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 Abstract – In this paper, humanoid gait generation is 
formulated as a multi-objective optimization problem with multi-
constraint based on probability distribution models. Under this 
framework, an estimation of distribution algorithm (EDA) based 
gait optimization approach has been developed to speed up 
searching in high dimensional coupling space constructed by the 
permutation of optimization parameters to establish a periodic 
orbit in biped locomotion. To better understand how information 
are transferred between these parameters, a factorized 
distribution algorithm (FDA) based gait optimization method 
using maximum entropy solution principle has been proposed so 
that we may progress toward better understanding human 
locomotion and extend the results to design of humanoid robots.  
The proposed probability based estimation algorithms have been 
successfully used to generate and optimize various types of basic 
soccer-playing humanoid gaits for our humanoid soccer robot 
Robo-Erectus which has been one of pioneering humanoid soccer-
playing robots in the Humanoid League since 2002.  
 
 Index Terms – Humanoid soccer, gait generation and 
optimization, probability distribution, evolutionary optimization 
 

I.  INTRODUCTION 

  
The Humanoid League (HL) made its debut at RoboCup 2002 
and has been an interesting highlight of the RoboCup since 
then. The challenges in this league are different from other 
leagues. Unlike others, the main challenge in the HL is that of 
maintaining the dynamic stability of robots while the robots 
are walking, running, kicking and performing other tasks. 
Furthermore, the perceptions and biped locomotion of 
humanoid soccer robots have to be coordinated and be robust 
enough to deal with challenges from other players. The HL 
will be the main thrust for the Robocupperes to fulfil their 
dream of developing a team of fully autonomous humanoid 
robots that can win against the human world soccer champion 
team by the year 2050 [7]. 
 2006 is the fifth year running of the HL competition. 
Tremendous improvements were witnessed in numerous 
aspects of the participating humanoid robots. Looking at the 
progress of HL, we could consider 2004 and 2006 to be two 
critical years in the history of HL in which 2004 was the last 
year for Humanoid Walk competition and 2006 was the last 

year for Humanoid Penalty Kick competition. The 
achievements of HL by 2004 was summarized in Table I [9]. 
 

TABLE I 
ACHIEVEMENTS OF HUMANOID LEAGUE  BY 2004 

Technology Achievements 
Perception The introduction omni-vision system to humanoid robot 

was obvious in Team Osaka's ViSion robot. 
Coordination of perception and locomotion was 
demonstrated in the capability of some robots to 
perform various actions in response to the environment, 
be it in the humanoid walk, penalty kick and technical 
challenge competitions 

Communication Some robots come with wireless communication 
capability, either in the form of bluetooth or wireless 
LAN. Multimedia integration was also noticed in some 
robots 

Walk Ability to walk on uneven terrain was observed in the 
balancing walk on a slope - a technical challenge 
conducted for the first time in 2004. Tremendous 
improvement in the walking speed of the humanoid 
robots was also observed. The humanoid walk 
competition record the best time of 50 seconds in 2004, 
a far cry from the best time of 3 minutes 29 seconds in 
2002. 

Kick Striker capability in detecting the ball and changing the 
direction of kicking in response to the goal keeper's 
position were noted in the penalty kick competition. 
Diving capability of the goal keeper to save the goal; 
both in the ability to change the diving direction in 
response to the kicking direction of the striker and the 
ability to stand up again after diving were observed for 
the first time in 2004 in the penalty kick competition. 

Passing Ball passing capability was observed in the ball passing 
technical challenge and the demonstration of ball 
passing between two robots by the team from Osaka 
University. 

Manipulation Whole body coordination was demonstrated by many 
robots in their ability to stand up from a lying down 
position and various dancing and upper body movement 
demonstration. 

Power Most the robots come equipped with internal power 
supply. 

Materials The mechanical structure of the robots comes with 
better design, lighter body (used innovative material like 
carbon alloy) and sports a more ergonomic look. 

