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Abstract
Data represents one of the most crucial assets of today’s digital age. Privacy-preserving strategies play a crucial
role in safeguarding the confidentiality of sensitive user data during the overall processing pipeline in Natural
Language Processing (NLP) and Information Retrieval (IR) tasks. This paper presents an overview of obfuscation
strategies and evaluation metrics employed to process users’ textual information privately when interacting with
IR systems, framing these solutions within the formal framework of 𝜀-Differential Privacy (DP). The methodologies
and findings presented in this paper describe the author’s preliminary studies in his current PhD activity.
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1. Introduction

Data has become one of the most valuable resources for researchers and industry in today’s digital age. In
such a scenario, an ever-growing amount of data for training, validation, and testing is needed to enhance
the performance of NLP and IR systems. This includes highly sensitive and personal information, such
as health records [1, 2], financial situations [3], and, more broadly, individual preferences [4, 5], all of
which are used to refine and enhance models’ performance. For example, when a user interacts with an
IR system, like a search engine, the information need is formulated into a natural language query. When
the search engine processes such a query to retrieve relevant documents, confidential information, like
the motivations of the search and personal identifiers, e.g., social security number and other personal
attributes for ego-surfing [6], can be extracted and analysed [7, 8], thus presenting the user with the
dilemma of exchanging personal information in order to retrieve relevant ones.

Recent works in NLP and IR [9, 10, 11] have shown the potentialities of applying the formal 𝜀-
Differential Privacy (DP) framework [12] to provide privacy guarantees to textual data employing
obfuscation mechanisms. In this context, an obfuscation mechanism is an algorithm that, upon receiving
a text as input, randomly produces another text composed of different words as output. In 𝜀-DP, the
number of changed words and the semantic relations with the original texts depend on the 𝜀 value, which
sets the statistical noise used during the output computation. However, introducing 𝜀-DP mechanisms
to obfuscate the real meaning of texts poses some open research challenges. State-of-the-Art DP
mechanisms do not guarantee that given a term 𝑥 is changed in loose privacy regimes, i.e., high values
of 𝜀. In addition, standard evaluation measures pivot the analysis on varying the formal privacy budget
𝜀, leading to extreme cases where a low 𝜀, i.e., a strong privacy setting, may result in preserving the
original text, thus giving a false perception of the privacy granted [13].

In this paper, submitted to the Doctoral Consortium track, the author reports the methodology
proposed in previous works [14, 15, 16] to address the above open challenges, providing robust privacy
guarantees for texts proposing an obfuscation mechanism based on the 𝜀-DP framework which ensures
removing original words from the obfuscated output produced. Moreover, to address the problem of
measuring actual privacy beyond the formal privacy budget 𝜀, we report the privacy analysis in an
adversarial scenario where the attacker tries to exploit a public query log to infer the original query.
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The paper is structured as follows: Section 2 presents the related work on providing and measuring
text privacy, also presenting the query obfuscation protocol in IR. Section 3 explains the methodology
used to ensure privacy for textual queries and the method proposed to evaluate actual privacy. Finally,
Section 4 outlines the findings of prior studies, and Section 5 concludes, highlighting open challenges.

