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Abstract

This paper presents our participation in Task 1 of the EXIST 2025 shared task, which focuses on the identification
and characterization of sexism in tweets across three subtasks: (1) binary sexism detection, (2) categorization
of sexist content, and (3) identification of the source and target of the sexist message. We leverage semantic
embeddings generated using pre-trained models from Google’s Generative Al suite, evaluated in both frozen and
fine-tuned forms. Classification is carried out using traditional machine learning models such as Random Forest,
SVM, and MLP. Experiments are conducted in both English and Spanish, with results evaluated using 10-fold
cross-validation. Our findings demonstrate that fine-tuned Gemini embeddings consistently outperform generic
representations. Challenges remain particularly in subtask 1.3 due to label ambiguity and sparsity.
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1. Introduction

The EXIST 2025 shared task [1] focuses on the automatic detection and characterization of sexism
across different social media platforms and languages. Since its introduction in 2021, EXIST has evolved
to address increasingly complex and socially relevant subtasks, reflecting the urgent need for automated
tools to tackle gender-based discrimination online.

Sexism remains a persistent and deeply rooted issue in contemporary society, primarily affecting
women. It is defined as discrimination based on sex [3], and it manifests through a variety of social and
linguistic behaviors. Two particularly pervasive forms are hostile and benevolent sexism. While the
former is overt and aggressive, benevolent sexism presents itself as seemingly positive or protective
attitudes that reinforce traditional gender roles. Although less explicit, this second form can be equally
damaging by limiting women’s social roles and opportunities [4].

Twitter (now rebranded as X), as a major platform for public conversation, reflects and amplifies these
dynamics. While it serves as a space for social advocacy and visibility, it also facilitates the dissemination
of sexist narratives, often normalized under the guise of humor, opinion, or cultural references. Given
the speed and scale at which content is generated on such platforms, automatic detection systems are
essential to identify, categorize, and ultimately help mitigate the spread of gender-based discrimination
online.

In recent years, research on automatic sexism detection has evolved from traditional machine
learning approaches to neural-based architectures. Early systems relied on TF-IDF or bag-of-words
representations with classifiers such as SVM or logistic regression. More recent systems have leveraged
contextual embeddings from pre-trained language models such as BERT, RoBERTa, and BERTweet
[8, 9], achieving state-of-the-art results in offensive language and bias detection. In the EXIST shared
tasks, multilingual models like XLM-RoBERTa have shown strong performance in capturing culturally
nuanced expressions of sexism [10].
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Several approaches to automatic sexism detection have emerged in recent editions of the EXIST
shared task. In 2024, top-performing systems leveraged transformer-based models such as RoBERTa,
XLM-RoBERTa, and BERTweet, often combined with data augmentation and disagreement-aware
strategies. For example, the NYCU-NLP team [5] employed diverse fine-tuned transformer encoders and
annotator demographic features, achieving strong results across subtasks. Similarly, the UO-LIA team
[6] explored different pooling strategies and granular modeling of annotation variability. A detailed
overview of all contributions can be found in the CLEF 2024 Working Notes [7].

The 2025 edition of EXIST covers content from Twitter, TikTok, and memes, structured into three main
tasks: (1) identifying whether content is sexist, (2) classifying the type of sexism, and (3) identifying the
source and target of the sexist discourse. This work focuses exclusively on the Twitter data, involving
English and Spanish languages, and adopts the Learning with Disagreement annotation scheme that
preserves label diversity from multiple annotators [2].

In parallel, large-scale embedding models have gained traction as lightweight yet powerful alterna-
tives to end-to-end fine-tuned systems. Google’s Gemini embedding models have shown promising
performance in multilingual benchmarks such as the Massive Text Embedding Benchmark (MTEB) [14]
and are designed to support downstream tasks like classification and semantic similarity through frozen
or parameter-efficient fine-tuning strategies [11]. In this work, we investigate the use of Gemini-based
embeddings as a flexible and efficient backbone for sexist language detection. Gemini provides high-
quality multilingual semantic representations that allow us to bypass the computational and financial
costs associated with training large language models from scratch. By leveraging Google’s third-party
cloud API at Google Cloud Platform (GCP), we significantly reduce development time and infrastructure
complexity, enabling a faster deployment cycle. Additionally, Gemini embeddings have demonstrated
strong performance on a range of natural language understanding and processing tasks, as evidenced by
their results on the Massive Text Embedding Benchmark (MTEB), making them a practical and reliable
choice for building a scalable, production-ready detection system.