 
Before 2004, the HL competition consisted of three non-

game disciplines [15], namely humanoid walk, penalty kick 
and free style. In additional to the above traditional 
competitions, technical challenges, including obstacle walk, 
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balancing-on-a-slope walk and ball passing, were conducted 
for the first time at RoboCup 2004. Since 2005, 2 versus 2 
soccer game has been implemented [16]. This brought some 
new technical challenges to HL. Table II shows some of the 
features of humanoid soccer robots from different fields of 
technology at RoboCup 2006. 

 
TABLE II 

SOME FEATURES OF HUMANOID LEAGUE  IN 2006 
Technology Features 

Perception - Omni-vision system, e.g. Team Osaka [19], ROPE 
- Two-camera system which provides both forward 

and backward views, e.g. NimbRo [17] 
- Multi-sensor fusion 

Walk - Omni-directional walk [17,18] 
- More robust walk [18, 19] 
- Footrace against four-legged Aibo robots [18] 

Kick - Coordination between perception and kick  
- Versatile kicking skills, e.g. backheel kick [18] 

Passing - More teams able to perform in passing challenge  
- Passing in 2 versus 2 game 

Cooperative 
behavior  

- Dynamic role assignment 
- High-level behavior control 
- Humanoid soccer behaviors 

 
To achieve the final goal of the RoboCup [7], the HL will 

need to look at the following technical challenges as shown in 
Table III. 

TABLE III 
TECHNICAL CHALLENGES FOR THE HUMANOID LEAGUE 

Field of Technology Technical Challenges 
Perception navigation in human environments 
Intelligence task understanding 
Cooperative behavior Cooperative soccer team behaviors 
Communication body and natural language processing 
Walk dynamic walk, jump and run 
Kick kick moving ball, passing 
Manipulation human-like gripping 
Power 2 hours rechargeable batteries 
Materials artificial muscle, softer surfaces for robots 

 
Among the above-mentioned technical challenges for HL, 

how to generate a dynamically stable gait for the humanoid 
soccer robots with consideration of various constraints is still 
an important research topic in this area. In this paper, we 
propose an estimation of distribution algorithm (EDA) based 
gait optimization approach to speed up searching in high 
dimensional coupling space constructed by the permutation of 
optimization parameters to establish a periodic orbit in biped 
locomotion. Based on the maximum entropy principle, we also 
develop a factorized distribution algorithm (FDA) based gait 
optimization method to better understand how information are 
transferred between these parameters so that we may progress 
toward better understanding human locomotion and extend the 
results to design of humanoid robots.   

The rest of paper is organized as follows. Biped gait 
generation and optimization problem formulation is given in 
Section II. In Section III, two probability-model-based biped 
gait optimization approaches, namely, EDA and FDA are 
reviewed. The results by Robo-Erectus is shown in Section IV. 
Concluding remarks are given in Section V. 

II.   PROBLEM FORMULATION 

 

 
 

Fig. 1. Key poses of humanoid locomotion 

 
To simplify the biped locomotion model, four key poses are 
chosen in one complete gait cycle as shown in Fig. 1. Phases 
between these key poses are approximated by spline functions. 
Trajectories are typically parameterized as cubic spline 
function ( , )sf tq  for joint angles qN

R∈q . Therefore, gait 

generation problem can be reduced to a general nonlinear 
parametric optimization problem with equality and inequality 
constraints as: 

Minimize  ( ) ( ) ( )o d d e ef f fβ β= +q q q                         (1) 
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the kth gait cycle. ( )iΩ q  are geometric and state constraints. 

Two geometric constraints are designed as follows. 

1( )g q : position limitations. 

( )p pA p q B≤ ≤             (2) 

2( )g q : structure limitations. 

    q qA q B≤ ≤                    (3)   
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T
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tth key pose, 1,2,..., li N= , ( )
ipA t  and ( )
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and upper limit of ( )ip t . [ ( )]T
iq q t=  stands for the joint angle 

at the tth key pose, 0,1,..., 1li N= − , 1,..., kt N= , 4kN =  is 

the number of key poses, T[ ( )]
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Two more kinds of state constraints including force and 
velocity constraints are also taken into consideration.  

