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Abstract
The 2025 ImageCLEFmedical GANs Task - Controlling the Quality of Synthetic Medical Images created via GANs,
continuing to investigate privacy and security concerns around using patient data to generate synthetic medical
images. It comprises two complementary sub-tasks: the first extends prior editions by asking participants to
detect which real images were used in training a Generative Adversarial Network to produce given synthetic
outputs; the second builds on the 2024 findings by requiring teams to attribute each synthetic image to its specific
real-image subset of origin. Ground-truth annotations and benchmark datasets of real and GAN-generated lung
CT slices are provided for both tasks, and evaluation is based on Cohen’s Kappa for Subtask 1 and accuracy for
Subtask 2. 14 teams submitted runs for Subtask1 and 4 teams submitted runs for Subtask 2, totaling 95 submitted
runs that used a variety of methods. This paper presents an overview of the task setup, datasets, and evaluation
metrics, and summarizes and discusses the approaches and results of the .
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1. Introduction

AI systems for medical tasks like predicting, detecting, and classifying diseases rely on the availability of
large and diverse datasets for training. High-quality data allow these models to learn complex patterns
and improve their accuracy and reliability. However, access to real medical data is not easy due to
privacy concerns. Patients are usually willing to share their medical information only for their own
treatment and not for research. This makes it difficult to gather enough data to effectively train AI
models, slowing progress in developing better tools for healthcare care.

One way to solve this problem is to create synthetic data: artificial data that looks like real medical
data but does not come from actual patients. Generative models, such as Generative Adversarial
Networks (GAN), can be used to create these datasets. Synthetic data can help researchers build and
test AI systems without needing to rely on real patient data, which protects privacy and makes it easier
to collect the variety of information needed for training. But there is an important challenge with
synthetic data: it must not include hidden details, or “fingerprints” from the real data it was trained on.
If synthetic data can somehow be traced back to the original patient data, it could risk exposing private
information. Ensuring that synthetic data are completely free from such “fingerprints” is critical.

This is the third edition of the GANs task, part of ImageCLEF 2025 Lab [1], in which we continue
to investigate the hypothesis that generative models generate synthetic medical images that retain
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"fingerprints" from the real images used during their training based on the lessons learned from the
previous two editions:

• In the first [2] and second [3] editions of this task, held at ImageCLEF 2023 [4] and 2024 [5],
various generative models were analyzed within the framework of the first subtask to investigate
whether synthetic images contained "fingerprints" of the real medical data used during training.
The results demonstrated that the tested generative models do retain and imprint features from
their training data, raising important security and privacy concerns. These findings underscore
the need for robust techniques to detect and mitigate such imprints to ensure that synthetic
images protect patient privacy while maintaining their utility for research and development.

• In the 2nd edition of the task [3], it was confirmed that generative models leave unique “fin-
gerprints” on the synthetic images they produce. By analyzing images generated from various
models, distinct patterns and features were identified that allowed the attribution of synthetic
images to their respective generative models.

To investigate the potential privacy risks associated with synthetic medical images, the 2025 edition
of the GANs Task focuses on two complementary subtasks. The first subtask challenges participants
to determine whether specific real images were used during the training of a GAN to produce given
synthetic outputs, thereby addressing the risk of image-level information leakage. The second subtask
extends this inquiry by asking participants to attribute synthetic images - generated using a Diffusion
model - to one of several predefined subsets of real training data. This focuses on whether broader,
dataset-level characteristics are retained during the generative process. An overview of these two
subtasks is illustrated in Figure 1.

Figure 1: Overview of the two subtasks in the ImageCLEFmedical 2025 GANs Task. Left: Subtask 1 aims to
determine whether specific real images were used to train a GAN that generated a given synthetic image. Right:
Subtask 2 requires identifying the training subset from which the synthetic image was derived using a Diffusion
model.



2. Tasks description

2.1. Sub-task 1: Detect Training Data Usage

2.1.1. Description

We continued to investigate the hypothesis that generative models are generating medical images that
are in some way similar to the ones used for training. The task addresses the security and privacy
concerns related to personal medical image data in the context of generating and using artificial images
in different real-life scenarios. This edition continues the task proposed in both previous editions [2, 3]
by investigating another GAN. The objective of the task is to detect “fingerprints” within the synthetic
biomedical image data to determine which real images were used in training to produce the generated
images. The task consisted in performing analysis of test image datasets and assess which images of
real patients were used for training image generators and which were not. The task is formulated as
follows:

• In this subtask, participants will analyze synthetic biomedical images to determine whether specific
real images were used in the training process of generative models. For each real image in the test set,
participants must label it as either used (1) or not used (0) for generating the given synthetic images.
This task focuses on detecting the presence of training data "fingerprints" within synthetic outputs.

