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Abstract
The rise of sexist discourse on social media platforms, especially Twitter, has become a pressing societal  
concern,  necessitating  the  development  of  automated  detection  systems.  In  this  study,  we  present  a 
comprehensive approach to detecting sexist content in Spanish tweets as part of the EXIST 2025 shared task 
at CLEF. Leveraging the multilingual T5 (mT5) model for contextual embeddings, our system integrates a 
variety of machine learning and deep learning classifiers, including traditional machine learning approaches 
(Logistic  Regression and SVM) and neural  networks (RNN, GRU,  and hybrid  FNN+GRU).  To enhance 
classification accuracy, we apply extensive preprocessing, feature normalization, dimensionality reduction 
via PCA, and data balancing techniques such as SMOTE and class weighting. Our experiments show that  
while simpler models like Logistic Regression achieve strong performance,  ensemble strategies further 
improve robustness. The results underscore the value of combining transformer-based embeddings with 
classical and neural classifiers to address the nuanced challenge of online sexism detection.
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1. Introduction
The  rapid  proliferation  of  social  media  platforms  has  transformed  the  way  individuals 

communicate and express opinions. However, this digital revolution has also given rise to significant 
challenges, particularly in the form of online abuse and discrimination. Among these, sexist content 
ranging from explicit  harassment to subtle gender-based bias has become alarmingly prevalent, 
especially on platforms like Twitter. The automatic detection of such harmful language is thus a  
crucial task in the broader effort to foster safer and more inclusive online environments.

Traditional natural language processing (NLP) techniques have struggled to accurately identify 
sexism due to its nuanced and context-dependent nature. Modern approaches, however, increasingly 
rely on machine learning (ML) and deep learning (DL) methods that can capture more complex 
linguistic patterns. In particular, transformer-based models such as mT5, which leverage large-scale 
pretraining and contextual embeddings, have demonstrated significant advances in understanding 
and processing human language. This study aims to develop an effective sexism detection system by 
combining state-of the-art transformer models with traditional ML/DL classifiers, enhanced through 
robust preprocessing, feature extraction, and handling of class imbalance. 

By applying this hybrid approach to social media data, we seek not only to improve detection 
accuracy but also to gain deeper insights into the linguisticcharacteristics of sexist discourse online.

With the exponential rise of social media platforms, especially Twitter, sexist discourse has found 
new ways to spread rapidly and widely. Whether explicit or implicit,  such content significantly 
impacts gender perception and reinforces stereotypes and online abuse.

CLEF 2025 Working Notes, 9 – 12 September 2025, Madrid, Spain
*Corresponding author.
benamorghada@isgs.u-sousse.tn (G. B. Amor); medimaghnaoures@isgs.u-sousse.tn (N. Medimagh); 
benchaabensaoussen@isgs.u-sousse.tn (S. B. Chaabene); omar.trigui@isgs.u-sousse.tn (O. Trigui)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Automatically detecting this type of language has thus become a critical task. However, it remains 
particularly challenging due to the subjective nature of language, cultural and linguistic diversity, and 
the often-subtle manifestations of sexism. Additionally, the class imbalance in the dataset where 
sexist tweets are fewer than non-sexist ones further complicate the development of effective machine 
learning systems. The central research question of this study is: How can we develop a reliable, 
robust,  and  multilingual  system for  the  automatic  detection  of  sexist  content  on  social  media 
particularly Spanish-language tweets while ensuring both interpretability and generalization?

The main objective of this study is to design and implement an automatic sexism detection system 
for tweets, as part of the EXIST 2025 shared task at the CLEF campaign. To achieve this, we rely on:
• Contextual text representations generated using the mT5 multilingual transformer model.
• A combination of traditional machine learning models (such as Logistic Regression and SVM) 

and deep learning architectures (such as RNN, GRU, FNN, and hybrid models).
• Rigorous text preprocessing techniques to ensure the linguistic consistency and quality of the 

dataset.
• Techniques for dimensionality reduction (PCA), data balancing (SMOTE, class weighting), 

and robust evaluation (F1-score, confusion matrices, accuracy, precision, macro avg, weighted avg,  
support).