3( )g q : During double support phase, the force on feet must 

satisfy the force constraint as shown in Equation (4).  
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Where Rf  and Lf  are ground reaction force at right and left 

foot respectively. ipɺɺ  is the acceleration of the ith link.  

4( )g q : Since only the sum R Lf f+  is known during the 

double support phase, another force constraint is designed with 
the assumption that internal force df  in the closed loop 

structure must be minimized. It can be expressed as Equation 
(5).  

min{ ( , )}d R Lf F f f=         (5) 

Where F is the function to calculate the internal force. 

5( )g q : Velocity constraint is considered to guarantee 

motion smoothness with respect to mechanical limitations of 
the biped system. Such constraints can be simply written as 

q qA q B≤ ≤
ɺ ɺ
ɺ .          (6) 

Where [ ( )]
i

T
q qA A t=
ɺ ɺ

 and [ ( )]
i

T
q qB B t=
ɺ ɺ

are lower and upper 

boundaries of the velocity( )iq tɺ . 

More constraints can be added to achieve more practical 
requirements for biped gaits generation and optimization.  
 

III.   PROBABILITY DISTRIBUTION MODEL BASED BIPED GAIT 

OPTIMIZATION 

In this section, we look at how to use estimation of distribution 
algorithms (EDA) to deal with the multi-model distribution 
functions appeared in biped gait generation and optimization. 
We will also explore how to use factorized distribution 
algorithms (FDA) to build a gait transition model aiming to 
better understand how information are transferred between 
parameters so that we may progress toward better 
understanding human locomotion and extend the results to 
design of humanoid robots.  
 
A. EDA based Gait Generation and Optimization 
 
For biped gait generation and optimization, there still exist 
many problems while dealing with the large number of related 
parameters. Moreover, the parameters to be optimized are 
interrelated as joint angles are greatly affected by its value at 
prior key pose. To speed up the searching in high dimensional 
coupling space, we proposed probability estimation based 
methods for biped gait generation and optimization. The 
general structure of  the proposed approach can be 
summarized as follows. 

1. Initialization  Set k=1. Give a multivariate 
distribution model ( , )Pro kφ ,  j=1,2,…,Nq. 

2. Sampling Generate Ne samples eφ  from ( , )Pro kφ  

to form the current population O(k). 
3. Selection Select the Nb best points bφ  from eφ  

according to objective function values. 
Nb= sNα (0<α <1). 

4. Updating Estimate the marginal probability 
( , )m

iPro kφ  and ( , )m
iPro q k  by the selected best 

points bφ . Then update ( , 1)Pro kφ + . i=1, 2, 3. 

5. Go back to step 2 if stop condition is not met. 
 
 Traditional EDA’s performance can be enhanced with two 
factors[8], namely probability distribution functions and 
updating rule to cope with the multi-model distribution 
function appeared in biped gait generation. In our previous 
works [2-6], several different probability distribution models 
and updating rules have been proposed (see Table IV). 

 
TABLE IV 

PROBABILITY DISTRIBUTION MODELS AND UPDATING RULES 
 Probability Distribution Model Updating Rule 
EDA_GP Gaussian Function Partial replacing 
EDA_SD Spline Function Gradient descent 
EDA_PP Parzen Window Partial replacing 
EDA_CPP Classified Parzen Window Partial replacing 
EDA_PD Parzen Window Gradient descent 
EDA_Q Discrete Sampling Q-learning 
EDA_SQ Spline Function Q-learning 

 
 
In the following, we will show how to use spline and Parzen 
window based probability distribution functions respectively 
and update probability functions with gradient descent  and Q-
learning rules.  
 
A1. EDA_S 
 
Different from traditional Gaussian distribution function, the 
probability model constructed by spline functions describes the 
probability of variables by a sequence of sample points [4]. 

