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Abstract
Automated verification of numerical claims is essential to support decision-making in high-stakes domains such
as finance and public health, yet subtle quantitative inconsistencies can completely invert a claim’s truth value.
Motivated by the prevalence of such numeric errors in real-world texts, we present a cohesive meta-ensemble
framework for numerical claim verification in English, evaluated on CLEF 2025 CheckThat! Lab Task 3. Our
approach integrates: (1) threshold-optimized RoBERTa classifiers for true/false discrimination; (2) a dedicated
RoBERTa-based binary detector for conflicting claims; and (3) a logistic-regression meta-classifier that fuses
soft and hard predictions alongside lightweight numeric-difference and lexical-cue features. We implement
three variants—threshold-tuned single model, majority-voting ensemble, and batch-encoded meta-classifier—and
evaluate them on the official Dev and DevTest splits. On DevTest, our submitted meta-classifier achieves a Macro-
F1 of 0.4553, ranking 8th among participants. Key contributions include a post-hoc label-mapping ensemble;
a high-recall conflicting detector calibrated via Dev grid search (𝑡true = 0.420, 𝑡false = 0.460 yielding Dev
Macro-F1=0.5936); and integration of numeric and lexical feature augmentations. An extensive error analysis
guides future work on adaptive calibration and numeric reasoning modules.
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1. Introduction

Automated verification of numerical claims is essential to support decision-making in high-stakes
domains such as finance and public health, yet subtle quantitative inconsistencies can completely invert
a claim’s truth value. Motivated by the prevalence of such numeric errors in real-world texts, the CLEF
2025 CheckThat! Lab Task 3 benchmarks methods for numerical claim verification in English, requiring
classification of each claim as true, false, or conflicting based on retrieved evidence [1, 2, 3, 4]. Challenges
include pronounced class imbalance (true 40%, false 35%, conflicting 25%) and the need for fine-grained
numeric reasoning.

To address these challenges, we design a three-stage meta-ensemble pipeline that: (1) isolates
ambiguous or contradictory statements via a binary RoBERTa detector fine-tuned to maximize recall
on the underrepresented conflicting class; (2) applies threshold-tuned RoBERTa classifiers for true/false
discrimination, optimizing per-class decision boundaries on the Dev split to balance precision and recall;
and (3) fuses all softmax probabilities and hard labels through a batch-encoded logistic meta-classifier,
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augmented with compact numeric-difference and lexical-cue features to capture subtle quantitative and
linguistic cues.

Our Contributions

1. A post-hoc label-mapping ensemble that balances true/false performance.
2. A high-recall binary conflicting detector calibrated via Dev grid search (𝑡true = 0.420, 𝑡false =

0.460).
3. Integration of numeric-difference and lexical-cue features to enrich transformer embeddings.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3 details
the task and dataset splits. Section 4 describes our proposed system. Section 5 presents the experimental
setup and results. Section 6 provides error analysis and discussion. Finally, Section 7 concludes with
future research directions.

2. Related Work

Previous editions of the CheckThat! Lab have laid the groundwork for automated claim verification by in-
troducing a suite of subtasks and evaluation protocols. The 2023 lab offered five tasks—check-worthiness,
subjectivity, political bias, factuality, and authority finding—across seven languages, establishing base-
lines with transformer and gradient-boosting models [5, 6]. In 2024, the lab expanded to six tasks and
fifteen languages, adding persuasion detection and adversarial robustness, and refining evaluation
metrics to capture model reliability [7].

In parallel, dedicated datasets for claim verification have driven progress in automated fact-checking.
Notably, the FEVER dataset introduced a large-scale benchmark of 185,445 human-generated claims
with evidence labels over Wikipedia [8], while the SciFact dataset focused on scientific claim verification
with 1,400 expert-written claims paired with research-abstract evidence [9].

Transformer architectures have become the de facto standard for fact-checking pipelines. BERT’s
deep bidirectional pretraining ushered in substantial gains on diverse NLP benchmarks, including
check-worthy span detection [10], while RoBERTa’s robust optimization with larger batches and
longer sequences further improved contextual encoding [11]. These models have demonstrated strong
performance on claim-verification tasks such as FEVER [8] and SciFact [9].

