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Abstract — In this paper, humanoid gait generation is The
formulated as a multi-objective optimization problem with multi-
constraint based on probability distribution models Under this
framework, an estimation of distribution algorithm (EDA) based

gait optimization approach has been developed to epd up

year for Humanoid Penalty Kick competition.
achievements of HL by 2004 was summarized in Thf9g

TABLE |
ACHIEVEMENTS OFHUMANOID LEAGUE BY 2004

searching in high dimensional coupling space constcted by the Technology Achievements
permutation of optimization parameters to establisha periodic Perception The introduction omni-vision system tonanoid robot
orbit in biped locomotion. To better understand howinformation was obvious in Team Osaka's ViSion robpt.
are transferred between these parameters, a factard Coordination of perception and locomotion was
distribution algorithm (FDA) based gait optimization method demonstrated in the capability of some robots| to
using maximum entropy solution principle has been mposed so Egr?ri:]t\(]inﬁﬂfn Zﬁg?;ivgkreszﬁglste tk?ctli];?;\;m
that we may progress toward better understanding hman challenge competitions P y
locomotion and extenq_ the results t_o de_sngn of humand robots. Communication] Some robots come with wireless comaation
The proposed probability based estimation algorithrs have been capability, either in the form of bluetooth or wires
SUCCGSSfUlly used to generate and Optimize Varioﬂlyspes of basic LAN. Multimedia integration was also noticed in sem
soccer-playing humanoid gaits for our humanoid so@r robot robots
Robo-Erectus which has been one of pioneering humaid soccer- Walk Ability to walk on uneven terrain was obseniedthe
playing robots in the Humanoid League since 2002. balancing walk on a slope - a technical challenge
conducted for the first time in 2004. Tremendqus
Index Terms — Humanoid soccer, gait generation and improvement in the walking speed of the humanpid
L S S . A robots was also observed. The humanoid walk
optimization, probability distribution, evolutiongroptimization competition record the best time of 50 seconds0idd2
a far cry from the best time of 3 minutes 29 seesoind
|. INTRODUCTION 2002.
Kick Striker capability in detecting the ball andanging the
direction of kicking in response to the goal ke&per
The Humanoid League (HL) made its debut at RoboZiq? position were noted in the penalty kick competition
and has been an interesting highlight of the Rolpo€ince Diving capability of the goal keeper to save thelgg
then. The challenges in this league are differeninfother :"“h " ”‘te ;b"'g o Chdai‘rngfi ‘:efdt'x'”gtr‘?l'(reggﬁ“‘
leagues. Unlike others, the main challenge in thesthat of aisifi)g, j,esf;ndeup Zga?n aﬁicr giviﬁg Wﬁrz obidn‘x;
maintaining the dynamic stability of robots whileetrobots the first time in 2004 in the penalty kick competit
are walking, running, kicking and performing othtasks. Passing Ball passing capability was observed irbtiepassing
Furthermore, the perceptions and biped locomotidn techr_lical challenge and the demonstration of ball
humanoid soccer robots have to be coordinated anmtust f,ﬁj'e';git;etwee” two_robots by the team from Osaka
enough to deal with challenges from other play@isee HL Manipulation Whole body coordination was demonsttaby many
will be the main thrust for the Robocupperes tdilfuheir robots in their ability to stand up from a lyingvao
dream of developing a team of fully autonomous huwith position and various dancing and upper body movemen
robots that can win against the human world sochampion demonstration. . ___
Power Most the robots come equipped with internavey
team by the year 2050 [7]. supply.
2006 is the fifth year running of the HL competiti Materials The mechanical structure of the robotsne® with
Tremendous improvements were witnessed in numeroys better design, lighter body (used innovative mateite
aspects of the participating humanoid robots. Logkat the carbon alloy) and sports a more ergonomic look.

progress of HL, we could consider 2004 and 2006&dwo
critical years in the history of HL in which 2004aw/the last
year for Humanoid Walk competition and 2006 was |Hst

Before 2004, the HL competition consisted of thnea-
game disciplines [15], namely humanoid walk, pgn&itk

and free style.