2. Related Work and Background

Obfuscating Texts with 𝜀-DP. 𝜀-DP framework was introduced by Dwork et al. [12] to formalize
the privacy guarantees when releasing data publicly. Given a privacy budget 𝜀 ∈ R+, and any pair of
neighbouring datasets 𝐷,𝐷′, i.e., datasets that differ for only one entry, an obfuscation mechanism ℳ
is DP if it holds the inequality Pr [ℳ(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 · Pr [ℳ(𝐷′) ∈ 𝑆] ∀𝑆 ⊂ Im(ℳ). DP introduces
calibrated noise levels during output computation using the privacy budget 𝜀, which controls the balance
between data privacy and utility. The adoption of the DP framework for metric spaces, and therefore for
NLP tasks, has been proposed in [17]. Metric-DP extends the traditional DP definition by ensuring that
the probability of obfuscating two distinct points 𝑥, 𝑥′ is proportional to the distance 𝑑(𝑥, 𝑥′) between
them. The DP framework has enabled the privacy research community to develop two main obfuscation
strategies: either based on leveraging noisy embeddings or randomly sampling a new obfuscation term.
The former approaches involve introducing statistical noise into text term embeddings based on the 𝜀
budget like in the Cumulative Multivariate Perturbation (CMP), Mahalanobis (Mhl), and their respective
Vickrey-based variant mechanisms [18, 19, 20]. The latter employs random sampling to select a term as
the obfuscated text, like in the Custumized Text (CusText), Sanitization Text (SanText), and Truncated
Exponential (TEM) mechanisms [21, 22, 23]. For full details, we recommend the original papers.

Measuring Privacy. Wagner and Eckhoff [24] systematically classified over eighty privacy metrics,
offering a comprehensive framework for assessing privacy across different domains, e.g., communication,
databases, and social networks. The work proposes specific aspects of privacy that a metric aims to
quantify, suggesting nine guiding questions for selecting the appropriate privacy measures. Specifically,
the authors underlined the importance of considering the adversary’s knowledge and capability when
evaluating privacy. In addition, Sousa and Kern [25] described how different mechanisms developed
for NLP tasks provide privacy for textual data with Habernal [26] stressing the importance of not
relying strictly on formal analysis of DP in its application on NLP, encouraging research towards new
privacy metrics. Traditional privacy measures focus on calculating the failure rates of obfuscation
mechanisms [27] or assessing the similarities between original and obfuscated texts [28, 10]. Uncertainty
measures such as 𝑁𝑥 and 𝑆𝑥 [18, 19] estimate the probability that a term 𝑥 remains unchanged
after obfuscation and the minimum cardinality of the set of words to which the mechanism maps 𝑥,
respectively. The similarity between the input and output texts is commonly estimated using metrics
like the Jaccard or cosine similarity between sentence embeddings computed by a Transformer.

The Query Obfuscation Protocol in IR. Figure 1 reports a high-level view of the query obfuscation
protocol, considering two distinct sides: one for the user (“Safe Side”) and one for the IR system (“Unsafe
Side”). On the user side, the original query is formulated considering the User information need and
privatized using an obfuscation mechanism, i.e., an algorithm that, given an original sensitive query,
generates different non-sensitive obfuscated queries that (theoretically) prevent the unveiling of the
original information need and still can retrieve relevant documents from the system for the user, without
explicitly disclosing their information need. On the IR system side, documents are retrieved considering
the queries received. If the obfuscation has been correctly performed, relevant documents to the user’s
original query are placed at a lower rank in the resultant document list (yellow documents in Figure 1),
thus masking the actual intentions of the user. Once the list returns to the user, the latter can privately
use its original query to re-rank the documents, placing the correct relevant ones first in the final
list. The scenario studied works under the assumption of an IR system that does not collaborate to



Query
Document
Reranking

Information
Retrieval System

U
ns

af
e 

Si
de

Sa
fe

 S
id

e

Obfuscated Queries

Query Inference
Attack

Query Log Retrieved Documents

Information Need

Obfuscation
Mechanism

Figure 1: Query Obfuscation protocol overview. On the “Safe Side”, the user information need is formulated
into a natural language query privatized by a mechanism, producing different obfuscations. Such obfuscated
queries are sent to the IR System, which retrieves documents relevant to the obfuscated variants received in the
“Unsafe Side”. Such documents are sent to the user as the response to the retrieval process. In an adversarial
setting, the obfuscated queries are used to perform a Query Inference Attack, employing an available query log.

protect the privacy of the received user query. Therefore, the user is willing to renounce part of the
effectiveness of the search to protect his privacy.