To address this challenge, we generated embeddings using two pre-trained models from Google’s Gen-
erative Al suite: embedding-001, a general-purpose encoder, and gemini-embedding-exp-03-07,
a model optimized for classification tasks. These embeddings were either kept frozen or fine-tuned
through lightweight neural layers and later fed into traditional classifiers. Our pipeline treats English
and Spanish data independently, respecting linguistic differences in sexist expression. This architecture
aims to balance effectiveness, interpretability, and computational efficiency [1].

The remainder of this paper is organized as follows. Section 2 introduces the proposed architecture and
design considerations. Section 3 presents the dataset and task setup. Section 4 details the classification
models and embedding strategies. Section 5 describes the experimental setup and evaluation protocol.
Results and rankings are presented in Section 6, followed by a discussion in Section 7. Finally, Section 8
concludes the paper and outlines future work.

2. Proposed Approach

Our approach leverages semantic embeddings generated by large language models (LLMs) provided
by Google’s Generative Al suite. Specifically, we utilize two embedding models: embedding-001, a
general-purpose encoder, and gemini-embedding-exp-03-07, an experimental model optimized for
classification tasks.

The pipeline consists of generating fixed-size vector embeddings (768-dimensional) for each tweet
using these models via API calls. We explore two strategies with these embeddings: (1) using them as
frozen features directly fed into classical classifiers, and (2) fine-tuning the embeddings with lightweight
trainable layers in a parameter-efficient way.

Figure 1 illustrates the full pipeline, including embedding generation, usage strategy, and classification.

While Gemini embeddings serve as the core representation model in our system, the pipeline remains
model-agnostic and could support embeddings derived from other neural encoders such as XLM-
RoBERTa or multilingual BERT. Gemini offers high-quality multilingual semantic vectors, allowing for
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Figure 1: Overview of the proposed sexism detection pipeline.

robust feature extraction without the need to train task-specific deep models from scratch.

To adapt embeddings to the downstream task, we apply parameter-efficient fine-tuning (PEFT)
techniques. Specifically, we freeze the base embedding model and introduce a lightweight classification
head (typically a linear or shallow MLP layer), which is trained using cross-entropy loss on each subtask.
Fine-tuning is performed separately for each subtask (1.1, 1.2, and 1.3) and language (EN/ES), using
only the EXIST 2025 training data for that subtask. This strategy ensures low computational cost while
improving task alignment.

The embeddings—either frozen or fine-tuned—are then passed to classical classifiers, including
Support Vector Machines (SVM) and Multi-Layer Perceptrons (MLP), trained independently for each
configuration. The modularity of this architecture allows for efficient experimentation and rapid
switching between embedding strategies and classifiers.

By combining large language model embeddings with lightweight fine-tuning and classical classifiers,
our system captures complex semantic nuances across English and Spanish tweets while maintaining
interpretability and efficiency.

3. Task Description and Dataset

We worked with the official EXIST 2025 dataset for Task 1, which includes tweet-level annotations
in both English and Spanish. Each tweet was annotated by multiple annotators, resulting in a set of
potentially divergent labels per instance. To resolve this disagreement for training purposes, we applied
majority voting to the label lists provided for each subtask. Tweets for which a clear majority label
could not be determined were discarded from the training set.

Task 1 is divided into three subtasks:

+ Subtask 1.1 — Sexism Identification: A binary classification task in which each tweet is labeled
as either sexist or non-sexist.

« Subtask 1.2 — Sexism Categorization: A multi-class classification task where each sexist tweet
must be assigned to one of the following categories: ideological and inequality, stereotyping and
dominance, objectification, misogyny and violence, or non-sexist.

« Subtask 1.3 — Source and Target Identification: A multi-label classification task where tweets
may be annotated with zero, one, or more labels indicating the source (e.g., individual, group,
media) and target (e.g., individual woman, feminist movement) of the sexist message. This task
introduces additional complexity due to sparse label distributions and overlapping roles.

For Subtask 1.1, we computed the most frequent label among the 1abels_task1_1 field. For Subtasks
1.2 and 1.3, which include multiple possible labels, we discarded tweets with empty or unresolved



annotations. The labels were treated as single-label (1.2) or multi-label (1.3) targets, depending on task
formulation.