In additional to the above tradiilo

competitions, technical challenges, including otdstawvalk,
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balancing-on-a-slope walk and ball passing, wenedaoted
for the first time at RoboCup 2004. Since 2005,e2sus 2
soccer game has been implemented [16]. This brosmyime
new technical challenges to HL. Table Il shows saf¢he
features of humanoid soccer robots from differgetd$ of
technology at RoboCup 2006.

TABLE Il
SOME FEATURES OFHUMANOID LEAGUE IN2006
Technology Features
Perception - Omni-vision system, e.g. Team Osaka [19], ROPE
- Two-camera system which provides both forwa
and backward views, e.g. NimbRo [17]
- Multi-sensor fusion
Walk - Omni-directional walk [17,18]
- More robust walk [18, 19]
- Footrace against four-legged Aibo robots [18]
Kick - Coordination between perception and kick
- Versatile kicking skills, e.g. backheel kick [18]
Passing - More teams able to perform in passing challenge
- Passing in 2 versus 2 game
Cooperative - Dynamic role assignment
behavior - High-level behavior control
- Humanoid soccer behaviors

To achieve the final goal of the RoboCup [7], thie \kill
need to look at the following technical challengssshown in
Table Il1.

TABLE IlI
TECHNICAL CHALLENGES FOR THEHUMANOID LEAGUE
Field of Technology Technical Challenges
Perception navigation in human environments
Intelligence task understanding
Cooperative behavior Cooperative soccer team betsvi
Communication body and natural language processing

Walk dynamic walk, jump and run

Kick kick moving ball, passing

Manipulation human-like gripping

Power 2 hours rechargeable batteries
Materials artificial muscle, softer surfaces fobots

Among the above-mentioned technical challengesifar
how to generate a dynamically stable gait for then&noid
soccer robots with consideration of various comstsais still
an important research topic in this area. In thepgs, we
propose an estimation of distribution algorithm @&Cbased
gait optimization approach to speed up searchingigh
dimensional coupling space constructed by the petion of
optimization parameters to establish a periodidtarbbiped
locomotion. Based on the maximum entropy principle,also
develop a factorized distribution algorithm (FDAjded gait
optimization method to better understand how infation are
transferred between these parameters so that werogyess
toward better understanding human locomotion aneneixthe
results to design of humanoid robots.

Il. PROBLEM FORMULATION

Key Pose 2 Key Pose 3 Key Pose 4/1
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Fig. 1. Key poses of humanoid locomotion

To simplify the biped locomotion model, four keyses are
chosen in one complete gait cycle as shown in Eighases
between these key poses are approximated by dplicdons.
Trajectories are typically parameterized as cubptine
function f (q,t) for joint anglesqOR™ . Therefore, gait

generation problem can be reduced to a generalineanl
parametric optimization problem with equality améquality
constraints as:

Minimize  f,(q) = B, f,(d) + B, f.(d) (1)
Subjectto Q,(q)
(k+D)T,,
WRETE t (@ = [ D[Py~ Pty StANAS for ZMP

t=kT,,

displacement ang ., 7"

[ ], ot

t=kT,,

thekth gait cycle.q,(q) are geometric and state constraints.
Two geometric constraints are designed as follows.
0,(q) : position limitations.

is the energy cost during

A,<p(Q =B, )
0,(q) : structure limitations.
A, £q<B, 3)

Wherep=[p,()]", A, =[A,(OI", B, =[B,()]", p(t) =
[x (1), y:(t), z (t)] denotes center position of tith link at the
tth key posej =1,2,...N,, A, (t) and B, (t) are lower limit
and upper limit ofp (t) . g=[q (t)]" stands for the joint angle
at thetth key posej=0,1,..N,- 1, t=1...,N,, N, =4 is
the number of key posesh, =[A,()]" . B, =[B,(1)]" ,

The rest of paper is organized as follows. Bipedt ga A (t) and B, (t) are lower limit and upper limit o (t) .

generation and optimization problem formulationgigen in
Section II. In Section Ill, two probability-modebkbed biped
gait optimization approaches, namely,
reviewed. The results by Robo-Erectus is showreictiSn 1V.
Concluding remarks are given in Section V.