Supposing ( )i
jq t  is the input degree of joint j at the ith 

moment in one gait of the tth path input data, then output of this 
model i

jPro  can be calculated out by Equations (7) to (9). 

Where i=1, …, kpN ,  j=1, …, lN . 
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Equations (7) and (8) implement local parameter computation 
as indicated before.   

is the floor operator and the second 

term in Equation (7) is designed to guarantee ui
j(t) be always 

nonnegative. wN  is the number of samples in one kernel 

function. 
The kernel function can be updated by 
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Where ( )i
jD t  is the desired output of the tth input. 

qµ  is 

learning rates for control points. m=0…3, i=1,…, kpN , 

j=1, …, lN .  
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Fig. 2. Spline type kernel function. 
 

A2. EDA_Q 
 

For EDA_Q [5], probability model of joint angles at the 
first and the third key poses are simply updated with 
corresponding rewards while transfer probability between 
these joint angles are updated by Q-learning method.  

3,3, 3,3, 3, 1,Pro Pro ( ( , ))i i i ir q qα= +  (10) 

2,3, 2,3, 2, 3, 3, 2,3,Pro Pro ( ( , ) max Pro Pro )i i i i i ir q qα γ= + + −  (11) 

1,2, 1,2, 1, 2, 2,3, 1,2,Pro Pro ( ( , ) max Pro Pro )i i i i i ir q qα γ= + + −  (12) 

1,1, 1,1, 1, 2,Pro Pro ( ( , ))i i i ir q qα= +  (13) 

Where 1, 2, 3,[ , , ]i i iq q q q= ,  j, k=1, 2, 3; i=1,2,…,Nq. Reward 

r is specially designed with the same structure as that in the 
objective function as shown in Equation (14).  

, , , , , ,( , ) ( , ) ( , )j i k i f local j i k i g global j i k ir q q r q q r q qβ β= +  (14) 

Where local reward rlocal deals with energy cost at each 
actuated joint and it effects mainly on the corresponding joint 
while the global reward rglobal is the integral of ZMP 
displacement between two successive key poses. It is a 
compound result functioned by all joints. These two parts give 
an all-around estimation on reward and can provide proper 
feedback to Q-learning.  
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A3. EDA_SQ 
 
By combining the spline based kernel function and Q-learning 
updating rule together, we can formed a new optimization 
approach called EDA_S_Q [6], which describes evolution as 

   ( 1) ( )e bN Nq t B R Sq t+ = ϒ                                                    (15) 

Where ( )Sq t  defines the spline function based probability 

distribution of offspring. From this distribution a population of 

eN  offspring is sampled via random selection bNR  and 

evaluated by the fitness operator ϒ . Proportional to the 
fitness, a population of bN  parents is selected by the selection 

method eNB .  
 

B. FDA based Gait Generation and Optimization 
 

With consideration of the relationship between different joints, 
a FDA based gait generation and optimization framework has 
been developed. It defines objective function that satisfies the 
Factorization Theorem by analysing the biped walking law. 
Thereby, probability distribution functions can be factorized 
into conditional and marginal probability functions with the 
same structure as that in objective function. Since both of these 
two probability functions can be calculated in polynomial time 
and conditional distribution function is estimated by limited 
gait cycles, computation in polynomial time and global 
convergence are guaranteed in this framework. Moreover, 
according to the Maximum Entropy Solution Principle, the 
framework can achieve the maximum entropy solution, which 
provides a strategy to understand the information transfer and 
the cooperation relationship between these parameters. 

Definition 1 (FDA Based Framework for Biped Gait 
Generation and Optimization, FFGGO). The proposed 
framework FFGGO generates and optimizes biped gaits by 
minimizing the optimization objective function in form of 

Minimize  
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Subject to   ( )iΩ Φ  

Preferable permutation solutions of joint angles are obtained 
by FDA in this framework with Gaussian type probability 
distribution functions. It possesses following properties as 
 
Proposition 1. This framework FFGGO can approximate the 
probability distribution of parameter q with the marginal and 
united probability distributions as 

, 1,2
1

,2

( )
k

k

N

j ji
N

ji

prou
pro

prom

⋅ −=
−

⋅=

= ∏
∏

q .                                               (17) 

 
Proposition 2. The proposed framework FFGGO is sufficient 
to converge to global optima in polynomial time 

( )q c cO N N N , Where cN  denotes the number of generations 

till convergence. 
 