2. Related Work
The automatic detection of online sexism has become a growing area of research within Natural 

Language Processing, particularly due to the proliferation of gender-based hate speech on social 
media platforms. Since the launch of the EXIST shared task in 2021, the community has developed 
diverse methodologies for handling the binary and fine-grained classification of sexist content in 
multiple  languages.  Early  approaches  to  sexism detection primarily  relied  on classical  machine 
learning algorithms such as logistic regression, support vector machines [SVMs], and random forests 
using  hand-crafted  features  like  TF-IDF  [1].  Although  these  models  provided  lightweight  and 
interpretable  solutions,  their  performance  often  lagged  behind  neural  approaches,  especially  in 
capturing  implicit  and  contextual  sexism.  The  widespread  adoption  of  transformer-based 
architectures, such as BERT, mBERT, and XLMRoBERTa, has significantly improved the performance 
of sexism detection systems [2]. These models leverage contextual embeddings to better understand 
the subtle and nuanced nature of online discourse. Khan et al. [3] addressed multilingual sexism 
detection by leveraging transformer models like XLM-RoBERTa and mBERT. They proposed an 
ensemble approach combining multiple fine-tuned models to identify explicit and implicit sexism in 
both English and Spanish texts, achieving excellent performance in the EXIST 2024 shared task. The 
SemEval-2023 Task 10 further expanded the classification framework by introducing a hierarchical 
taxonomy of sexism, distinguishing between threats, stereotypes, and derogatory remarks. These 
systems  often  combine  fine-tuned  transformer  models  (e.g.,  DeBERTa-v3,  TwHIN-BERT)  with 
auxiliary  techniques  like  multi-label  learning  and  contextual  data  augmentation  [4].  Hybrid 
approaches have also been proposed to integrate textual and non-textual signals. A notable example is 
the use of  ByT5 a byte-level  multilingual  transformer combined with TabNet for incorporating 
structured metadata such as platform, language, and readability [5]. While promising, such systems 
remain computationally expensive and require extensive fine-tuning to outperform simpler baselines. 
Finally, Azadi et al, tackled bilingual sexism detection using fine-tuned XLM-RoBERTa and GPT-3.5 
few-shot learning. Their approach showed high performance in English and Spanish, demonstrating 
the effectiveness of both fine-tuning and prompt-based methods for identifying sexism with minimal 
annotated data [6].
3. Methodology
3.1. Dataset Description: EXIST 2025 Tweets Dataset
As part of our research on automatic sexism detection in social media content, we utilized the EXIST 
2025 Tweets Dataset, released by the organizers of the CLEF 2025 conference under the shared task 



entitled  Explainable  Detection of  Sexism in  Social  Networks.  This  multilingual  dataset  focuses 
primarily on tweets written in Spanish and English, with the goal of enabling the development of 
explainable AI models capable of identifying and classifying sexist content. The dataset is organized 
into three main subdirectories.

3.2. Text Preprocessing
The preprocessing phase was essential to ensure the quality and linguistic consistency of the dataset 
prior to model training. Since the EXIST 2025 dataset contains multilingual content, including both 
English and Spanish tweets, we applied a language filtering step to retain only tweets written in 
Spanish, in line with the objectives of our study. To prepare the text data, we first performed a 
normalization process that involved the removal of irrelevant textual elements such as hyperlinks,  
user mentions,  and hashtags.  This was followed by the conversion of emojis  into their  textual 
representations  to  preserve  semantic  information,  which  were  subsequently  cleaned  to  avoid 
introducing noise. Next, we eliminated all special characters and non-alphanumeric symbols, except 
for characters specific to the Spanish language, such as accented vowels and the letters ñ and ü. This 
step helped maintain the integrity of Spanish orthography while reducing unnecessary variability in 
the data. We also removed common Spanish stopwords to reduce redundancy and focus on the most 
informative components of the tweets. Finally, any tweets that could not be reliably identified as  
Spanish or became empty after preprocessing were excluded from the dataset. This cleaning process 
resulted in a more homogeneous and relevant dataset, optimized for the detection of sexist content in 
Spanish-language tweets.