Two more kinds of state constraints including fowed

EDA and ED& a velocity constraints are also taken into considenat

0,(qg) : During double support phase, the force on feettmu
satisfy the force constraint as shown in Equatin (



N N 4. Updating Estimate the marginal probability
;m p=fetfl +§m9 ) Pro™(¢,k) and Pro"(q,k) by the selected best
Wheref, and f, are ground reaction force at right and left points ¢ . Then updatePro(g k +1).i=1, 2, 3.
foot respectively.jj is the acceleration of thh link. 5. Go back to step 2 if stop condition is not met.
9,(a) : Since only the sumf, +f, is known during the Traditional EDA’s performance can be enhanced i

double support phase, another force constraintsggded with ~ factors[8], namely probability distribution functis and
the assumption that internal forcg in the closed loop updating rule to cope with the multi-model disttibn

S : function appeared in biped gait generation. In prgvious
?ér)ucture must be minimized. It can be expressefdamtion works [2-6], several different probability distrittan models

and updating rules have been proposed (see Tahple IV

fy =min{F(fg, f,)} (5)
WhereF is the function to calculate the internal force. TABLE IV
gs(Q) : Velocity constraint is considered to guarantee PROBABILITY DIS‘TRIBU-TIO.N MODELS AND UPDATING RULI.ES
. . . . Probability Distribution Model Updating Rule
motion smoothness with respect to mechanical liioita of [Epa cp Gaussian Function Partial replacing
the biped system. Such constraints can be simptiewras EDA_SD Spline Function Gradient descent
A; <4<B,. (6) EDA_PP Parzen Window Partial replacing
- EDA CPP Classified Parzen Window Partial replacing
—_ T —_ T ¢ f
WhereA, =[A, ()]" and B, =[B, ()] are lower and upper | EDA_PD Parzen Window Gradient descent
. . EDA _Q Discrete Sampling Q-learning
boundaries of the velocity(t) . EDA_SQ Spline Function Q-learning

More constraints can be added to achieve more ipahct

requirements for biped gaits generation and opétion.
In the following, we will show how to use splinedaRarzen

window based probability distribution functions pestively
and update probability functions with gradient eéesgcand Q-
learning rules.

I1l. PROBABILITY DISTRIBUTION MODEL BASED BIPED GAIT
OPTIMIZATION

In this section, we look at how to use estimatibdistribution

algorithms (EDA) to deal with the multi-model disution Al. EDA_S

functions appeared in biped gait generation anédnigdtion.

We will also explore how to use factorized disttibn  Different from traditional Gaussian distributionnfttion, the
algorithms (FDA) to build a gait transition modeiing to  Probability model constructed by spline functioesctibes the
better understand how information are transferretivéen  Probability of variables by a sequence of sampletpg4].
parameters so that we may progress toward better Supposingq‘j (t) is the input degree of joirt at thei"

understanding human locomotion and extend the tee$al  moment in one gait of thd' path input data, then output of this
design of humanoid robots. model Pro‘j can be calculated out by Equations (7) to (9).

A. EDA based Gait Generation and Optimization Wherei=1, ..., Ny, j=1, ..., N,.
. . . o L o GO N, @)
For biped gait generation and optimization, theik exist  Vj(t) = A—q+7

many problems while dealing with the large numbieretated
parameters. Moreover, the parameters to be optimae
interrelated as joint angles are greatly affectedtd value at
prior key pose. To speed up the searching in higtedsional . . 3 _ o
coupling space, we proposed probability estimatimsed — Proj(t)=F, ([ﬂ:ZPro'j womChnU ©) 9)
methods for biped gait generation and optimizatidine om0

general structure of the proposed approach can Heduations (7) and (8) implement local parameter matation

u;(t):¥+%—v'j ®)
q

summarized as follows. as indicated beforet. Jis the floor operator and the second
1. Initialization  Set k=1. Give a multivariate term in Equation (7) is designed to guaranig) be always
distribution modelPro(@,k) , j=1,2,...Nq. nonnegativeN,, is the number of samples in one kernel
2. Sampling GenerateN, samplesg, from Pro(g,k) function.
to form the current populatio®(k). The kernel function can be updated by