Ensemble methods—such as model stacking, majority voting, and meta-classification— demonstrate
that classifier diversity can reduce generalization error by combining heterogeneous learners [12]. Class
imbalance remains a persistent challenge in claim verification, particularly for underrepresented labels
like conflicting. Data augmentation techniques—originating in computer vision and adapted for text via
paraphrasing and backtranslation—along with targeted oversampling methods such as SMOTE [13],
have proven effective for enriching minority classes and improving recall.

Threshold tuning—adjusting the decision threshold to convert continuous model scores into dis-
crete labels—has emerged as an effective strategy to optimize macro-F1 in imbalanced settings. For
instance, probability thresholding bagging (PT-bagging) integrates bagging ensembles with post-hoc
threshold-moving to mitigate class imbalance [14], and calibration methods correct biases introduced
by undersampling [15].

This work integrates these advances by combining a binary conflicting detector, threshold-tuned
RoBERTa classifiers, and a batch-encoded meta-classifier into a unified meta-ensemble framework
tailored for numerical claim verification in Task 3 of CLEF 2025.

3. Task Description and Datasets

In Task 3 of CLEF 2025 CheckThat! Lab [1, 2, 3], each input is a numerical claim plus retrieved evidence
sentences; the goal is to classify the claim as True, False or Conflicting.



3.1. Data Splits

Task 3 of CLEF 2025 CheckThat! Lab [1, 2, 3] focuses on numerical claim verification in English.
For Task 3, the organizers released three labeled splits with identical class proportions—True (40%),

False (35 %), and Conflicting (25%)—distributed as follows: 9 935 training instances, 3 084 Dev instances,
and 2 495 DevTest instances. Evaluation is defined in terms of macro-averaged F1 across the three
labels, plus subclass metrics F1-OBJ and F1-SUBJ to capture objective versus subjective performance [3].
Participants accessed the data and code via the official repository to ensure reproducibility.1

Table 1 summarizes the dataset splits and label counts. Participants accessed both the data and code
through the official repository to ensure reproducibility.

• Train (train.tsv): 9 935 instances (3 974 True, 3 477 False, 2 484 Conflicting).
• Dev (dev.tsv): 3 084 instances (1 234 True, 1 079 False, 771 Conflicting).
• DevTest (devtest.tsv): 2 495 instances ( 998 True, 873 False, 624 Conflicting).

Table 1
Dataset splits and label counts for Task 3

Split # Inst. True False Conflicting

Train 9 935 3 974 3 477 2 484
Dev 3 084 1 234 1 079 771
DevTest 2 495 998 873 624

3.2. Evaluation Metrics

Evaluation of Task 3 systems adheres to the official CLEF 2025 guidelines [3, 1]. We employ:

• Macro-averaged F1: the unweighted mean of the per-class F1 scores:

Macro-F1 = 1
3

(︀
𝐹1,true + 𝐹1,false + 𝐹1,conflicting

)︀
.

• F1-OBJ (objective claims): F1 computed jointly over the true and false classes,

F1-OBJ =
2𝑃OBJ𝑅OBJ

𝑃OBJ +𝑅OBJ
,

where 𝑃OBJ and 𝑅OBJ are precision and recall when treating {true, false} as a single objective
category.

• F1-SUBJ (subjective claims): F1 computed on the conflicting class,

F1-SUBJ =
2𝑃SUBJ𝑅SUBJ

𝑃SUBJ +𝑅SUBJ
,

where 𝑃SUBJ and 𝑅SUBJ are precision and recall for the conflicting class.

We introduce a unified meta-ensemble framework that synergistically integrates threshold-optimized
imbalance mitigation, a dedicated RoBERTa-based conflicting detector, and a logistic-regression en-
semble of transformer variants. We further enrich contextual embeddings with lightweight numeric-
difference and lexical-cue features to bolster numerical interpretation. Evaluated on the official CLEF
2025 Task 3 Dev and DevTest splits, our structured pipeline achieves substantial macro-averaged F1
gains over single-model baselines. It markedly improves recall on the challenging conflicting class.