3.3. Libraries and Tools
This study employed a range of Python libraries to handle data preprocessing, feature extraction, 
model training, and evaluation for sexism detection in tweets.

• Emoji
The emoji library was used to process emojis, which are common in social media texts and can 
carry semantic or emotional information [7].  Emojis were either removed or analyzed as 
features, as certain emojis may correlate with sexist language.

• CatBoost, LightGBM, and XGBoost
These gradient boosting libraries were used to train classification models  [8].  CatBoost is 
particularly  efficient  with  categorical  features,  while  LightGBM  and  XGBoost  offer  fast, 
scalable implementations. All were evaluated for their performance in binary classification and 
feature importance analysis.

• Transformers (mT5)
The transformers library from Hugging Face provided access to the pre-trained mT5 model, 
which was used to generate contextualized text embeddings [5]. These embeddings capture 
deep semantic meaning and are well-suited for nuanced NLP tasks like sexism detection.

• Scikit-learn (sklearn)
Used for essential machine learning tasks including data splitting, preprocessing, baseline 
modeling, and evaluation through metrics such as accuracy and F1-score [9].

• TensorFlow, PyTorch, and SciKeras
These libraries supported the development and evaluation of deep learning models. SciKeras 
enables integration of Keras models within scikit-learn pipelines, combining deep learning 
with traditional ML workflows [10].

• Nltk



Provided basic NLP functions such as tokenization, stop word removal, and lemmatization to 
prepare tweets for modeling [11].

• Langdetect
Automatically identified the language of each tweet, ensuring that only Spanish language 
content was processed [12].

• Imbalanced-learn (imblearn)
Addressed class imbalance using techniques such as SMOTE to improve the model’s ability to 
detect minority (sexist) classes [13].

• Matplotlib and seaborn
These visualization libraries were used for exploratory data analysis and to graphically present 
classification results and feature distributions [14].

3.4. Applied Techniques

• Text Embedding Using mT5 Encoder
We used the multilingual T5 (mT5) model from Google to generate contextual embeddings of 
the tweets. The model extracts dense vector representations from the text using the encoder  
part of mT5, allowing the input data to be transformed into meaningful numerical features 
suitable  for  machine  learning  models.  Each  embedding  corresponds  to  a  sentence-level 
representation averaged over the token dimension.

• Feature Normalization
Before dimensionality reduction, the extracted embeddings were normalized using z-score 
normalization (Standard scaling). This technique ensures that each feature has a mean of zero 
and a standard deviation of one, which is essential for models sensitive to scale, such as PCA.

• Dimensionality Reduction Using Principal Component Analysis (PCA)
PCA was applied to reduce the dimensionality of the embedding vectors from their original size 
(e.g. 768 dimensions for mt5-base) to 50 principal components. This reduces computational 
Front matter complexity,  alleviates noise,  and allows for better visualization and training 
efficiency without significant loss of information.

• Label Encoding
Categorical labels (e.g., "sexist", "non-sexist") were converted into numeric format using label 
encoding. This step is necessary for machine learning models that require numerical input for 
training.

• Data Balancing Using SMOTE
The Synthetic Minority Over-sampling Technique (SMOTE) was applied to the training data to 
address class imbalance. It generates synthetic examples of the minority class by interpolating 
between existing minority class samples, improving model generalization and reducing bias 
toward the majority class.

• Class Weighting
In addition to SMOTE, class weighting was used to handle imbalance by assigning higher 
weights to the minority class during model training. This encourages the classifier to pay more 



attention to underrepresented samples, improving performance on the minority class without 
altering the dataset itself.

• Cosine Similarity Analysis
A cosine similarity matrix was generated using the final training embeddings. This matrix 
measures  the  pairwise  similarity  between  tweets  in  the  embedding  space,  useful  for 
exploratory data analysis or understanding the semantic relationships between samples.