2.1.2. Data description

The benchmarking dataset includes both real and synthetic biomedical images. The real images consist
of axial slices of 3D thoracic CT scans from approximately 8,000 lung tuberculosis patients. These
slices vary in appearance: some may look relatively “normal”, while others exhibit distinct lung lesions,
including severe cases. The real images were provided in 8-bit per pixel PNG format, with dimensions
of 256x256 pixels, providing a standardized resolution for analysis. The synthetic images, also sized
at 256 × 256 pixels, have been generated using a GAN. By providing both real and synthetic datasets,
this task enables participants to analyze and compare the characteristics of synthetic images with their
real counterparts, investigating potential “fingerprints” and patterns related to the training process.
Examples of real and generated images are depicted in Figure 2.

Train dataset consists of 3 folders:

• “generated” - contains 5,000 synthetic images generated using a GAN.

• “real_used” - contains 100 real images that were used to train the GAN to
produce the synthetic images in the "generated" folder.

Figure 2: Examples of images provided for Subtask 1: Detect Training Usage. The first row contains real images:
the first three are samples that were not used to train the generative model, followed by three real images that
were used for training. The second row contains samples of generated images.



• “real_not_used”- contains 100 real images that were not used for training.

Test dataset was organized as follows:

• “generated”- contains 2,000 additional synthetic images. These images
were generated using the same model trained under the same conditions as
those used to create the synthetic images in the training dataset.

• “real_unknown” - contains a mix of 500 real images. Some of these images
were used in training the generative model, while others were not.

2.2. Sub-task 2: Identify Training Data Subsets

2.2.1. Description

In this subtask, participants will link each synthetic biomedical image to the specific subset of real data
used during its generation. The goal is to identify the particular dataset of real images that contributed
to the training of the generative model responsible for creating each synthetic image. This requires
a more detailed attribution of synthetic images to their corresponding training subsets. The task is
formulated as follows:

• In this subtask, participants will link each synthetic biomedical image to the specific subset of real
data used during its generation. The goal is to identify the particular dataset of real images that
contributed to the training of the generative model responsible for creating each synthetic image.
This requires a more detailed attribution of synthetic images to their corresponding training subsets.

2.2.2. Data description

The benchmarking dataset for this task is similar to the dataset provided for the first subtask in terms
of cohort, acquisition conditions, image dimensions (256×256) and bit-depth (8 bit per pixel); the only
difference lies in the scan types. In addition to thoracic CTs, it also contains cervical and abdominal CTs,
as exemplified in Figure 3. The synthetic images, also sized at 256 × 256 pixels, have been generated
using a Diffusion model. By providing both real and synthetic datasets, this task enables participants to
analyze and compare the characteristics of synthetic images with their real counterparts, investigating
potential “fingerprints” and patterns related to the training process. Examples of generated images are
shown in Figure 3. The training dataset consists of two main folders:

• “generated”- contains 5 subfolders of synthetic images. Each subset was
generated using a different training dataset for the generative model.

• “real” - contains 5 subfolders, each corresponding to a specific training
dataset used to train the generative model. The real images in each
subfolder were used to generate the synthetic images in the corresponding
"generated" subfolder.

The mapping between the real and generated images is as follows:
Folder “t1” (real images) - Used to generate synthetic images in “gen_t1”
Folder “t2” (real images) - Used to generate synthetic images in “gen_t2”
Folder “t3” (real images) - Used to generate synthetic images in "gen_t3”
Folder “t4” (real images) - Used to generate synthetic images in “gen_t4”
Folder “t5” (real images) - Used to generate synthetic images in “gen_t5”.

The test dataset contains 25,000 generated images, each derived from a real subgroup of images in the
training dataset. Each image will be assigned a label consistent with those used in the training dataset.



Figure 3: Examples of images provided for Subtask2: Identify Training Data Subsets. The first row contains
samples of real images used for trianing the generative model and the second row contains samples of generated
images.

3. Evaluation methodology

3.1. Sub-task 1: Detect Training Data Usage

The official evaluation metric of the task is Cohen’s kappa score. In addition, the F1-score, accuracy,
precision, and recall were computed to asses the task which can be considered a binary-class classification
problem. Cohen’s kappa [6] is a statistic technique that measures inter-annotator agreement on a
classification problem and it is defined as:

𝑘 = (𝑝𝑜 − 𝑝𝑒)/(1− 𝑝𝑒) (1)

,where 𝑝𝑜 is the empirical probability of agreement on the label assigned to any sample (the observed
agreement ratio), and 𝑝𝑒 is estimated using a per-annotator empirical prior over the class labels.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1− 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4)

where 𝑇𝑃 stands for true positive, 𝑇𝑁 for true negative, 𝐹𝑃 for false positive, and 𝐹𝑁 for false
negative.