A final remark to consider is the use of cryptographic protocols, such as Private Information Retrieval
(PIR) protocols, to ensure privacy when interacting with IR systems. This approach introduces open
challenges and limitations considering the higher computational demand and time needed to retrieve
relevant information from the systems [29, 30]. However, implementing PIR protocols can be seen as
complementary to query obfuscation protocols. While query obfuscation focuses on concealing the
user’s true intent and altering the original query sent to the system, PIR protocols can interact with the
system’s index, ensuring that the documents are retrieved without revealing sensitive information.

3. Proposed Methodology

3.1. Obfuscating a Text: The Words Blending Boxes (WBB) 𝜀-DP mechanism.

Current state-of-the-art obfuscation mechanisms either ensure the privacy of obfuscated queries by
providing formal privacy guarantees under the DP framework or account for the presence of synonyms
and holonyms. The WBB mechanism [14] addresses the limitations of these approaches by integrating
both strategies. Specifically, the mechanism ensures that the top-𝑘 most semantically similar words–i.e.,
synonyms and holonyms closely positioned to the original term in the embedding space–are excluded
from the obfuscation process. Instead, it selects the 𝑛 words that are similar but do not belong to the
top-𝑘 set as obfuscation candidates. The final obfuscation term is then sampled according to the DP
exponential mechanism [31], which defines the selection probability based on the privacy parameter 𝜀.

3.2. Evaluating Privacy: The Query Inference for Privacy and Utility (QuIPU) Score.

Traditional methods (see Section 2) often rely on theoretical privacy guarantees, such as those provided
by the 𝜀 in DP, which may not accurately reflect the real-world privacy risks associated with obfuscated
queries. The QuIPU score [16] addresses this gap by assessing the extent to which an obfuscated query
hides the user’s original intent from potential adversaries. Specifically, the score evaluates different
obfuscation strategies by examining both the utility of the obfuscated query in performing the intended
task and the risk of re-identification. The computation of risk probabilities in the QuIPU framework is
grounded in assessing the effectiveness of adversarial strategies that attempt to reverse engineer the
original user intent using a Transformer model to cluster obfuscated queries and an available query log.
The probability of successfully reconstructing the original query is computed based on its rank among
the most similar queries within the log, following the adversary’s clustering of the obfuscated queries.



4. Preliminary Experimental Findings

The mechanisms based on 𝜀-DP are tested on TREC collections using the Python package
ir_datasets1. Specifically, we used the TREC Deep Learning‘19 [32] (DL‘19) and Deep Learn-
ing‘20 [33] (DL‘20) collections, thus considering 43 and 54 queries. In addition, to understand the
impact on a different distribution of the queries, we also employed the obfuscations on the TREC
Robust collection [34] (Robust ‘04), containing 250 queries. For each privacy setting of the mechanisms,
i.e., 𝜀 ∈ {1, 5, 10, 15, 20, 25, 30, 50}, each query produces 20 different variant obfuscations, as done
in [10]. To generate such obfuscations and measure the privacy guarantees provided, we employed the
pyPANTERA framework [15], leaving as default vocabulary the words and embeddings 300-d from
GloVe [35]. Moreover, to compute the QuIPU score, we analysed the scenarios described in [16] of
three different attackers, i.e., Lazy-Active-Motivated, using as query log the AOL-dataset2. To avoid
encumbering, we report the performance analysis only on the DL‘19, using as IR system the Contriever
model [36] for the retrieval and reranking. We refer to the original papers [14, 15, 16] for the full results.

4.1. Performance Analysis

Evaluating obfuscation mechanisms, Table 1, across different privacy budgets 𝜀 reveals a clear trade-
off between formal privacy and utility gained by the user during the retrieval pipeline, measured
as Precision (P) and normalized Discounted Cumulative Gain (nDCG) at cut-off point 10. At low 𝜀
values, the obfuscation is performed in a strong privacy regime, reducing performance in both ranking
metrics for all the mechanisms analysed, except for CusText and WBB. Among the tested mechanisms,
embedding-based methods show significant improvements as 𝜀 increases, achieving stable performance
at higher 𝜀 values. On the other hand, sampling-based mechanisms offer different behaviours, with
TEM maintaining consistently high performance across all privacy budgets. Generally speaking, for the
𝜀 considered, the sampling mechanisms are not influenced by the formal parameter 𝜀 above 5.