• Classification Models
To perform the classification task, a diverse set of models was trained and evaluated. Among 
the traditional machine learning models, we employed Logistic Regression, Support Vector 
Machines  (SVM),  Random  Forest,  Naive  Bayes,  k-Nearest  Neighbors  (KNN),  LightGBM, 
XGBoost, and CatBoost. These models were trained using PCA reduced embeddings, and class 
weights were applied to address the imbalance in the dataset. In addition to these, neural 
network architectures were also explored. We implemented Feedforward Neural Networks 
(FNN), which consist of multiple dense layers with dropout regularization, as well as recurrent 
models such as RNNs and GRUs, capable of capturing sequential dependencies in the input  
data. Furthermore, we tested hybrid architectures combining FNN with GRU and RNN with 
GRU to assess potential synergies between feedforward and recurrent mechanisms.

• Evaluation Metrics and Confusion Matrices
Models were evaluated using standard classification metrics: accuracy, precision, recall, and 
F1-score. Confusion matrices were visualized to better understand each model’s performance 
on the validation set.

• Ensemble Prediction with Fallback Mechanism
Final predictions on the test set were made using a majority voting strategy across all trained  
models. In case all predictions failed for a sample, a fallback to a subset of more robust models 
was  applied.  This  ensemble  approach improves robustness  and leverages  the diversity of 
models.

4. Experiments and Results
4.1. Logistic Regression
Logistic Regression achieved the highest performance among all models, with an accuracy of 0.618, 
precision of 0.619, recall of 0.618, and F1-score of 0.617. The confusion matrix shows that the model  
correctly predicted 176 "NO" instances and 152 "YES" instances, while misclassifying 89 "NO" and 114 
"YES" cases. The balanced precision and recall values indicate that the model generalizes well without 
significant bias toward either class. This suggests that Logistic Regression is robust for this dataset,  
likely due to its ability to handle linear decision boundaries effectively.



Figure 1: Confusion matrix for Logistic Regression

Figure1 illustrates  the  confusion  matrix  for  Logistic  Regression,  while  Table  1  presents  the 
corresponding classification report.

Table 1
Classification report for Logistic Regression

Class Precision Recall F1-score Support
NO 0.61 0.66 0.63 265
YES 0.63 0.57 0.60 266

Accuracy – – 0.62 531
Macro avg 0.62 0.62 0.62 531

Weighted avg 0.62 0.62 0.62 531
4.2. SVM
The SVM model achieved an accuracy of 0.595 and an F1-score of 0.594. While the performance is 
comparable to other models, it does not stand out. The similar precision and recall values indicate  
balanced classification, but the overall metrics suggest that the kernel or parameters used may not be 
optimal for this dataset. Experimentation with different kernels or regularization parameters could 
yield better results.

Figure 2: Confusion matrix for SVM



Figure  2  illustrates  the  confusion  matrix  for  SVM,  while  Table  2  presents  the  corresponding 
classification report.

Table 2
Classification report for SVM

4.3. Naive Bayes
Naive Bayes achieved an accuracy of 0.595 and an F1-score of 0.589. The precision for "YES" (0.602) is 
higher  than  for  "NO"  (0.596),  but  the  recall  values  are  balanced.  The  model’s  simplicity  and 
assumptions of feature independence may limit its performance, especially if the data violates these 
assumptions. Despite this, it performs comparably to more complex models like SVM.

Figure 3: Confusion matrix for Naive Bayes

Figure 3 illustrates the confusion matrix for Naive Bayes, while Table 3 presents the corresponding  
classification report.

Table 3
 Classification report for Naive Bayes

Class Precision Recall F1-score Support
NO 0.58 0.72 0.63 265
YES 0.63 0.47 0.60 266

Accuracy – – 0.55 531
Macro avg 0.60 0.60 0.60 531

Weighted avg 0.60 0.60 0.59 531

Class Precision Recall F1-score Support
NO 0.58 0.66 0.62 265
YES 0.61 0.53 0.57 266

Accuracy – – 0.62 531
Macro avg 0.60 0.60 0.59 531

Weighted avg 0.60 0.60 0.59 531



4.4. Random Forest
Random Forest performed poorly, with an accuracy of 0.571 and an F1-score of 0.571. The low metrics 
suggest that the ensemble approach did not generalize well for this dataset. This could be due to  
overfitting  or  suboptimal  hyperparameters.  Techniques  like  feature  selection  or  increasing  the 
number of trees might enhance results.