We maintained the original lang field to process English and Spanish tweets separately, allowing for
language-specific model training and evaluation. The label distributions across tasks and languages
were notably imbalanced, particularly in Subtask 1.3, where many tweets lacked clear source or target
annotations, increasing classification difficulty.

No aggressive preprocessing was applied to the tweet text. Specifically, we chose to retain original
casing, punctuation, user mentions, and emojis. This decision was based on the fact that many linguistic
and pragmatic cues in Twitter (now X)—such as emphasis, sarcasm, or gendered tone—are often conveyed
through informal conventions, including emojis. Since our semantic embeddings were generated using
large language models capable of interpreting such features, we considered their removal potentially
detrimental to performance.

The final processed dataset was stored in . parquet format and included tweet IDs, raw text, resolved
label(s), and language metadata. We applied a consistent processing pipeline across all three subtasks
and used 10-fold stratified cross-validation for evaluation, prioritizing data efficiency and robustness
over the predefined development/test splits. This preprocessed dataset served as the foundation for all
subsequent embedding and classification experiments described in the following sections.

4. Methodology

To establish a strong baseline and evaluate the benefits of using semantic embeddings, we employed
several classical machine learning models widely used in text classification tasks.

4.1. Baseline Models

Logistic Regression (LR) and XGBoost were chosen as baseline classifiers due to their robustness,
interpretability, and proven effectiveness in various NLP tasks. Logistic Regression uses a linear decision
boundary and probabilistic outputs, making it suitable for binary and multiclass tasks with relatively fast
training times. XGBoost is a powerful gradient boosting framework that builds an ensemble of decision
trees, enabling it to capture complex feature interactions and nonlinear relationships often missed by
linear models. Both models were trained on vector representations derived from word n-grams (1,2)
and character n-grams (3,5), capturing both lexical and sub-lexical features relevant in social media text.

4.2. Embedding-Based Models

Our main approach utilizes semantic embeddings generated from large language models
(LLMs) provided by Google’s Generative Al suite, specifically the embedding-001 and
gemini-embedding-exp-03-07 models. These embeddings convert raw tweet texts into dense,
fixed-length vectors encoding rich contextual and semantic information beyond traditional sparse
representations.

We experimented with two embedding strategies:

+ Frozen embeddings: Embeddings are computed once and kept fixed during training. Classical
classifiers such as SVM and MLP operate on these static representations, relying on the pretrained
semantic knowledge encoded by the LLMs. This approach significantly reduces training time and
computational requirements, as only the classifier parameters are optimized.

+ Fine-tuned embeddings: We applied parameter-efficient fine-tuning (PEFT) techniques, such
as adapter modules or low-rank adaptations, to update only a small subset of the embedding
model’s parameters. This allows the embeddings to adapt to the sexism detection task without
requiring full backpropagation through the entire LLM, thus balancing efficiency and task-specific
specialization.



In our case, PEFT was applied using the same labeled training data used for the downstream classi-
fication tasks, and optimized using categorical cross-entropy as the training objective. This enabled
task-specific adaptation of the embeddings while keeping the majority of the model parameters frozen,
thus making training feasible under limited resources.

Unless otherwise stated, results reported in subsequent sections correspond to classifiers trained on
fine-tuned embeddings, as this configuration consistently yielded higher performance.

4.3. Classification Algorithms

The embedding representations were fed into the following classifiers:

« Support Vector Machine (SVM): SVM with a linear kernel is effective for high-dimensional
feature spaces and is commonly used in text classification. It attempts to find the optimal
hyperplane separating classes with maximum margin, providing good generalization performance.

« Multi-Layer Perceptron (MLP): A feed-forward neural network with a single hidden layer and
nonlinear activations (e.g., ReLU), capable of modeling complex patterns in the embedding space.
MLPs can learn nonlinear decision boundaries, which may be beneficial for nuanced tasks like
sexism detection.

« Random Forest (RF): RF constructs an ensemble of decision trees trained on random subsets of
features and data samples, providing robustness to overfitting and ease of use. However, despite
its theoretical advantages, RF showed lower predictive performance and higher computational
costs compared to LR and XGBoost in our experiments. Consequently, RF was excluded from the
final system runs and submissions.