3. Selection Select theN, best pointsg from ¢ q'j (rum)(“l):qu )+ 4, (D} () - F/ (1)C/, (u ()
according to objective function values. '

Np=aN, (0<a <1).

,(r]‘+m)



Where D} (t) is the desired output of th& input. U, is

learning rates for control pointax=0...3, i=1,..., N, ,

=1, ..., N,.
4
; Proj y, (t)
Pro; ,(t) ““. 3
. y ;
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Fig. 2. Spline type kernel function.

A2. EDA Q

For EDA_Q [5], probability model of joint angles tte
first and the third key poses are simply updatedh wi
corresponding rewards while transfer probabilitytwaen
these joint angles are updated by Q-learning method

Pro,;; = Pro 4 ta ¢ Q3i, A3 ). (10)
Pro,;; = Pro; +a € @, A4 )y maxPrq— Prog (11)
Pro,; = Pro, +a ( @y A, )y maxPrg, - Pro, (12)
Pro,; = Prq, +a € @y A5 ) (13)

Whereq =[q;;,d,;,05]1, J, k=1, 2, 3;i=1,2,...Nq. Reward

r is specially designed with the same structurehas in the
objective function as shown in Equation (14).

r(qj,i 1O )= Biloca (qj,i 1Oy )+,Bgrg|oba| (qj i ) (14)

Where local rewardr .y deals with energy cost at each

actuated joint and it effects mainly on the coroegfing joint

while the global rewardryes is the integral of ZMP
displacement between two successive key posess la i
compound result functioned by all joints. These tvaots give

an all-around estimation on reward and can proyicer

feedback to Q-learning.

ﬂm(qji,qki):N{[M]‘]
o 2

kp; +kpy

giobal (qj,i 1G) =N ( I

t=kp;

[P - P2 ) dt}

A3. EDA SQ

By combining the spline based kernel function ankk&ning
updating rule together, we can formed a new opttion
approach called EDA_S_Q [6], which describes evmfuas

q(t+1)=B"YR* () (15)

Where Sq(t) defines the spline function based probability
distribution of offspring. From this distributionpopulation of
N, offspring is sampled via random selectid®® and

evaluated by the fitness operatdf. Proportional to the
fitness, a population oN, parents is selected by the selection

method B .

B. FDA based Gait Generation and Optimization

With consideration of the relationship betweenet#éht joints,
a FDA based gait generation and optimization fraotkvhas
been developed. It defines objective function Bwisfies the
Factorization Theorem by analysing the biped wakiaw.

Thereby, probability distribution functions can faetorized

into conditional and marginal probability functiomsth the

same structure as that in objective function. Sbath of these
two probability functions can be calculated in pwiynial time

and conditional distribution function is estimatby limited

gait cycles, computation in polynomial time and bglb
convergence are guaranteed in this framework. Maeo
according to the Maximum Entropy Solution Princjptae

framework can achieve the maximum entropy solutwmich

provides a strategy to understand the informatiansfer and
the cooperation relationship between these parasnete

Definition 1 (FDA Based Framework for Biped Gait
Generation and Optimization, FFGGO). The proposed
framework FFGGO generates and optimizes biped dmits
minimizing the optimization objective function iarim of

Nt
fo(dJ):ij (@)
j=1

Subjectto  Q,(P)
Preferable permutation solutions of joint angles abtained
by FDA in this framework with Gaussian type probiapi
distribution functions. It possesses following pedjes as

Minimize (16)

Proposition 1. This framework FFGGO can approximate the
probability distribution of parametar with the marginal and
united probability distributions as

pro(q) | || =2 prouDJ—ll

k

[-: prom,

17

Proposition 2. The proposed framework FFGGO is sufficient
to converge to global optima in polynomial time

O(N,N./N.), Where N, denotes the number of generations
till convergence.