Table 1
Performance analysis comparing different mechanisms at different levels of Privacy, guaranteed by the parameter
𝜀, obtained by employing as retrieval and renaker model the Contriever systems [36] on the DL‘19 collection [32].

P@10 nDCG@10

Obfuscation Mechanism 𝜀 - Privacy Budget 𝜀 - Privacy Budget

1 5 10 15 20 25 30 50 1 5 10 15 20 25 30 50

Embedding

CMP 0.002 0.047 0.686 0.709 0.714 0.712 0.712 0.712 0.005 0.039 0.585 0.595 0.601 0.599 0.599 0.599
Mahalanobis 0.000 0.033 0.488 0.707 0.709 0.709 0.712 0.712 0.000 0.034 0.410 0.593 0.595 0.595 0.598 0.599
VickreyCMP 0.000 0.056 0.595 0.707 0.716 0.716 0.719 0.709 0.000 0.047 0.493 0.594 0.603 0.604 0.604 0.595
VickreyMhl 0.002 0.086 0.326 0.681 0.714 0.709 0.709 0.709 0.003 0.068 0.280 0.558 0.601 0.595 0.595 0.595

Sampling

CusText 0.707 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.592 0.595 0.595 0.595 0.595 0.595 0.595 0.595
SanText 0.000 0.709 0.716 0.709 0.709 0.709 0.709 0.709 0.000 0.595 0.603 0.595 0.595 0.595 0.595 0.595
TEM 0.005 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.008 0.674 0.674 0.674 0.674 0.674 0.674 0.674
WBB 0.614 0.607 0.626 0.628 0.628 0.637 0.630 0.621 0.557 0.552 0.542 0.572 0.572 0.560 0.570 0.557

These experiments demonstrate that ranking performance deteriorates significantly under stringent
privacy constraints (i.e., low 𝜀). Moreover, utility improves as privacy constraints decrease (i.e., high
𝜀), with most mechanisms achieving utility levels comparable to non-private settings. Furthermore,
another insight is related to the obfuscation strategy: sampling-based mechanisms achieve higher
performance at lower 𝜀, while noisy embedding methods require higher 𝜀 values to reach saturation.

4.2. Privacy Analysis

Table 2 compares two different aspects of privacy. The average failure rate 𝑁𝑥 of the mechanism
ℳ assesses the probability that a term 𝑥 is mapped to itself over 𝑇 obfuscations, with higher values
indicating weaker privacy. Conversely, the QuIPU score measures how well the mechanism resists a
query inference attack [16] from different attackers. The higher the score, the better the resistance.
1https://ir-datasets.com/
2https://ir-datasets.com/aol-ia.html

https://ir-datasets.com/
https://ir-datasets.com/aol-ia.html


Table 2
Failure rate 𝑁𝑥 of an obfuscation mechanism ℳ when obfuscating 𝑛 = 400 terms 𝑥 for 𝑇 = 100 times at
different 𝜀 budgets. The WBB mechanism obtains a null probability of failure by design since the term 𝑥 is a
priori removed from the set of possible candidate obfuscations. The words 𝑥 are randomly sampled from the
GloVe 300-d Vocabulary. On the right part of the Table is reported the QuIPU Score [16] evaluates actual privacy
considering the different obfuscation parametrization when subject to different attacker models, cf. Section 3.2.