4.4. Pipeline Overview

The full pipeline begins with raw tweets being converted to embeddings through API calls. Depending
on the experiment, these embeddings are either kept frozen or fine-tuned via PEFT. The resulting
embeddings are then used to train the classifiers independently for each subtask and language, enabling
models to adapt to task-specific label distributions and linguistic variations.

This approach allows us to leverage the rich semantic power of LLM embeddings while maintaining
model efficiency and interpretability through classical classifiers. Overall, this modular and language-
specific architecture allowed flexible experimentation across subtasks and supported robust performance
comparisons across different embedding and classifier configurations.

5. Experimental Setup

All experiments were conducted using Python 3.10 within Google Cloud’s Vertex Al environment,
which provided scalable GPU resources suitable for efficient training and evaluation of classification
models.

Semantic embeddings were generated via the Google Generative Al API using two models:
embedding-001 and gemini-embedding-exp-03-07. FEach tweet was encoded into a 768-
dimensional vector using the CLASSIFICATION mode, which is optimized for downstream classification
tasks. To mitigate API rate limits and network instability, we implemented a checkpointing mechanism
with periodic ‘parquet’ dumps and exponential backoff retry logic to ensure robustness in large-scale
embedding extraction.

For classification, we trained Support Vector Machine (SVM) classifiers with linear kernels and default
regularization parameters, selected for their strong performance in high-dimensional vector spaces.
Multi-Layer Perceptron (MLP) classifiers were configured with a single hidden layer of 256 neurons and
ReLU activation, optimized using early stopping based on validation loss. All models were implemented
using scikit-learn and TensorFlow.



Parameter-efficient fine-tuning (PEFT) was applied to adapt the embeddings to the sexism detection
task, using the same training data and classification objectives described in Section 4. This setup enabled
semantic adaptation without backpropagating through the full LLM backbone.

To handle the known class imbalance in the EXIST 2025 dataset—especially severe in Subtask 1.3—we
used stratified 10-fold cross-validation for model selection and evaluation. This approach preserved label
proportions across folds, ensuring balanced comparisons. Evaluation metrics included macro-averaged
F1 (primary), micro F1, precision, recall, and accuracy.

Hyperparameter tuning was conducted via manual grid search, with macro F1 on validation folds
as the selection criterion. The best-performing configuration per subtask and language was retained
for final predictions. Final predictions were obtained directly from these models, with no ensemble
methods or post-processing applied.

This setup allowed us to systematically explore the interaction between embedding strategies, model
architectures, and multilingual label distributions under controlled and reproducible conditions.

6. Results

We report macro-averaged F1-scores obtained via 10-fold cross-validation for each subtask, classifier,
and embedding type. All the results presented in this section correspond to our best-performing config-
urations using fine-tuned embeddings, as they consistently outperformed their frozen counterparts
across tasks and languages.

The results are shown for each subtask separately and are broken down by language and system
version. These include:

« Version 1: A monolithic setup using the same embedding-classifier combination for both English
and Spanish.

« Version 2: An alternative combination using a different embedding-classifier pair for both
languages.

« Version 3: A hybrid system that selects the best-performing configuration independently for
each language.

Subtask 1.1: Sexism Identification

Table 1 shows macro F1-scores for Subtask 1.1. The best performance in Spanish was achieved using
MLP with embedding-001, while SVM with gemini-embedding-exp-03-07 performed better on
English.

Table 1
Subtask 1.1 (fine-tuned): Macro F1-scores by system version and language.
Version Model Embedding Language Macro F1
Version1 MLP embedding-001 EN 0.782
ES 0.877
Version2 SVM gemini-embedding-exp-03-07 EN 0.828
ES 0.839
Version 3 SVM gemini-embedding-exp-03-07 EN 0.828
MLP embedding-001 ES 0.877

Subtask 1.2: Sexism Categorization

This task is more complex due to class imbalance and semantic overlap between categories. Table 2
shows macro F1-scores for each version. The best configuration involved combining MLP for English
and SVM for Spanish, using fine-tuned embeddings.



Table 2
Subtask 1.2 (fine-tuned): Macro F1-scores by system version and language.