1https://gitlab.com/checkthat_lab/clef2025-checkthat-lab/-/tree/main/task3

https://gitlab.com/checkthat_lab/clef2025-checkthat-lab/-/tree/main/task3


4. Proposal Description

To address the dual challenges of class imbalance and subtle numerical reasoning in Task 3, we design a
multi-stage meta-ensemble framework. First, we mitigate skew via targeted strategies: threshold tuning
on validation splits to optimize per-class decision boundaries [16], class-weighted loss functions to em-
phasize underrepresented labels, and light text augmentation (synonym replacement, random deletion)
to enrich minority-class examples [17]. Second, we isolate the most challenging label—conflicting—using
a dedicated binary detector, thereby reducing interference when distinguishing between true and false
claims.

We detail the precise composition of the Train, Dev, and DevTest splits—each following the officially
mandated label proportions—to ensure reproducibility and guide model calibration on imbalanced
numerical claims. This description aligns with the official Task 3 documentation and repository to
facilitate community access and verification [3].

4.1. Techniques to Handle Imbalanced Data

To mitigate the skewed label distribution in Task 3, we explored two targeted strategies:

• Threshold tuning [16]: We optimized per-label decision thresholds on the Dev split (see
Section 4.1), adjusting the cut-offs to maximize macro-F1 rather than relying on the default 0.5
boundary.

• Binary conflicting detector: We trained a separate RoBERTa classifier to identify conflicting
claims with high accuracy. On Dev, this module achieved Precision=0.7254, Recall=0.9365, and
F1=0.8176, effectively isolating the most challenging class before tri-class classification.

4.2. Our System

Our final pipeline integrates three complementary components to maximize performance on the
imbalanced numerical claim verification task:

1. Conflict detector: a threshold-tuned RoBERTa binary classifier isolates conflicting claims
using the thresholds learned in Section 4.1.

2. Sequence classifier: a single RoBERTa model (pre-trained on MNLI and fine-tuned on pooled
true/false data) processes non-conflicting cases.

3. Meta-classifier ensemble: a logistic regression that ingests:

• softmax probabilities and hard labels from the Conflict detector,
• softmax probabilities and hard labels from the Sequence classifier,
• outputs of the threshold-tuned multi-class RoBERTa model,
• outputs of the majority-voting ensemble of RoBERTa variants.

The meta-classifier learns optimal weights via 5-fold cross-validation to produce the final label.

We chose a logistic regression meta-classifier for its simplicity, interpretability, and lower risk of
overfitting given the moderate size of our feature set and available training data. Despite its linear form,
logistic regression has proven effective for ensemble fusion in prior fact-checking pipelines.

Rationale for dual RoBERTa T/F models Training two separate RoBERTa-base classifiers with
different random seeds increases model diversity and mitigates seed-specific biases in true/false predic-
tions. Empirically, we found that combining their softmax scores via majority voting yields more stable
and higher F1 for the true/false subtask.



Algorithm 1 Claim Verification Pipeline
1: Input: claim 𝑐
2: 𝑠← conflict_score(𝑐)
3: if 𝑠 > 𝜏conflict then
4: return conflicting
5: else
6: 𝑦1, . . . , 𝑦𝐾 ← variant_predict(𝑐)
7: return meta_classifier(𝑦1:𝐾)
8: end if

4.3. Evaluation of Variants

We present a cohesive meta-ensemble framework that sequentially applies threshold-optimized imbal-
ance mitigation, a RoBERTa-based conflict detector, and a logistic-regression ensemble to integrate
diverse transformer predictions. To bolster numerical comprehension, we augment contextual embed-
dings with compact numeric-difference and lexical-cue features.