Proposition 3. In the proposed framework FFGGO for bipedpermitting the main processor focus only on deosicAlso
gait generation and optimization with normal typarginal connected to the main processor, there is a naiontroller
and united distribution functions, the factorizatio responsible for collecting all the values from #ensors and
pro’ (q) = I—l “ikl proc(q, |g,) is the maximum entropy also to send the c_orrect commands to t_he actuat_besmicro-
) : controller deals with all the necessary signal ession.
solution The main processor is running Linux as a operating
system. Due to the limitations of the system thagant of the
IV. RESULTS embedded Linux is very small, but yet powerful &rmit to
take all the advantages of this operating systemsh sas
To show the effectiveness of the proposed approcs, threading, networking, so forth. Also the great atages of
applied to a simulator of the humanoid robot nanfRbpo- ~ connectivity are provided by the operating systéime main
Erectus (RE) as well as the robot itself. The &tion results ~ Processor uses wireless LAN to communicate with the
show that faster and more accurate searching carctieved —Workstation and other robots.
to generate preferable biped gait. The gait hasn bee
successfully used to drive the RE humanoid robot. e
Robo-Erectus is one of the pioneering soccer-ptayin
humanoid robots in the RoboCup Humanoid League Fige
3). The new version of Robo-Erectus as shown in #igas == o
been designed to cope with the complexity of asiogame. M

WIFI Card
2

Gyra, IR, i
Sonar, eto F

) i o i i Fig. 5. The Robo-Erectus control system..
Fig. 3. The striker of Robo Erectus kicking in aabagainst the goalie of

Team Osaka in RoboCup 2006. The dynamically stable gait generated by the psedo
approach is shown in Fig. 6. The performance corspar
between EDA_PP, EDA_SP and EDA_GP is illustrateHign

7. We also demonstrate how effect of Q-learningduse
update the probability distribution in Fig. 8. Therformance
of the proposed FDA based biped gait optimizat®ishown
in Fig. 9. The variances of entropy in given ig.FL0 to show
how the information is transferred between diff¢éjemts.

Double] Double:
Single Support 'Suppor Single Support Support

Joint1
— — Join2 |
Joint3

Jointd

n

— — Joint5 H
Joinis

Fig. 4. The new version of Robo-Erectus humanoimbts

Robo-Erectus is able to perceive different colcamd to
track them. It also contains a dedicated procetsaontrol
the behaviour of the robot, wireless communicatioth the
control PC and the teammates, and a sub-systenoriwot
sensors and actuators (see Fig. 5). The heareafothot is an .
ARM XScale processor, which is responsible for damating Tine(s)
the whole system. Connected to the main procebssoe tis a
second processor dedicated only to process thenvieput.
This co-processor improved the performance of yistesn by

Joint Angle (Radian)
a
o n

=
n

Fig. 6. Gaits generated for Robo-Erectus dynanyiedfible walk.
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Fig. 7. Performance comparison between EDA_PP, ESfAand EDA_GP.
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Fig. 8. Performance comparison between EDA_SQ &mAs with
difference updating dates.
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Fig. 10. Entropy changes during FDA-based gaiintigation

V. CONCLUDING REMARKS

In this paper, both EDA and FDA based humanoid gait
generation approaches have been developed inahevork

of probability distribution model based optimizatioThe
proposed algorithms have been successfully usegenerate
and optimize various types of basic soccer-playinganoid
gaits for our humanoid soccer robot Robo-Erectire fliture
work will be focusing on to better understand hofoimation

are transferred between joints and gait transitéaming
toward better understanding human locomotion aneneixthe
results to design of humanoid robots.
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