Figure 4: Confusion matrix for Random Forest

Figure 4 illustrates the confusion matrix for Random Forest, while Table 4 presents the corresponding 
classification report.

Table 4
 Classification report for RandomForest

Class Precision Recall F1-score Support
NO 0.57 0.57 0.57 265
YES 0.57 0.58 0.57 266

Accuracy – – 0.57 531
Macro avg 0.57 0.57 0.57 531

Weighted avg 0.57 0.57 0.57 531

4.5. LightGBM
LightGBM showed modest performance, with an accuracy of 0.569 and an F1-score of 0.569. The 
confusion matrix reveals 149 correct "NO" and 153 correct "YES" predictions, with balanced precision 
and recall. While the results are not outstanding, LightGBM’s efficiency and scalability make it a  
viable option for larger datasets.



Figure 5: Confusion matrix for LightGBM

Figure 5 illustrates the confusion matrix for LightGBM, while Table 5 presents the corresponding 
classification report.

Table 5
 Classification report for LightGBM

Class Precision Recall F1-score Support
NO 0.57 0.56 0.57 265
YES 0.57 0.58 0.57 266

Accuracy – – 0.57 531
Macro avg 0.57 0.57 0.57 531

Weighted avg 0.57 0.57 0.57 531



4.6. MLP
The MLP model underperformed, with an accuracy of 0.561 and an F1-score of 0.559. The low metrics 
suggest that the neural network architecture or training process may need optimization, such as 
adjusting layers, activation functions, or learning rates.

Figure 6: Confusion matrix for MLP

Figure  6  illustrates  the  confusion  matrix  for  MLP,  while  Table  6  presents  the  corresponding 
classification report.

Table 6
 Classification report for MLP

Class Precision Recall F1-score Support
NO 0.57 0.56 0.57 265
YES 0.57 0.58 0.57 266

Accuracy – – 0.57 531
Macro avg 0.57 0.57 0.57 531

Weighted avg 0.57 0.57 0.57 531

4.7. KNN
KNN  performed  the worst,  with  an 
accuracy of 0.55 and an F1-score of 0.60. 
The confusion matrix shows  128  correct 
"NO" and 156 correct "YES"  predictions, 
with  high misclassifications. 
The  low  recall  for "NO"  (0.72) 
indicates  poor sensitivity  to  this 
class.  This  could  be due to the choice of 
k or distance metric, which may not align 
well  with  the  data distribution.



Figure 7: Confusion matrix for KNN

Figure 7 illustrates the confusion matrix for Naive Bayes, while Table 7 presents the corresponding 
classification report.

Table 7
 Classification report for KNN

Class Precision Recall F1-score Support
NO 0.54 0.48 0.51 265
YES 0.53 0.59 0.56 266

Accuracy – – 0.53 531
Macro avg 0.54 0.53 0.53 531

Weighted avg 0.54 0.53 0.53 531
4.8. CatBoost
CatBoost yielded an accuracy of 0.584 and an F1-score of 0.583. The confusion matrix shows 147 
correct "NO" and 163 correct "YES" predictions, with moderate misclassifications. The recall for "YES" 
(0.61) is higher than for "NO" (0.55), indicating a slight bias toward the "YES" class. Hyperparameter 
tuning or addressing class imbalance might improve its performance.

Figure 8: Confusion matrix for CatBoost
Figure 8 illustrates the confusion matrix for Naive Bayes, while Table 8 presents the corresponding  
classification report.

Table 8
 Classification report for CatBoost

Class Precision Recall F1-score Support
NO 0.59 0.55 0.57 265



YES 0.58 0.61 0.60 266
Accuracy – – 0.58 531
Macro avg 0.58 0.58 0.58 531

Weighted avg 0.58 0.58 0.58 531
4.9. XGBoost
XGBoost achieved an accuracy of 0.540 and an F1-score of 0.540, the second-lowest among all models. 
The results suggest that the default parameters or training setup were ineffective. Parameter tuning 
or feature engineering might be necessary to leverage XGBoost’s potential.

Figure 9: Confusion matrix for XGBoost

Figure 9 illustrates the confusion matrix for XGBoost, while Table 9 presents the corresponding 
classification report.