3.2. Sub-task 2: Identify Training Data Subsets

The official metric of the task is Accuracy. In addition, Precision, Recall, F1 score and Specificity were
computed.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(5)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(6)



4. Results

4.1. Participation stats

Overall, 41 teams registered for our task. Of these, 14 teams completed the first subtask by submitting
runs, and 4 teams completed the second subtask. In total, 9 teams submitted working notes papers.
Notably, 2 teams participated in both subtasks, including the task organizing team. The continued
interest in the first subtask, now in its third edition, highlights its ability to attract more participating
teams.

Each participating team was allowed to submit up to 10 runs per task. We received a total of 95
submitted runs: 91 for Subtask 1 and 14 for Subtask 2. Table 1 presents the list of participating teams
and their institutions. The rankings for Subtask 1 are shown in Table 2, and those for Subtask 2 are
presented in Table 3, limited to the teams that described their methods by submitting working notes
papers.

4.2. Presented methods

4.2.1. Sub-task 1: Detect Training Data Usage

SCOPE VIT Visioneers [7] team proposed a framework using a Siamese Neural Network (SNN) to
detect whether real medical images were used in training. The architecture consists of twin subnetworks
based on popular backbones (ResNet50, DenseNet161, EfficientNetB2, and ViT), enhanced with a cross-
attention mechanism to align feature maps of real and synthetic image pairs. These attention-guided
features are fed into an adaptive similarity module that combines absolute difference and dot product
operations, followed by a multilayer perceptron to score the likelihood that an image contributed to
GAN training. Evaluated on a lung CT dataset, the ResNet50 backbone with cross-attention achieved
the best performance, demonstrating high accuracy and generalizability. All results obtained by the
team are shown in Table 2 and consists in the following methods:

• Run ID 1160: Siamese network with a ResNet50 backbone augmented by cross-attention

Challengers [8] explored four different methods. The first two models applied an unsupervised
framework combining ResNet50 for deep feature extraction, Principal Component Analysis (PCA)
for dimensionality reduction, and various clustering algorithms (k-means, DBSCAN (A density based
clustering algorithm capable of identifying arbitrarily shaped clusters and detecting outliers), Gaussian
Mixture Model (GMM), and agglomerative clustering) to analyze similarities between real and synthetic
images. The third model was a supervised binary classifier based on ResNet50V2, fine-tuned via transfer
learning and enhanced with a custom classification head, achieving the best overall performance. Finally,

Table 1
Overview of participating teams that submitted at least one run (* task organizing team)

Team Subtask 1 Subtask 2 Affiliation Country
SCOPE VIT Visioneers ✓ × Vellore Institute of Technology India

SDVA/UCSD × ✓
San Diego VA

Health Care System
US

Challengers ✓ × Sri Sivasubramaniya Nadar College
of Engineering

India

Medhastra ✓ ✓
Sri Sivasubramaniya Nadar College

of Engineering
India

Neural Nexus ✓ × Pune Institute of Technology India
zhouyijiang1 ✓ × Yunnan University China
taozi ✓ × Yunnan University China
ZOQ ✓ × Yunnan University China

AI Multimedia Lab* ✓ ✓
National University of Science and Technology

POLITEHNICA Bucharest
Romania



a fourth hybrid approach combined either deep features or Local Binary Patterns (LBP) with clustering
and distance-based classification, determining training data reuse by measuring the distance between
test samples and learned synthetic image centroids. All results obtained by the team are shown in
Table 2 and consists in the following methods:

• Run ID 1778: Method 1 – ResNet50 + PCA + Clustering (KMeans, GMM, Agglomerative, DBSCAN);
• Run ID 1779: Method 2 – ResNet50 + PCA + Clustering;
• Run ID 1811: Method 3 – ResNet50V2 + Binary Classification (Supervised CNN Approach);
• Run ID 1776: Method 4 – Deep Feature Based Clustering and Distance Based Classification.

Team Medhastra [9] explored a deep feature similarity-based approach. Their method leverages a
ResNet-50 model, pre-trained on ImageNet [10], to extract 2048-dimensional embeddings from both real
and generated images. Cosine similarity scores are computed between each synthetic image and the
real image pool, and a statistical threshold (based on mean and standard deviation) is applied to classify
wheater a real image was used for training. Additionaly, a logistic regression model using similarity
features was trained to support this classification. The team submitted one run (Run ID 1288) to the
task, available in Table 2.