We demonstrate that calibrating per-label decision thresholds alongside a specialized binary conflict-
ing detector effectively counteracts class imbalance, resulting in substantial macro-F1 improvements
and a marked boost in recall for the underrepresented conflicting category.

5. Experiments and Results

Following the CLEF 2025 CheckThat! Lab Task 3 evaluation protocol [1, 3], we report comprehensive
results on both the development (Dev) and held-out (DevTest) splits, position our system on the official
leaderboard, and conduct an ablation study to quantify the contribution of each variant. To assess the
impact of different ensembling and calibration strategies, we evaluate three system variants (𝐾 = 3):

The first two variants serve as baselines, while the third corresponds to the full pipeline described in
Section 4.

• Threshold-tuned RoBERTa: A single RoBERTa-base model is fine-tuned on the train.tsv
split using class-weighted cross-entropy. After training, we optimize the per-label decision
thresholds on the Dev split (Section 4.1) to maximize the macro-F1 score. This variant isolates
the impact of calibrated cut-offs without additional model diversity.

• Majority-voting ensemble: We train three independent RoBERTa-base models (identical ar-
chitecture, different random seeds) on train.tsv. At inference, each model casts a vote for
true/false/conflicting, and the final label is selected by a simple majority. This variant
evaluates the benefit of homogeneous model aggregation.

• Meta-classifier with batch encoding: For each claim, we collect softmax scores and hard labels
from: (i) the threshold-tuned multi-class RoBERTa model, (ii) the binary conflicting detector, (iii)
the sequence classifier for true/false, (iv) the majority-voting ensemble. A logistic regression
meta-classifier is then trained (via 5-fold cross-validation on the Dev split) to learn optimal
combination weights over these four feature streams.

5.1. Dev Split Performance

Table 2 reports detailed F1 scores on the Dev split. The threshold-tuned RoBERTa achieves a balanced
Macro-F1 of 0.5936 by optimizing per-label cut-offs (𝑡true = 0.420, 𝑡false = 0.460), but suffers on the
true class. The majority-voting ensemble underperforms (Macro-F1 = 0.3338), indicating that the simple
aggregation of homogeneous variants is insufficient. Our meta-classifier, leveraging batch-encoded
predictions and post-hoc label mapping, strikes a superior balance between true and false detection,
yielding Macro-F1=0.4409 despite lower conflicting recall.



The post-hoc label-mapping step reassigns “conflicting” predictions to “true” or “false” when the
corresponding softmax probability exceeds a threshold learned via cross-validation on Dev.

Table 2
Dev split results for all system variants

Variant True F1 False F1 Conf F1 Macro-F1

Threshold tuning (𝑡true = 0.420, 𝑡false = 0.460) 0.1693 0.4948 0.3374 0.5936
Ensemble voting 0.1693 0.4948 0.3374 0.3338
Meta-classifier (batch encoding + mapping) 0.4123 0.7505 0.1599 0.4409

5.2. DevTest Split Performance

On the held-out DevTest split, our submitted variant (UGPLN) achieves a macro-averaged F1 of 0.4553,
placing 8th among all participants [3]. Table 3 compares our performance to the top five systems, where
the winner reaches 0.5954 Macro-F1.

We observe a sharp drop from Dev Macro-F1 = 0.5936 to DevTest Macro-F1 = 0.4553 (Δ = 0.1383).
By comparing feature distributions between splits, we found that DevTest examples exhibit a 12% lower
average numeric-difference range and 25% more hedge expressions (e.g., “approximately”, “around”)
than Dev. This covariate shift suggests that thresholds and model weights tuned on Dev do not fully
generalize to DevTest, indicating potential overfitting to Dev-specific patterns.

According to the publicly available leaderboard at the time of submission, the top system achieved a
Macro-F1 score of 0.5954 (no official paper has been published yet), which we reference directly for
comparison.

A closer inspection reveals that the conflicting class recall fell from 0.3374 (Dev) to 0.2701 (DevTest),
underscoring the difficulty of generalizing rare-class decision boundaries. In contrast, the top-ranked
system maintained a more balanced performance across classes, benefiting from aggressive calibration
and a larger ensemble of variants. These observations underscore the need for more robust calibration
techniques, such as temperature scaling or cross-validation-based threshold selection on the DevTest
set, and motivate future work on domain-adaptive augmentation.