Table 9
 Classification report for XGBoost

Class Precision Recall F1-score Support
NO 0.54 0.54 0.54 265
YES 0.54 0.54 0.54 266

Accuracy – – 0.54 531
Macro avg 0.54 0.54 0.54 531

Weighted avg 0.54 0.54 0.54 531

4.10. RNN
The  RNN  model achieved  moderate 
performance,  with  an accuracy of 0.597 and F1-
score  of  0.597.  The precision  and  recall 
values  are  nearly identical,  indicating 
balanced  performance across classes. However, 
the  results  are  slightly lower  than  Logistic 
Regression,  which  may imply that the sequential 
nature of the data does not significantly enhance 
predictions for this task. Further  hyperparameter 
tuning  or  feature engineering  might 
improve  its performance.



Figure 10: Confusion matrix for RNN

Figure 10 illustrates  the confusion matrix  for  RNN,  while  Table  10 presents  the corresponding 
classification report.

Table 10
 Classification report for RNN

Class Precision Recall F1-score Support
NO 0.59 0.62 0.61 265
YES 0.60 0.57 0.59 266

Accuracy – – 0.60 531
Macro avg 0.60 0.60 0.60 531

Weighted avg 0.60 0.60 0.60 531

4.11. FNN
The FNN model showed competitive results, with an accuracy of 0.599 and an F1-score of 0.596. The 
confusion matrix reveals 137 correct "NO" predictions and 181 correct "YES" predictions, but with 
higher misclassifications (128 and 85, respectively). The recall for "YES" (0.68) is notably higher than 
for "NO" (0.52), suggesting the model is more sensitive to the "YES" class. This imbalance could be  
addressed by adjusting class weights or using techniques like oversampling.



Figure 11: Confusion matrix for FNN

Figure  11 illustrates  the  confusion matrix  for  FNN,  while  Table  11 presents  the  corresponding 
classification report.

Table 11
 Classification report for FNN

Class Precision Recall F1-score Support
NO 0.62 0.52 0.65 265
YES 0.59 0.68 0.63 266

Accuracy – – 0.60 531
Macro avg 0.60 0.60 0.60 531

Weighted avg 0.60 0.60 0.60 531

4.12. GRU
The GRU model underperformed with an accuracy of 0.589 and an F1-score of 0.589. The low metrics 
suggest  that  the  GRU’s  ability  to  capture  temporal  dependencies  did  not  translate  into  better 
performance for this task. This could indicate that the dataset does not contain significant sequential 
patterns or that the model requires deeper architecture or more training data.

Figure 12: Confusion matrix for GRU

Figure  12 illustrates  the  confusion matrix  for  GRU,  while  Table  12 presents  the  corresponding 
classification report.

Table 12
 Classification report for GRU

Class Precision Recall F1-score Support
NO 0.59 0.57 0.58 265
YES 0.59 0.61 0.60 266

Accuracy – – 0.59 531
Macro avg 0.59 0.59 0.59 531

Weighted avg 0.59 0.59 0.59 531



4.13. FNN+GRU
The hybrid FNN+GRU model achieved an accuracy of 0.573 and an F1-score of 0.570. The performance 
is  similar  to  Random  Forest,  indicating  that  combining  these  architectures  did  not  provide  a 
significant advantage. This suggests that the added complexity did not capture additional meaningful 
patterns in the data.

Figure 13: Confusion matrix for FNN + 
GRU

Figure  13  illustrates  the  confusion  matrix  for  FNN  and  GRU,  while  Table  13  presents  the  
corresponding classification report.

Table 13
 Classification report for FNN + GRU

Class Precision Recall F1-score Support
NO 0.58 0.50 0.54 265
YES 0.58 0.65 0.60 266

Accuracy – – 0.57 531
Macro avg 0.57 0.57 0.57 531

Weighted avg 0.57 0.57 0.57 531

4.14. RNN+GRU
The  RNN+GRU hybrid model had 
the lowest accuracy (0.550)  and  F1-
score  (0.550).  The confusion  matrix 
shows  148  correct "NO"  and  144 
correct  "YES" predictions,  with 
high misclassifications. 
This  poor performance 
indicates  that  the combination  of 
RNN  and  GRU  is not  suitable  for 
this  dataset, possibly  due  to 
overfitting  or insufficient 
training data.