Neural Nexus [11] adopted a multi-faceted deep learning approach. Their strategy combined supervised
and unsupervised techniques. They trained multiple autoencoders, including convolutional and Vision
Transformer (ViT)-based variants, to learn latent representations from synthetic images. The ViT
autoencoder, pretrained on a tuberculosis dataset, was used to extract features for clustering and
classification tasks. These latent vectors were clustered using spectral clustering to identify patterns
correlating with the use of specific real images in GAN training. In a parallel track, the team developed
a ResNet-based autoencoder and supplemented the learned features with handcrafted descriptors, such
as GLCM texture features, wavelet transforms, and Gabor filters. These were then input to a Random
Forest classifier that also integrated Mahalanobis distance-based anomaly scores to identify potential
training data influence. Finally, they explored a Dual-Contrastive Learning GAN (DCLGAN) to learn
and compare attention-based feature maps from real and generated images. The overlap in discriminator
attention regions was analyzed to infer training image influence, forming another signal for attribution.
Each component of the pipeline was designed to capture complementary aspects of training data
fingerprints. Results obtained by the team are shown in Table 2 and consists in the following methods:

• Run ID 1878: ViT-Based Encoder
• Run ID 1880: Spectral Clustering on AutoEncoder Features
• Run ID 1881: ResNet Autoencoder and Feature-Based Detection Framework

Team zhouyijiang1 [12] explored a ViT-based two-stage detection architecture to identify potential
fingerprint leakage from training data in GAN-generated medical images. Their system integrates a
coarse-to-fine strategy: in the first stage, a feature approximation module using the FAISS L2 engine
and cosine similarity identifies the top-50 most similar real images for each synthetic sample. Spectral
clustering further refines these candidates to reduce outliers. In the second stage, a Hybrid Contrastive
Attention Network (CANet) performs deep semantic matching. The model fuses features from multiple
ViT layers (6, 12, 18) using a gated fusion mechanism with dynamic weights to generate a 1536-
dimensional feature embedding. This is passed into a supervised contrastive module combining cross-
entropy and contrastive loss to enhance discriminative power and suppress false positives. Feature
encoding is enriched through dynamic data augmentation (including random masking and Gabor noise),
and a custom positional encoding strategy augments anatomical awareness. The deep attention module
consists of a three-stage pipeline: feature mapping, global dependency modeling via an 8-head attention
mechanism, and decision refinement using adaptive temperature scaling and sigmoid classification. A
final decision is made by checking if a sample has high attention-weighted similarity and confidence
>0.6. The method is implemented using ViT-Base and optimized via AdamW with cosine learning rate
decay. The final system balances high detection performance with low false positive rates and real-time
inference. The obtained results are shown in Table 2 and consists in the following:



• Run ID 1873: Vision Transformer
• Run ID 1802:
• Run ID 1801:
• Run ID 1803:
• Run ID 1804:

Team taozi [13] proposed a hybrid framework. Their approach centered on contrastive learning
and a Mixture of Experts (MoE) architecture that integrates three pre-trained backbones: ResNet-
50, EfficientNet-B0, and ViT-B/16. Initially, feature similarity matrices were computed using these
backbones to create pools of candidate positives and negatives. These were used to train a MoCo v2-style
contrastive model enhanced with dynamic projection heads and adaptive sample-wise temperature
scaling. The team used an online encoder with momentum updates, InfoNCE loss, and FIFO queues for
negative sampling to ensure diverse and stable contrastive training. Their dynamic projection head
projects 2048-dimensional features into a 256-dimensional embedding space, while generating adaptive
temperature values to control learning sensitivity. A Hybrid Contrastive Loss was employed, balancing
online and momentum components. For multi-model integration, the team implemented a Mixture
of Experts module, which L2-normalized and concatenated outputs from all three backbones. A two-
layer gating network then weighted each exper’s contribution, followed by an 8-head cross-attention
mechanism to refine fused features. This enabled the system to leverage complementary strengths of
each backbone for better generalization across anatomical patterns. The obtained results are shown in
Table 2 and consists in the following:

• Run ID 1875: ResNet50
• Run ID 1874: MoE
• Run ID 1169: EfficientNEt-B0
• Run ID 1140: Vision Transformer
• Run ID 1179: ResNet50
• Run ID 1107: ResNet50

Team ZOQ [14] explored a similarity classification approach that combines image enhancement
and deep learning models. The pipeline begins with image preprocessing using four enhancement
techniques: Gaussian filtering to reduce noise while preserving edges, the Laplacian operator for edge
detection, the Hessian matrix to enhance curvature-based features, and bilateral filtering for edge-
preserving smoothing. These transformations aim to highlight critical structural features and improve
the quality of the extracted representations. Following enhancement, the team employed two deep
learning architectures: CNN and ResNet50 for feature extraction. These models were used to generate
high-dimensional feature vectors representing each image. To determine similarity between synthetic
and real images, three different similarity metrics were evaluated: Cosine similarity (to assess directional
closeness of feature vectors), Structural Similarity Index (SSIM) (capturing luminance, contrast, and
structural alignment), and Jaccard similarity (measuring overlap between binarized feature regions).
The final classification of an image as "used" or "not used" was determined by applying thresholds to
these similarity scores, offering a multi-angle view of feature resemblance between real and generated
samples. The obtained results are shown in Table 2 and consists in the following:

• Run ID 1355: CNN + SSIM
• Run ID 1427: ResNet with Jaccard

AI Multimedia Lab [15] explored a twin-branch Siamese network, where each branch received image
inputs and produced feature embeddings via convolutional layers followed by dense layers with L2
normalization. The model was trained using contrastive loss to encourage similar embeddings for
real-synthetic pairs originating from the same training source and dissimilar ones otherwise. Input
pairs were composed of synthetic images and either real-used (positive) or real-not-used (negative)
images. For inference, similarity scores between image pairs were computed using Euclidean distance,



and binary predictions were derived based on learned thresholds. This architecture, previously applied
in Subtask 2 for subset attribution, was adapted here to learn the nuanced similarities indicative of
GAN training data usage. The obtained results are presented in Table 2 under Run ID 1696 and 1492.

4.2.2. Sub-task 2: Identify Training Data Subsets

SDVAHCS/UCSD [16] presented an ensemble-based deep learning approach to identify the origins
of synthetic biomedical images by classifying them according to the specific real data subsets used in
their generation. The authors employed multiple EfficientNet architectures (b0, b1, b2), leveraging a
six-class classification setup to distinguish between real images and five sets of synthetic images, each
linked to a distinct training subset. A max-voting ensemble strategy was used to enhance robustness,
and pseudo-labeling was incorporated to utilize unlabeled test data by iteratively assigning labels and
retraining models. In one configuration, a portion of the original data was sequestered to validate the
generalization of the pseudo-labeling technique and to detect overfitting. The results obtained by the
team are shown in Table 3 and consists in the following methods:

• Run ID 1425: A single EfficientNet-b1 model trained with a learning rate of 0.0001 and batch size
32; selected for best validation performance.

Table 2
Results of participant submissions and their results for Subtask 1: Detect Training Data Usage.

# Participant Run ID Entries Cohen’s
kappa Accuracy Precision Recall F1

1 Neural Nexus 1878 7 0.148 0.574 0.5698 0.604 0.5864
2 zhouyijiang1 1803 5 0.136 0.568 0.5582 0.652 0.6015
3 zhouyijiang1 1804 5 0.136 0.568 0.5582 0.652 0.6015
4 zhouyijiang1 1873 5 0.136 0.568 0.5582 0.652 0.6015
5 zhouyijiang1 1802 5 0.132 0.566 0.5537 0.68 0.6104
6 zhouyijiang1 1801 5 0.128 0.564 0.55 0.704 0.6175
7 Neural Nexus 1880 7 0.072 0.536 0.5542 0.368 0.4423
8 taozi 1359 8 0.064 0.532 0.5597 0.3 0.3906
9 taozi 1367 8 0.044 0.522 0.5505 0.24 0.3343
10 AIMultimediaLab 1696 2 0.036 0.518 0.5162 0.572 0.5427
11 taozi 1364 8 0.032 0.516 0.6 0.096 0.1655
12 Neural Nexus 1881 7 0.032 0.516 0.5222 0.376 0.4372
13 taozi 1360 8 0.032 0.516 0.5128 0.64 0.5694
14 Neural Nexus 1877 7 0.028 0.514 0.5164 0.44 0.4752
15 taozi 1366 8 0.02 0.51 0.5069 0.732 0.599
16 Neural Nexus 1872 7 0.016 0.508 0.5182 0.228 0.3167
17 Medhastra 1288 1 0.016 0.508 0.5078 0.52 0.5138
18 taozi 1368 8 0.012 0.506 0.5092 0.332 0.4019
19 Challengers 1811 5 0.012 0.506 0.5062 0.492 0.499
20 ZOQ 1427 5 -0.016 0.492 0.4905 0.412 0.4478
21 Neural Nexus 1879 7 -0.024 0.488 0.4732 0.212 0.2928
22 Neural Nexus 1882 7 -0.028 0.486 0.4646 0.184 0.2636
23 ZOQ 1355 5 -0.032 0.484 0.4904 0.82 0.6138
24 SCOPE VIT Visioneers 1160 1 -0.032 0.484 0.4831 0.456 0.4691
25 Challengers 1779 5 -0.032 0.484 0.4355 0.108 0.1731
26 AIMultimediaLab 1492 2 -0.044 0.478 0.4829 0.62 0.5429
27 ZOQ 1330 5 -0.068 0.466 0.4822 0.92 0.6327
28 ZOQ 1794 5 -0.068 0.466 0.4822 0.92 0.6327
29 taozi 1369 8 -0.096 0.452 0.4657 0.652 0.5433
30 Challengers 1778 5 -0.116 0.442 0.4461 0.48 0.4624
31 ZOQ 1356 5 -0.132 0.434 0.3862 0.224 0.2835
32 Challengers 1776 5 -0.176 0.412 0.3764 0.268 0.3131
33 Challengers 1777 5 -0.176 0.412 0.3764 0.268 0.3131



• Run ID 1426: An ensemble of EfficientNet-b0, b1, and b2 models, using max-voting. Only models
with a validation accuracy higher than 98% were included.