Version Model Embedding Language Macro F1
Version1 SVM embedding-001 EN 0.608
ES 0.808
Version2 SVM gemini-embedding-exp-03-07 EN 0.695
ES 0.692
Version 3~ MLP gemini-embedding-exp-03-07 EN 0.701
SVM embedding-001 ES 0.808

Subtask 1.3: Source and Target Identification

Table 3 presents results for Subtask 1.3, the most difficult task due to sparse labels and label co-occurrence.
The highest macro F1 scores were achieved using fine-tuned MLP with Gemini embeddings in both
languages.

Table 3
Subtask 1.3 (fine-tuned): Macro F1-scores by system version and language.
Version Model Embedding Language Macro F1
Version1 MLP embedding-001 EN 0.684
ES 0.834
Version 2 SVM embedding-001 EN 0.647
ES 0.818
Version3  MLP gemini-embedding-exp-03-07 EN 0.768
ES 0.782

EXIST 2025 Official Rankings
Table 4 summarizes our team’s performance in the official evaluation across all three subtasks, including

soft and hard evaluations. The total number of participating systems is indicated for each case.

Table 4
Official EXIST 2025 rankings (position / total systems).

Subtask Type Rank Total

1.1 Soft 61 67
Hard 158 189

1.2 Soft 24 56
Hard 95 138

1.3 Soft 34 53
Hard 105 138

These rankings demonstrate that while our system did not reach the top tier, it remained competitive,
particularly in Subtask 1.2. Future work will explore improvements in class imbalance handling and
multi-label modeling for better ranking in complex subtasks.



7. Analysis

Our experiments reveal that the selection of embeddings, classifiers, and fine-tuning strategies sig-
nificantly influences performance across all three subtasks. In particular, models using fine-tuned
embeddings consistently outperformed those based on frozen representations, confirming the effec-
tiveness of adapting semantic features to the task.

The binary sexism identification task (Subtask 1.1) shows the highest performance, particularly
when using MLP with fine-tuned embedding-001 for Spanish tweets and SVM with fine-tuned
gemini-embedding-exp-03-07 for English tweets. This suggests that adapting embeddings to
specific languages and subtasks captures linguistic nuances effectively.

The multi-class and multi-label subtasks (1.2 and 1.3) present greater challenges due to increased com-
plexity, class imbalance, and ambiguity in labels. Macro F1 scores are generally lower for these subtasks,
reflecting the difficulty in fine-grained categorization and source-target identification. Nonetheless,
parameter-efficient fine-tuning (PEFT) provides measurable improvements in generalization and task
alignment, especially in low-resource or imbalanced settings.

Additionally, the strategy of selecting the best model configuration for each language and task
independently leads to improved overall performance. This highlights the importance of flexible,
task-specific pipelines in handling the diverse expressions of sexism in multilingual social media data.

Future directions include exploring more advanced metric learning techniques and label adaptation
methods to better manage label scarcity and annotator disagreement, potentially enhancing robustness
and accuracy across subtasks.

Overall, our findings underscore the necessity of embedding adaptation, careful classifier choice,
and task-tailored tuning to effectively tackle sexism detection and characterization in real-world social
media data.

8. Conclusion and Future Work

In this work, we presented our approach to sexism identification and characterization in tweets for the
EXIST 2025 shared task. By leveraging semantic embeddings from large language models in combination
with classical classifiers and parameter-efficient fine-tuning techniques, we achieved competitive results
across multiple subtasks and languages.

Our experiments confirmed that fine-tuning embeddings consistently improved performance over
frozen counterparts, particularly in multilingual and nuanced classification settings. Moreover, tailoring
model configurations per task and language proved beneficial in capturing linguistic diversity and
reducing error propagation across subtasks.

Despite these promising outcomes, several challenges persist—most notably in the fine-grained
categorization and source-target identification subtasks, where label sparsity and semantic ambiguity
hinder classifier performance.

For future work, we plan to explore advanced aggregation architectures such as Deep Averaging
Networks (DAN), as well as improved implementations of zero-shot and few-shot learning techniques.
These approaches may enhance generalization in low-resource scenarios and better capture subtle
linguistic cues.

Additionally, incorporating domain adaptation techniques and modeling annotator disagreement
more explicitly may improve system robustness and fairness. Expanding our experiments to other
modalities such as memes and TikTok videos, as featured in the broader EXIST 2025 setup, is also a
compelling next step.

Overall, our findings contribute to the ongoing development of interpretable, adaptable, and resource-
efficient systems for sexism detection in multilingual social media environments.
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