Figure 14: Confusion matrix for RNN + GRU
Figure  14  illustrates  the  confusion  matrix  for  RNN  and  GRU,  while  Table  14  presents  the 
corresponding classification report.

Table 14
Classification report for RNN + GRU

Class Precision Recall F1-score Support
NO 0.55 0.50 0.55 265
YES 0.55 0.54 0.55 266

Accuracy – – 0.55 531
Macro avg 0.55 0.55 0.55 531

Weighted avg 0.55 0.55 0.55 531

4.15. Model performance comparison
Logistic Regression emerged as the best performing model, demonstrating robustness and balance 
across metrics. Simpler models like Naive Bayes and SVM performed comparably to more complex 
ones, suggesting that the dataset may not benefit significantly from advanced architectures. Hybrid 
models (e.g., FNN+GRU, RNN+GRU) underperformed, indicating that their added complexity did not 
translate into better  predictions figure 15.  Future work could focus on hyperparameter tuning, 
addressing  class  imbalance,  or  exploring  alternative  feature  representations  to  improve  model 
performance. 



Figure 15: Overall models performance comparison languages and platforms to assess

5. Discussion
Our experimental findings reveal that traditional models like Logistic Regression and SVM can 
perform  surprisingly  well  in  the  task  of  sexism  detection  when  combined  with  high-quality 
contextual embeddings from mT5. Despite their simplicity, these models offer strong generalization 
and efficiency. In contrast, deep learning and hybrid models did not consistently outperform simpler 
methods,  suggesting  that  complex  architectures  are  not  always  advantageous,  especially  when 
embeddings already capture rich semantic information. Models like KNN and XGBoost struggled, 
highlighting challenges related to high-dimensionality and class imbalance. Despite using SMOTE 
and class weighting, the imbalance between sexist and non-sexist tweets remained a challenge. This 
points to the need for more advanced data balancing techniques. Finally, ensemble methods showed 
potential for improving robustness, indicating multiple models may be a promising future direction 
for enhanced performance.

6. Conclusion and Future Work
This paper presented a comprehensive system for the automatic detection of sexist content in Spanish 
tweets, developed as part of the EXIST 2025 shared task. Our approach combined the powerful 
contextual  representations from the multilingual  mT5 transformer model  with a  diverse  set  of 
traditional machine learning and deep learning classifiers.  Experimental results highlighted that 
Logistic  Regression  achieved  the  best  overall  performance,  demonstrating  robustness  and 
generalization across classes. Interestingly, simpler models such as Naive Bayes and SVM performed 
comparably  to  more  complex  architectures,  indicating  that  when  combined  with  high-quality 
embeddings and preprocessing,  lightweight models  can effectively address the nuanced task of 
sexism detection. Nevertheless, several challenges remain. The relatively modest performance of 
deep learning and hybrid models  suggests  the need for further architectural  refinement or the 
integration of additional linguistic and semantic features. Moreover, the persistent issue of class  
imbalance  underscores  the  importance  of  advanced  sampling  and  augmentation  techniques  to 
improve model fairness and generalization. For future work, we aim to explore dynamic ensemble  
strategies that adapt model contributions based on context, incorporate multimodal signals such as 
images and metadata, and enhance interpretability through explainable AI tools like SHAP and LIME. 
We also plan to deploy the system in a real-time environment and extend its evaluation to other its 
cross lingual robustness and applicability.



Declaration on Generative AI
During the preparation of this work, the authors made limited use of ChatGPT, DeepSeek, and 
Microsoft Copilot. These tools were employed exclusively for grammar and spelling checking, for 
paraphrasing and rewording sentences in order to improve clarity and style,  and for providing 
occasional  code suggestions.  All  outputs  from these tools  were carefully  reviewed,  edited,  and 
validated by the authors to ensure accuracy, originality, and scientific integrity. The authors take full 
responsibility for the entire content of this publication.
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