• Run ID 1782: An ensemble of 26 EfficientNet models (b0-b2) trained with various hyperparameters.
It incorporated pseudo-labeled test data and used a sequestered set for overfitting checks.

• Run ID 1871: An ensemble of EfficientNet-b1 models trained on all available data (including
pseudo-labeled test images), without using a sequestered validation set.

• Run ID 1883

Team Medhastra [17] employed a ResNet-18-based deep learning pipeline to classify. The approach
involved two main components: feature extraction and supervised multi-class classification. For feature
extraction, ResNet-18 (pretrained on ImageNet [10]) was repurposed by removing its classification
layer, transforming each image into a 512-dimensional vector capturing high-level semantic features.
These embeddings were used to measure similarity between synthetic and real images and support
subgroup inference. For classification, the team fine-tuned ResNet-18 to perform five-way classification.
The model was trained on labeled real images and validated using synthetic images to better simulate
inference-time conditions. During inference, the trained model predicted subgroup labels for unlabeled
synthetic images in the test set. The results of the team are available Table 2 under Run ID 1287.

AI Multimedia Lab [15] employed two distinct methods: (i) Method 1 –Feature Clustering, their
previous feature-based clustering pipeline [18] was adaptedto the 2025 subset attribution task. The
approach begins with feature extraction using four pretrained convolutional models: MobileNetV2,
ResNet50, EfficientNet, and DenseNet, all originally trained on ImageNet [10]. These models generate
high-dimensional embeddings from the input images to capture their semantic content. To infer
which subset (T1-T5) was used to generate each synthetic image, the team experimented with three
classification strategies: k-means clustering, hierarchical clustering, and Support Vector Machines. The
first two are unsupervised techniques that group similar images based on feature similarity - k-means via
centroid minimization and hierarchical clustering via distance-based tree structures while SVM serves
as a supervised baseline trained on labeled subset data. The models were fine-tuned on the training
data, with 10% of the set held out for validation to evaluate clustering and classification performance.
This method investigates whether deep features from pretrained networks can effectively capture
patterns indicative of the GAN training subsets, using both supervised and unsupervised grouping
strategies. ii) A Siamese network was trained using contrastive loss to learn whether a real-synthetic
image pair came from the same training subset. Each synthetic image was compared with real images
from all five subsets, and average embedding distances were calculated per subset. The subset with the
smallest average distance was selected as the predicted origin. This approach focuses on learning visual
similarity through a relational, pairwise metric. The results of the team are available in Table 3:

• Run ID 1396: Siamese Neural Network
• Run ID 1271: Densenet + SVM
• Run ID 1269: EfficientNet + SVM
• Run ID 1268: ResNet + SVM
• Run ID 1267: MobileNetV2 + SVM.

5. Discussion

A wide range of strategies was deployed for Subtask 1, spanning from contrastive learning and Siamese
architectures to hybrid clustering approaches, vision transformers, and handcrafted feature modeling.

SCOPE VIT Visioneers adopted a SNN enhanced with a cross-attention module and an adaptive
similarity head, using backbones such as ResNet50 and ViT. Despite the architectural sophistication, their
best-performing submission (Run ID 1160) achieved a Cohen’s kappa of -0.032, indicating performance
worse than chance, despite achieving a moderate accuracy of 0.484. Similarly, Medhastra employed



Table 3
Results of participant submissions and their results for Subtask 2: Identify Training Data Subsets.

# Participant Run ID Entries Accuracy Precision Recall F1 Specificity
1 AIMultimediaLab 1396 5 0.9904 0.9904 0.9904 0.9904 0.9972
2 SDVAHCS/UCSD 1782 5 0.988 0.9882 0.988 0.9881 0.9969
3 SDVAHCS/UCSD 1871 5 0.988 0.9882 0.988 0.9881 0.9969
4 SDVAHCS/UCSD 1883 5 0.988 0.9882 0.988 0.9881 0.9969
5 SDVAHCS/UCSD 1426 5 0.9878 0.9881 0.9878 0.988 0.9969
6 SDVAHCS/UCSD 1425 5 0.9708 0.9716 0.9708 0.9711 0.9931
7 Medhastra 1287 1 0.9484 0.9504 0.9484 0.9487 0.9879
8 AIMultimediaLab 1268 5 0.5236 0.5982 0.5236 0.5327 0.8799
9 AIMultimediaLab 1269 5 0.4913 0.5822 0.4913 0.4934 0.8744
10 AIMultimediaLab 1271 5 0.4904 0.5691 0.4904 0.4832 0.8753
11 AIMultimediaLab 1267 5 0.4112 0.4645 0.4112 0.3945 0.8547