𝑁𝑥 = P[ℳ(𝑥) = 𝑥] QuIPU Score

𝜀 - Privacy Budget Lazy Attacker Active Attacker Motivated Attacker

Obfuscation Mechanism 1 5 10 15 20 25 30 50 DL‘19 DL‘20 Robust‘04 DL‘19 DL‘20 Robust‘04 DL‘19 DL‘20 Robust‘04

Embeddings

CMP <0.01 <0.01 0.15 0.65 0.94 0.99 1.00 1.00 0.299 0.372 0.175 0.257 0.323 0.001 0.283 0.353 0.170
Mahalanobis <0.01 <0.01 0.06 0.39 0.79 0.96 0.99 1.00 0.280 0.381 0.202 0.258 0.363 0.090 0.272 0.371 0.200
VickreyCMP <0.01 <0.01 0.07 0.21 0.26 0.27 0.28 0.31 0.341 0.430 0.194 0.310 0.411 0.103 0.334 0.424 0.193
VickreyMhl <0.01 <0.01 0.03 0.15 0.24 0.26 0.27 0.31 0.342 0.426 0.199 0.318 0.410 0.119 0.335 0.421 0.199

Sampling

CusText 0.15 0.56 0.94 0.99 1.00 1.00 1.00 1.00 0.041 0.109 0.034 -0.014 0.010 -0.084 0.020 0.074 0.028
SanText <0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.247 -0.222 0.046 -0.277 -0.252 -0.237 -0.255 -0.231 0.043
TEM <0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.264 -0.274 0.028 -0.264 -0.274 -0.329 -0.264 -0.274 0.027
WBB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.005 -0.002 0.001 -0.001 -0.022 -0.011 -0.006 -0.010 0.001

Noisy embedding-based methods such as CMP and Mhl show a gradual loss of privacy as 𝜀 increases,
while VickreyCMP and VickreyMhl maintain lower 𝑁𝑥 values, indicating more robust privacy guar-
antees. Sampling-based methods exhibit a different behaviour: CusText, SanText, and TEM rapidly
lose their obfuscation capability, reaching 𝑁𝑥 = 1.00 for relatively low 𝜀. WBB, in contrast, preserves
complete privacy with 𝑁𝑥 = 0 across all budgets by design: the original word is always changed.

The QuIPU scores demonstrate the robustness of these mechanisms against different modelizations of
the attackers [16]. Vickrey-based embedding methods offer better resistance among all the mechanisms
studied, while the sampling-based methods, particularly SanText and TEM, do not perform well in all
the adversarial settings. WBB provides a null QuIPU score, which means an equal performance-utility
trade-off. Future research is needed to improve the robustness against the query inference attack.

In conclusion, WBB and Vickrey-based embeddings are more suitable for scenarios requiring stringent
privacy guarantees. In contrast, CMP and Mhl obfuscations provide a more balanced trade-off between
privacy and utility. Finally, sampling-based approaches indicate lower effectiveness in adversarial
environments, considering their probability of failure and resilience against inference attacks.

5. Conclusion

The paper presented the privacy problems faced when providing privacy to textual data in the author’s
first studies during his initial works during the PhD studies. The paper shows the methodology adopted
to evaluate the privacy provided to the texts analysed and the strategies adopted to assess the privacy
guarantees obtained. Possible Open Research Discussions (RD1-3) that will be proposed during the
Doctoral Consortium session are formulated as follows:

RD1. Current privacy-preserving obfuscation techniques often operate independently of the underlying
IR models. How can obfuscation methods be optimized to leverage the characteristics of specific
retrieval models while maintaining formal privacy guarantees?

RD2. The trade-off between privacy and utility in obfuscated queries remains a critical challenge for
the WBB mechanism. Can we design adaptive obfuscation mechanisms to dynamically balance
privacy and retrieval effectiveness based on user needs and system constraints?

RD3. The effectiveness of privacy-preserving obfuscation methods can vary depending on the structure
and semantics of different query types. How can obfuscation techniques be adapted to different
query characteristics while ensuring consistent privacy guarantees? Can we adapt the obfuscation
to domain-specific sensitive context like health scenarios?
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