggle.com/datasets/jp797498e/twitter-entity-sentiment-analysis/data
7https://nlp.stanford.edu/projects/glove/
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Twitter-roBERTa-base model, commonly referred to as TweetNLP [37], to extract sentiment from
the preprocessed version of the tweets. As a performance metric, we measured accuracy in correctly
identifying the sentiment labels of the tweets, aligning our evaluation with prior studies on obfuscation
mechanisms [14, 16, 15]. This task aimed to demonstrate how the obfuscated tweets generated by
pyPANTERA can be completely integrated into a basic NLP task, comparing different obfuscation
techniques regarding their impact on model performance.

Figure 3: Mean Accuracy of the Sentiment Analysis task using the TweetNLP model [37], varying the privacy
budget 𝜀 for the different mechanisms implemented in pyPANTERA.

Figure 3 presents the accuracy results as a function of the privacy budget 𝜀 for different obfuscation
mechanisms. The findings are consistent with those reported in previous studies [14, 16, 15]. The
TEM mechanism surpasses the CMP mechanism in sentiment classification, confirming the results
obtained by Carvalho et al. [16]. Moreover, CusText performs better than SanText, aligning with the
observations of Chen et al. [15]. In the context of noisy embeddings obfuscation, CMP and Mahalanobis
exhibit a similar performance trend across different values of 𝜀. In contrast, the Vickrey-based variants
consistently demonstrate lower performance. The results highlight a clear distinction between the
two obfuscation families: the sampling-based approach achieves higher precision for lower 𝜀 values,
whereas the noisy embedding methods maintain lower performance under the same privacy constraints.

4.3. Information Retrieval and Privacy Analysis

Following the experimental methodology outlined by Faggioli and Ferro [9], we applied obfuscated
MSMARCO DL’19 queries to retrieve relevant documents from the collection, ensuring user privacy
during the retrieval process. Therefore, we re-ranked the retrieved results using the original (non-
obfuscated) queries. For both retrieval and re-ranking, we utilized the Meta Contriever dense model [38].
The performance of the retrieval pipeline, measured in terms of Recall and nDCG@10, is presented in
Table 2. Table 3 presents the similarity results, which quantify the relationship between the original and
obfuscated DL’19 queries. Specifically, we evaluated two types of similarity using the metric functions
available in pyPANTERA: lexical similarity, measured using the Jaccard index, and sentence-level
similarity, computed as the cosine similarity between the contextual embeddings of the queries obtained
from the Sentence-BERT MiniLM model [39]. In future versions of the library, we plan to implement
new privacy measures like the one proposed in [40].

As observed by Faggioli and Ferro [9], and consistent with the theoretical expectations of a DP
obfuscation mechanism, increasing the privacy budget 𝜀 results in enhanced performance of the
obfuscation mechanism. However, this performance improvement comes with a weakening in the
privacy guarantees, as illustrated in both Table 2 and Table 3. Moreover, the Sampling perturbation
mechanisms tend to exhibit higher similarity between the original and obfuscated queries for lower
values of 𝜀 compared to the Embedding perturbation mechanisms. This pattern suggests a trade-off



Table 2
Average Recall and nDCG@10 on the MSMARCO dl’19 collection [34] using the obfuscated queries
for the searching process, and the original version for the reranking. The searching and the reranking
process was performed using Contriver [38].

Recall nDCG@10

𝜀 - Privacy Budget 𝜀 - Privacy Budget

Perturbation Mechanism 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0

Embedding

CMP 0.000 0.000 0.028 0.174 0.292 0.403 0.430 0.444 0.000 0.000 0.052 0.277 0.544 0.546 0.535 0.564
Mahalanobis 0.000 0.000 0.001 0.077 0.134 0.290 0.368 0.447 0.000 0.000 0.003 0.103 0.262 0.455 0.494 0.565
VickreyCMP 0.000 0.000 0.020 0.016 0.048 0.053 0.165 0.235 0.000 0.000 0.031 0.016 0.166 0.159 0.221 0.372
VickreyMhl 0.000 0.001 0.002 0.002 0.029 0.042 0.122 0.191 0.000 0.005 0.007 0.004 0.062 0.097 0.158 0.293

Sampling
CusText 0.053 0.245 0.430 0.442 0.444 0.443 0.443 0.443 0.143 0.439 0.576 0.571 0.569 0.569 0.569 0.569
SanText 0.000 0.444 0.447 0.448 0.444 0.450 0.447 0.444 0.000 0.564 0.569 0.570 0.568 0.559 0.568 0.562
TEM 0.000 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.000 0.636 0.636 0.636 0.636 0.636 0.636 0.636

None Original - - - - - - - - 0.498 - - - - - - - - 0.636

Table 3
Average Lexical and Sentence similarity between the original and obfuscated queries of the MSMARCO
dl’19 collection [34]. Lexical and Semantic similarity are computed using the implemented metrics
module in pyPANTERA.

Lexical Similarity (Jaccard Similarity) Semantic Similarity (MiniLM [39])

𝜀 - Privacy Budget 𝜀 - Privacy Budget

Perturbation Mechanism 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0

Embedding

CMP 0.000 0.000 0.119 0.274 0.460 0.735 0.785 0.935 0.025 0.037 0.225 0.429 0.628 0.836 0.847 0.902
Mahalanobis 0.000 0.002 0.047 0.140 0.302 0.457 0.590 0.935 0.016 0.027 0.088 0.242 0.435 0.587 0.730 0.908
VickreyCMP 0.000 0.000 0.039 0.061 0.180 0.191 0.164 0.212 0.018 0.045 0.103 0.169 0.348 0.382 0.435 0.596
VickreyMhl 0.000 0.013 0.028 0.038 0.098 0.134 0.117 0.151 0.037 0.030 0.078 0.109 0.202 0.264 0.303 0.498

Sampling
CusText 0.089 0.374 0.816 0.880 0.925 0.929 0.929 0.935 0.357 0.627 0.881 0.900 0.908 0.908 0.909 0.910
SanText 0.000 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.031 0.902 0.906 0.910 0.917 0.900 0.902 0.907
TEM 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.037 1.000 1.000 1.000 1.000 1.000 1.000 1.000

between privacy and the precision of obfuscation, warranting further analysis and investigation in
future work. We leave this observation as an open issue for future experiments.

5. Conclusions

Given the increasing concerns surrounding data confidentiality in textual analysis, privacy remains an
important research domain for NLP and IR. In this paper, we introduced the functionality of pyPANTERA
introduced in [1], a highly adaptable and extensible framework designed to systematically evaluate
and compare different DP obfuscation mechanisms. Our framework significantly contributes to the
privacy-preserving research community by establishing a well-defined and user-friendly text obfuscation
pipeline, facilitating the development and integration of novel obfuscation techniques by researchers and
practitioners in the privacy research field. The pyPANTERA library encompasses diverse functionalities,
including real-time monitoring of the obfuscation process and a list of evaluation metrics to assess the
level of privacy preserved beyond the formal analysis of the 𝜀 privacy budget. Furthermore, we conduct
an extensive empirical analysis across standard NLP and IR tasks, demonstrating the effectiveness
of pyPANTERA in providing a robust and unified environment for the comparative assessments of
different obfuscation strategies based on DP. As part of future research, we aim to broaden the number
of available obfuscation mechanisms in the framework and enhance the privacy evaluation module by
introducing additional metric functions to refine the assessment of privacy guarantees.
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