cosine similarity thresholds and logistic regression on ResNet50 embeddings, but their submission
(Run ID 1288) also yielded a negative kappa score of 0.016, further confirming the difficulty of the
task. AI Multimedia Lab, which previously applied a Siamese approach to Subtask 2, adapted the same
architecture here, but their runs (IDs 1696 and 1492) achieved low kappa scores of 0.036 and -0.044,
respectively. These results highlight that feature-level similarity, even when trained with contrastive
loss, may be insufficient to reliably detect GAN training inclusion at the image level. Challengers
investigated both unsupervised and supervised pipelines, including PCA-reduced clustering and a
fine-tuned ResNet50V2 classifier. While their best supervised model (Run ID 1811) performed relatively
well in terms of accuracy (0.506), it still produced a very low kappa score of 0.012, suggesting that even
supervised classifiers struggle with consistent predictions beyond chance. Neural Nexus introduced
an ambitious multi-track pipeline combining ViT-based autoencoders, handcrafted features, and GAN
attention analysis. Their best run (ID 1878) achieved the highest Cohen’s kappa of 0.148, still modest
but indicating some ability to detect data usage patterns, supported by a higher F1-score of 0.5864. Team
zhouyijiang1 implemented a ViT-based architecture featuring coarse-to-fine filtering, spectral clustering,
and a hybrid contrastive attention network. Their suite of runs (IDs 1801-1804, 1873) consistently
achieved kappa values in the 0.128-0.136 range, among the best overall, demonstrating slight but stable
agreement beyond chance. Taozi pursued a contrastive learning framework enriched with a Mixture of
Experts (MoE) module integrating ResNet, EfficientNet, and ViT backbones. Despite their architectural
complexity, none of their runs exceeded a kappa of 0.108, and several dropped below zero, reflecting
the difficulty of leveraging contrastive embeddings for precise image-level attribution. ZOQ applied
deep similarity classification using image enhancement (e.g., Gaussian, Laplacian, Hessian filtering) and
various similarity metrics (cosine, SSIM, Jaccard). Their submissions, including Run IDs 1355 and 1427,
achieved Cohen’s kappa values ranging from -0.016 to -0.132, reinforcing that even enriched structural
representations could not capture consistent training reuse signals.

Cohen’s kappa scores across all submissions were notably low, with only a few teams surpassing the
0.1 threshold. This statistical measure, which ranges from -1 (systematic disagreement) to 1 (perfect
agreement), reflects the agreement between predicted labels and ground truth while correcting for
chance. The prevalence of negative or near-zero kappa values indicates that most models performed at
or below chance level, implying methods’ inability to detect the source images used for training. This
also could reflect model’s ability to generate synthetic images that do not contain “fingerprints” that
can be traced back to the source of training.

In Subtask 2, participants were tasked with linking each synthetic biomedical image to the specific
subset of real data used during its generation. This required detailed attribution of synthetic images
to one of five real training subsets (T1-T5), posing a significant challenge in capturing subtle dataset-
specific features embedded by the generative model. The top performance, excluding the organizing
team was obtained by SDVAHCS/UCSD team (agentili), submitting multiple ensemble-based runs. Their
most notable configurations (Run IDs 1782, 1871, and 1883) each achieved an accuracy of 98.8%. These



submissions relied on ensembles of EfficientNet models (b0 - b2) and employed a max-voting strategy
for robust decision-making. Pseudo-labeling was introduced to incorporate unlabeled test data by
iteratively assigning labels and retraining the models. Notably, Run ID 1782 included a sequestered
subset of the training data to monitor and prevent overfitting during pseudo-label-based augmentation.
This strategy enabled the team to verify that the pseudo-labeling process did not lead to data leakage or
artificial performance inflation, enhancing model generalization and credibility. A simpler configuration
(Run ID 1425) using a single EfficientNet-b1 model also performed strongly with 97.08% accuracy.

The organizing team, AI Multimedia Lab, whose submission (Run ID 1396) achieved the highest
accuracy of 99.04% was based on a SNN trained with contrastive loss to learn similarity relationships
between synthetic and real images. During inference, the model compared each synthetic image to
examples from each subset and attributed the image to the subset with the smallest average embedding
distance. This pairwise metric-learning approach effectively captured fine-grained inter-image simi-
larities, yielding highly discriminative performance across all five subsets. Team Medhastra (Run ID
1287) adopted a more streamlined approach using a ResNet-18 backbone. Their pipeline combined deep
feature extraction and supervised multi-class classification. Feature embeddings were generated from
ResNet-18, and the model was fine-tuned to distinguish between the five subsets using real training
images. During inference, predictions for synthetic images were generated directly via softmax classifi-
cation. Despite its relative simplicity and lack of ensembling, this method achieved a commendable
94.84% accuracy, demonstrating the efficacy of targeted fine-tuning on well-designed architectures.