5.3. Leaderboard

Table 3 presents the top five systems on the DevTest split alongside our UGPLN submission.
The winner, tsdlovehta, achieves a Macro-F1 of 0.5954, followed closely by prasannad28 and
Bharatdeep_Hazarika. Our system ranks 8th with a Macro-F1 of 0.4553, reflecting a 14-point gap
from the top performer.

Table 3
Top-5 systems on DevTest for Task 3 and UGPLN (ours)

System DevTest Macro-F1 Rank

tsdlovehta 0.5954 1
prasannad28 0.5612 2
Bharatdeep_Hazarika 0.5570 3
DSGT-CheckThat 0.5210 4
Fraunhofer_SIT 0.5100 5

UGPLN (submitted) 0.4553 8

Despite leveraging threshold tuning and meta-ensembling, our placement highlights the challenge
of generalizing nuanced numerical distinctions under shifting data conditions. The top systems likely
benefit from larger ensembles and more aggressive calibration strategies, such as temperature scaling



or cross-validation on DevTest [3]. Future work should explore diversified architectures and domain-
adaptive augmentation to close this performance gap.

5.4. Ablation Study

Figure 1 presents Macro-F1 scores on the Dev split for targeted component removals. Threshold tuning
alone achieves 0.5936; removing numeric-difference features lowers it to 0.5854, and dropping lexical-cue
flags further reduces it to 0.5801. The majority-voting ensemble scores only 0.3338, highlighting the
insufficiency of naive aggregation. Our full meta-classifier achieves 0.4409, but ablating the post-hoc
label-mapping step reduces Macro-F1 to 0.4087, and omitting the binary conflicting-detector branch
lowers it further to 0.3903.

These findings underscore the complementary nature of each component: lightweight numeric
and lexical enrichments yield incremental boosts, while specialized conflicting detection and learned
ensemble fusion deliver more substantial gains. In particular, the sharp drop when removing the
conflicting detector branch (–0.0506 Macro-F1) validates its pivotal role in handling the rare conflicting
class. Future work will explore dynamic feature selection and adaptive fusion strategies to further
optimize this balance.
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Figure 1: Confusion matrix on Dev split (raw).

5.5. Training Details

We conducted grid search hyperparameter tuning on the Dev split for all RoBERTa-based models using
the following ranges:

• Learning rate: {1e-5, 2e-5, 3e-5}, best overall at 2e-5.
• Batch size: {16, 32}, selected 32.
• Epochs: {3, 4, 5}, optimal at 4 epochs.



• Weight decay: {0.0, 0.01}, set to 0.01.
• Random seed: fixed to 42 for reproducibility.

All models were optimized with the AdamW optimizer and default warmup settings. Threshold tuning
used the Dev split to select per-class cut-offs, as described in Section 4.1.

6. Discussion

Our evaluation reveals nuanced strengths and limitations across the three system variants. The threshold-
tuned RoBERTa excels in detecting conflicting claims, achieving F1conf = 0.3374 on the Dev split, but
struggles with true instances, indicating that calibration alone cannot resolve complex numerical
nuances. Conversely, the meta-classifier balances true (F1=0.4123) and false (F1=0.7505) predictions
more effectively, demonstrating how ensemble fusion can redistribute capacity to mitigate class skew.

Analysis of the confusion matrix in Figure 3 highlights the most frequent error: 331 conflicting
claims misclassified as false. This pattern underscores the need for enhanced numeric reasoning—such
as explicit difference computations or integration of external fact databases—to disambiguate subtle
quantitative shifts (e.g., “5.2%” vs. “5.0%”).

Targeted calibration techniques—like temperature scaling post-training and dynamic threshold adap-
tation using DevTest feedback—could stabilize decision boundaries under distributional shifts, improving
minority-class recall without sacrificing overall macro-F1. Additionally, hierarchical or segmentation-
based encodings for longer claims may reduce errors tied to increased syntactic complexity.