Proposition 3.  In the proposed framework FFGGO for biped 
gait generation and optimization with normal type marginal 
and united distribution functions, the factorization 

*

1
( ) ( | )k

i i

N

b ci
pro proc q q

=
= ∏q  is the maximum entropy 

solution 

IV.   RESULTS  

 
To show the effectiveness of the proposed approach, it is 
applied to a simulator of the humanoid robot namely Robo-
Erectus (RE)  as well as the robot itself. The simulation results 
show that faster and more accurate searching can be achieved 
to generate preferable biped gait. The gait has been 
successfully used to drive the RE humanoid robot. 

Robo-Erectus is one of the pioneering soccer-playing 
humanoid robots in the RoboCup Humanoid League (see Fig. 
3). The new version of Robo-Erectus as shown in Fig. 4 has 
been designed to cope with the complexity of a soccer game.  

 

 
Fig. 3. The striker of Robo Erectus kicking in a goal against the goalie of 
Team Osaka in RoboCup 2006. 

 

Fig. 4. The new version of Robo-Erectus humanoid robots. 

 

Robo-Erectus is able to perceive different colours and to 
track them. It also contains a dedicated processor to control 
the behaviour of the robot, wireless communication with the 
control PC and the teammates, and a sub-system to control 
sensors and actuators (see Fig. 5). The heart of the robot is an 
ARM XScale processor, which is responsible for coordinating 
the whole system. Connected to the main processor there is a 
second processor dedicated only to process the vision input. 
This co-processor improved the performance of the system by 

permitting the main processor focus only on decisions. Also 
connected to the main processor,  there is a micro-controller 
responsible for collecting all the values from the sensors and 
also to send the correct commands to the actuators. The micro-
controller deals with all the necessary signal conversion.  

The main processor is running Linux as a operating 
system. Due to the limitations of the system the footprint of the 
embedded Linux is very small, but yet powerful to permit to 
take all the advantages of this operating system, such as 
threading, networking, so forth. Also the great advantages of 
connectivity are provided by the operating system. The main 
processor uses wireless LAN to communicate with the 
workstation and other robots. 

 
Fig. 5. The Robo-Erectus control system.. 

 The dynamically stable gait generated by the proposed 
approach is shown in Fig. 6. The performance comparison 
between EDA_PP, EDA_SP and EDA_GP is illustrated in Fig. 
7. We also demonstrate how effect of Q-learning used to 
update the probability distribution in Fig. 8. The performance 
of the proposed FDA based biped gait optimization is shown 
in Fig. 9. The variances of entropy  in given in Fig. 10 to show 
how the information is transferred between different joints. 

 

 

 

Fig. 6. Gaits generated for Robo-Erectus dynamically-stable  walk. 



 
Fig. 7.  Performance comparison between EDA_PP, EDA_SP and EDA_GP.  

 

 
Fig. 8.  Performance comparison between EDA_SQ and EDAs with 
difference updating dates.  
 
 

 
Fig. 9.  Performance of FDA-based biped gait optimization . 

 

 

Fig. 10.  Entropy changes during FDA-based gait optimization  

 

V.  CONCLUDING REMARKS 

In this paper, both EDA and FDA based humanoid gait 
generation approaches have been developed in the framework 
of probability distribution model based optimization. The 
proposed algorithms have been successfully used to generate 
and optimize various types of basic soccer-playing humanoid 
gaits for our humanoid soccer robot Robo-Erectus. The future 
work will be focusing on to better understand how information 
are transferred between joints and gait transition aiming 
toward better understanding human locomotion and extend the 
results to design of humanoid robots.   
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