In contrast, AI Multimedia Lab’s second method, which extended their prior year’s pipeline [18],
yielded lower performance. This approach (Run IDs 1267 - 1271) relied on deep feature clustering
and classification using models such as MobileNetV2, ResNet50, EfficientNet, and DenseNet. The
extracted embeddings were processed via various clustering or classification techniques, including
k-means, hierarchical clustering, and SVMs. While methodologically diverse and interpretable, these
models achieved accuracies ranging from 41.12% to 52.36%, indicating that static pretrained features
lacked the discriminative capacity required for this fine-grained attribution task. The relatively poor
performance suggests that such representations may be insufficient for capturing the generative nuances
that distinguish training subsets in GAN outputs.

Overall, the results indicate that contrastive learning frameworks and ensemble deep learning
models, particularly those using EfficientNet architectures, are highly effective for subset attribution.
Techniques such as pseudo-labeling, max-voting, and overfitting control through sequestered validation
further enhance performance. Meanwhile, feature clustering methods, though appealing for their
simplicity and generality, may require significant enhancement or task-specific tuning to match the
performance of supervised or metric-learning-based approaches.

Lessons learned
The 2025 edition of the ImageCLEFmedical GANs task provided valuable insights into the challenges

of detecting training data exposure in synthetic medical images, with each subtask offering lessons
from a different generative modeling approach.

Subtask 1 focused on detecting whether individual real images had been used to train GAN. Despite
the use of a wide array of methods – including Siamese networks, contrastive learning, and attention-
based models –participants achieved only modest performance, with the highest Cohen’s kappa score
reaching 0.148. This suggests that detecting image-level membership in GAN training data remains a
highly challenging problem. It may also indicate that, under the given task conditions, the GAN was
effective at generating images that do not exhibit easily detectable traces of specific training samples.
This is a potentially encouraging result from a privacy standpoint, but it simultaneously underscores the
limitations of current detection frameworks and the need for continued exploration of more sensitive
or robust analysis techniques.

Subtask 2, in contrast, explored attribution at a broader scale: identifying the training subset used
to generate synthetic images from a diffusion model. Here, performance was significantly higher,
with multiple teams exceeding 98% accuracy. While this task did not involve image-level membership
inference, it revealed that diffusion-generated images can still reflect statistical characteristics of the



training data subsets. The success of various supervised and semi-supervised classification techniques
suggests that diffusion models, while effective at preserving image realism, may still encode latent
information about their source data distributions. This raises important considerations about the use
of synthetic data for data sharing or augmentation, particularly when the provenance or diversity of
training data must remain confidential.

Collectively, the lessons from both subtasks emphasize that generative model outputs can leak differ-
ent types of information, depending on both the model architecture and the nature of the detection task.
Continued benchmarking and task diversification will be essential for building a more comprehensive
understanding of privacy risks in generative medical imaging and for guiding the development of
responsible and secure data generation practices.

6. Conclusions

The 2025 edition of the ImageCLEFmedical GANs Task further investigated the privacy and security
implications of using GAN-generated synthetic medical images by addressing two key challenges:
determining whether specific real images were used during GAN training (Subtask 1), and attributing
synthetic images to their original training data subsets (Subtask 2).

In Subtask 1, despite the broad range of approaches: from SNN and contrastive learning to attention-
based ViTs and handcrafted similarity metrics, overall performance remained low. The highest Cohen’s
kappa score reached only 0.148, suggesting that current methodologies struggle to reliably detect
whether individual real images were used to generate synthetic outputs. These results may indicate the
capability of the employed generative model to produce realistic images that do not easily leak training
data, thereby better preserving patient privacy. However, the challenge also highlights a pressing
need for more refined evaluation techniques and robust detection frameworks capable of identifying
subtle "fingerprints" in high-fidelity synthetic medical imagery. This remains an open area for further
investigation.

In contrast, Subtask 2 achieved considerably better results, with multiple teams surpassing 98% clas-
sification accuracy. The most successful approaches utilized supervised classification with EfficientNet
ensembles and contrastive Siamese networks, some enhanced with pseudo-labeling and max-voting
strategies. These findings suggest that while identifying whether an individual image was used in GAN
training remains difficult, it is more feasible to capture coarse-grained, dataset-level attributions embed-
ded in synthetic images generated by Diffusion models. This supports the hypothesis that Diffusion
models may retain latent features reflecting the broader statistical properties of their training subsets.

Overall, the task underscores the need for ongoing research into privacy-preserving generative
modeling, especially in sensitive domains such as healthcare. Benchmarking challenges like this remain
crucial for understanding the evolving capabilities and risks associated with synthetic medical data. We
will continue investigating these issues in future editions of ImageCLEF, where we plan to introduce
new tasks aimed at further exploring generative model privacy, attribution, and generalization across
modalities and model types.
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