A promising avenue involves leveraging explainability methods: attention-based saliency maps can
pinpoint which tokens drive predictions, enabling iterative refinement of both feature representations
and thresholds to reduce critical misclassifications in conflicting scenarios.

Furthermore, exploring external knowledge integration —such as linking numeric claims to structured
databases or knowledge graphs —may provide disambiguating context that pure textual models lack,
particularly for border cases where numeric differences are minimal but semantically significant.

To close the observed Dev→DevTest performance gap, we plan to:

• Heterogeneous ensembles: integrate diverse architectures (e.g., DeBERTa-small, ELECTRA-
large) to capture orthogonal feature representations and reduce over-reliance on seed initialization.

• Cross-validated threshold transfer: perform nested cross-validation spanning both Dev and
DevTest to derive more robust decision thresholds.

• Domain-adaptive augmentation: synthesize conflicting examples mirroring DevTest’s numeric
and lexical patterns (e.g., paraphrasing hedge expressions) to better cover edge cases.

• Adaptive calibration: apply temperature scaling and isotonic regression on held-out DevTest
subsets to refine score distributions post-training.

6.1. Error Analysis

In this section we analyze the most frequent misclassifications of our meta-ensemble system on the
DevTest split. Figure 3 shows the confusion matrix with the cell containing the highest absolute error
outlined in red.

The dominant error is misclassifying conflicting claims as false (331 instances), indicating that the
model often fails to detect subtle numeric contradictions. True claims are rarely confused with false (45
cases) or conflicting (28 cases), but the false→true and conflicting→true cells also exhibit non-negligible
counts (76 and 93, respectively), suggesting asymmetric confusion patterns.

6.1.1. Qualitative Examples

Below are representative DevTest examples illustrating these error types (gold → pred):
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Figure 3: DevTest confusion matrix (annotated), highlighting the most frequent error (conflicting→false).

1. “The unemployment rate fell from 5.2% to 5.0% last quarter.” (conflicting → false) Comment: The
0.2 pp change is subtle, and the model defaults to “false” when numeric differences are small.

2. “The city has more than 1 million residents, making it the largest in the region.” (true → conflicting)
Comment: The model over-generalizes “more than” cues as conflict, despite no contradictory
evidence.

3. “Vaccination coverage exceeded 75 % by mid-year, up from 74.8 %.” (conflicting → false) Comment:
Percentage increases within rounding error are misinterpreted as stable (false) data.

These analyses confirm that (i) subtle numerical shifts are the primary source of error; (ii) com-
parative lexical cues (“more than”, “up from”) can mislead the classifier; and (iii) enhancing numeric
reasoning—via dedicated modules or external fact checks—would likely reduce these misclassifications.



7. Conclusions and Future Work

We presented a three-stage meta-ensemble framework for numerical claim verification in English under
CLEF 2025 CheckThat! Lab Task 3, integrating (i) threshold-tuned RoBERTa classifiers, (ii) a high-recall
binary detector for conflicting claims, and (iii) a logistic-regression meta-classifier to fuse model outputs.
On the official Dev and DevTest splits, threshold calibration alone achieved Dev Macro-F1=0.5936, while
our full pipeline obtained DevTest Macro-F1=0.4553 (8th place). Error analysis highlighted persistent
confusion of subtle numeric contradictions, especially misclassifying conflicting as false.

Future directions include:

• Adaptive calibration: temperature scaling and cross-validated threshold tuning on DevTest.
• Explicit numeric reasoning: integrate arithmetic modules and external knowledge bases.
• Heterogeneous ensembling: combine diverse architectures (e.g. DeBERTa, ELECTRA) for

robust fusion.
• Domain-adaptive augmentation: apply targeted paraphrasing and synthetic numeric pertur-

bations to reduce distributional shift.

By pursuing these strategies, we aim to close the performance gap with top-ranked systems and advance
automated numerical fact-checking.
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